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Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been severely impacting global society since December 2019. The related findings 
such as vaccine and drug development have been reported in biomedical literature—at a rate of about 10 000 articles on COVID-19 per month. 
Such rapid growth significantly challenges manual curation and interpretation. For instance, LitCovid is a literature database of COVID-19-related 
articles in PubMed, which has accumulated more than 200 000 articles with millions of accesses each month by users worldwide. One primary 
curation task is to assign up to eight topics (e.g. Diagnosis and Treatment) to the articles in LitCovid. The annotated topics have been widely 
used for navigating the COVID literature, rapidly locating articles of interest and other downstream studies. However, annotating the topics 
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has been the bottleneck of manual curation. Despite the continuing advances in biomedical text-mining methods, few have been dedicated 
to topic annotations in COVID-19 literature. To close the gap, we organized the BioCreative LitCovid track to call for a community effort to 
tackle automated topic annotation for COVID-19 literature. The BioCreative LitCovid dataset—consisting of over 30 000 articles with manually 
reviewed topics—was created for training and testing. It is one of the largest multi-label classification datasets in biomedical scientific literature. 
Nineteen teams worldwide participated and made 80 submissions in total. Most teams used hybrid systems based on transformers. The highest 
performing submissions achieved 0.8875, 0.9181 and 0.9394 for macro-F1-score, micro-F1-score and instance-based F1-score, respectively. 
Notably, these scores are substantially higher (e.g. 12%, higher for macro F1-score) than the corresponding scores of the state-of-art multi-label 
classification method. The level of participation and results demonstrate a successful track and help close the gap between dataset curation and 
method development. The dataset is publicly available via https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/ for benchmarking and further 
development.

Database URL: https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/

Introduction
The rapid growth of biomedical literature poses a significant 
challenge for manual curation and interpretation [1–3]. This 
challenge has become more evident during the coronavirus 
disease 2019 (COVID-19) pandemic: the number of COVID-
19-related articles in the literature is growing by about 10 000 
articles per month; the median number of new articles per day 
since May 2020 is 319, with a peak of over 2500, and this 
volume accounts for over 7% of all PubMed articles [4].

In response, LitCovid [5, 6], the first-of-its-kind COVID-
19-specific literature resource, has been developed for track-
ing and curating COVID-19-related literature. Every day, it 
triages COVID-19-related articles from PubMed, categorizes 
the articles into research topics (e.g. prevention measures) 
and recognizes and standardizes the entities (e.g. vaccines and 
drugs) mentioned in each article. The collected articles and 
curated data in LitCovid are freely available. Since its release, 
LitCovid has been widely used with millions of accesses each 
month by users worldwide for various information needs, 
such as evidence attribution, drug discovery and machine 
learning [6].

Initially, data curation in LitCovid was done manually with 
little machine assistance. The rapid growth of the COVID-19 
literature significantly increased the burden of manual cura-
tion, especially for topic annotations [6]. Topic annotation 
in LitCovid is a standard multi-label classification task that 
assigns one or more labels to each article. A set of eight top-
ics are selected for annotation based on topic modeling and 
discussions with physicians aiming to understand COVID-19, 
such as the Transmission topic, which describes the character-
istics and modes of COVID-19 transmissions. The annotated 
topics have been demonstrated to be effective for informa-
tion retrieval and have been widely used in many downstream 
applications. Topic-related searching and browsing accounts 
for ∼20% of LitCovid user behaviors, making it the second-
most-used feature in LitCovid [6]. The topics have also been 
used in downstream studies such as citation analysis and 
knowledge network generation [7–9]. Figure 1 shows the 
characteristics of topic annotations in LitCovid.

However, annotating topics in LitCovid has been a pri-
mary bottleneck for manual curation. Compared to other 
curation tasks in LitCovid (document triage and entity 
recognition), topic annotation is more difficult due to 
the requirement of interpretation of the biomedical litera-
ture and assignment of up to eight topics. As an exam-
ple of the language variation that must be addressed, 
we provide the following five sentence snippets reflect-
ing the treatment topic: (i) ‘…as a management option 
for COVID-19-associated diarrhea…’ (PMID34741071), (ii) 
‘…modulating these factors may impact in guiding the success 
of vaccines and clinical outcomes in COVID-19 infections…’ 

(PMID34738147), (iii) ‘…lung ultrasound abnormalities are 
prevalent in patients with severe disease, RV involvement 
seems to be predictive of outcomes…’ (PMID34737535), 
(iv) ‘…common and virus-specific host responses and vRNA-
associated proteins that variously promote or restrict viral 
infection…’ (PMID34737357) and (v) ‘…the unique ATP-
binding pockets on NTD/CTD may offer promising targets 
for design of specific anti-SARS-CoV-2 molecules to fight 
the pandemic…’ (PMID34734665). Although these sentence 
snippets all describe treatment-related information, they use 
rather different vocabularies and structures. While automatic 
approaches have been developed to assist manual curation 
in LitCovid, the evaluations show that the automatic topic 
annotation tool has an F1-score of 10% lower than the 
tools assisting other curation tasks in LitCovid [6]. Increasing 
the accuracy of automated topic prediction in COVID-19-
related literature would be a timely improvement beneficial to 
curators, biomedical researchers and healthcare professionals.

To this end, we organized the BioCreative LitCovid track 
to call for a community effort to tackle automated topic anno-
tation for COVID-19 literature. BioCreative, established in 
2003, is the first and longest-running community-wide effort 
for assessing biomedical text-mining methods [10]. Previous 
BioCreative challenges have successfully organized tracks on a 
range of biomedical text-mining applications such as relation 
extraction [11] and entity normalization [12].

This article provides an extended overview from [13] on the 
BioCreative LitCovid track. It substantially describes (i) the 
dataset annotation characteristics, (ii) detailed methods from 
the participating teams and (iii) in-depth evaluation results. 
Overall, 19 teams submitted 80 runs, and ∼75% of the sub-
missions had better performance than the baseline method 
[14]. The dataset and evaluation scripts are available via 
https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/ and 
https://github.com/ncbi/biocreative_litcovid, respectively. We 
encourage further work to develop multi-label classification 
methods for biomedical literature.

Dataset, baselines and evaluation measures
The overall LitCovid curation pipeline
The LitCovid curation pipeline has three primary modules: (i) 
document triage, identifying COVID-19-related articles from 
new articles in PubMed, (ii) topic classification, assigning up 
to eight topics to the COVID-19-related articles (i.e. a multi-
label classification task) and (iii) entity recognition, extracting 
chemicals and locations mentioned in these articles. Initially, 
the curation was done manually with little machine assis-
tance by two (part-time) human curators with a background 
in biomedical data sciences. As the outbreak evolved, we 
developed automated approaches to support manual curation 

https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/
https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/
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Figure 1. Characteristics of topic annotations in LitCovid up to Feb 2022. (A) shows the frequencies of topics; (B) demonstrates topic co-occurrences 
and (C) illustrates the distributions of the number of topics assigned per document.

and maximize curation productivity to keep up with the rapid 
literature growth. The detailed implementation and evalua-
tion of the automated approaches are fully described in the 
description of the LitCovid resource [6]. In summary, all auto-
mated methods were evaluated before first use and have been 
improved continuously. The evaluations demonstrated that 
automated methods can achieve exceptionally high perfor-
mance for document triage and entity recognition (e.g. the 
F1-scores were 0.99 and 0.94 for document triage and entity 
recognition, respectively). In contrast, the F1-score of the 
topic classification was 0.80, largely due to the complexity 
of the multi-label classification task, which assigns up to eight 
topics. We therefore organized this to call for a community 
effort to tackle automated topic annotation for COVID-19 
literature.

Topic annotations in LitCovid
The topic annotation step assigns up to eight topics to the 
COVID-19-related articles:

1. Case Report: descriptions of specific patient cases 
related to COVID-19,

2. Diagnosis: COVID-19 assessment through symptoms, 
test results and radiological features for COVID-19,

3. Epidemic Forecasting: estimation on the trend of 
COVID-19 spread and related modeling approach,

4. General Information: COVID-19-related brief reports 
and news,

5. Mechanism: underlying cause(s) of COVID-19 infec-
tions and transmission and possible drug mechanism of 
action,

6. Prevention: prevention, control, mitigation and man-
agement strategies,

7. Transmission: characteristics and modes of COVID-19 
transmissions,

8. Treatment: treatment strategies, therapeutic procedures 
and vaccine development for COVID-19.

Note that by design Case Report and General Information 
are singleton topics, i.e. not co-assigned with other topics. 
This is due to their broad scope, e.g. a case report typically 
also contains diagnostic information.

Topics are annotated mainly based on titles and abstracts of 
the papers; the curators may also look for other information 

such as full-text and Medical Subject Headings (MeSH) when 
needed. Previous studies have shown that many COVID-19 
articles published in PubMed without abstract information 
are not descriptions of formal research studies but rather com-
mentary or perspective [15]. We also find that automatic topic 
annotation methods achieve 10% higher F1-score on articles 
with abstracts available [6]. Since late August 2020, we have 
prioritized annotating topics for the articles with abstracts 
available in PubMed, when the number of daily new articles 
reached a record high of over 2500.

Dataset characteristics
Table 1 summarizes the dataset characteristics in terms of the 
scale of the dataset, labels and annotators. It also compares 
the dataset with representative counterparts. There are only 
a few existing multi-label classification datasets for biomedi-
cal scientific literature, and their size is relatively small. The 
Hallmarks of Cancer dataset [16] has been widely used for 
multi-label classification methods, which has about ∼1600 
documents. Another dataset on chemical exposure assessment 
[17] has ∼3700 documents. In contrast, The BioCreative Lit-
Covid dataset has ∼34 000 documents in total, which is nearly 
10 times larger. The training, development and testing sets 
contain 24 960, 6239 and 2500 articles in LitCovid, respec-
tively. Table 2 shows the detailed topic distributions of the 
dataset. The topics were assigned using the above annota-
tion approach consistently. All the articles contain both titles 
and abstracts available in PubMed and have been manually 
reviewed by curators. The only difference is that the datasets 
do not contain the General Information topic since the prior-
ity is given to the articles with abstracts available in PubMed. 
The training and development datasets were made available 
on 15 June 2021, to all participant teams. The testing set con-
tains held-out articles added to LitCovid from June 16 to 22 
August 2021. Using incoming articles to generate the testing 
set facilitates the evaluation of the generalization capability of 
automatic tools. 

In addition, most existing multi-label datasets on biomed-
ical literature were annotated by a single curator, which does 
not allow inter-annotator agreement to be measured. A ran-
dom sample of 200 articles in LitCovid was used to measure 
inter-annotator agreement, and two curators annotated each 
article independently. Table 3 shows that the micro-average 
of Pearson correlation of the curators across the seven topics 
is 0.78, which can be interpreted as ‘strong correlation’ [18]. 
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Table 1. BioCreative LitCovid dataset characteristics in comparison with representative multi-label classification datasets on biomedical scientific literature

Dataset scale Label scale
Annotator 
scale

Total 
documents Train Valid Test Total labels

Avg. labels 
per doc

Unique 
labels Annotators

Hallmarks of Cancer [16] 1580 1108 157 315 2469 1.56 10 1
Chemical Exposure [17] 3661 – – – 21 233 5.80 32 1
BioCreative LitCovid (ours) 33 699 24 960 6239 2500 46 368 1.38 7 2

Note that the Chemical Exposure dataset does not provide dataset splits.

Table 2. Detailed topic annotation characteristics

 Train  Valid  Test  All

#Articles Label (%) #Articles Label (%) #Articles Label (%) #Articles Label (%)

Case Report 2063 (8.27%) 482 (7.73%) 197 (7.88%) 2742 (8.14%)
Diagnosis 6193 (24.81%) 1546 (24.78%) 722 (28.88%) 8461 (25.11%)
Epidemic Forecasting 645 (2.58%) 192 (3.08%) 41 (1.64%) 878 (2.61%)
Mechanism 4438 (17.78%) 1073 (17.2%) 567 (22.68%) 6078 (18.04%)
Prevention 11 102 (44.48%) 2750 (44.08%) 926 (37.04%) 14 778 (43.85%)
Transmission 1088 (4.36%) 256 (4.1%) 128 (5.12%) 1472 (4.37%)
Treatment 8717 (34.92%) 2207 (35.37%) 1035 (41.4%) 11 959 (35.49%)

Note that the General Information topic is excluded as the annotation priority is given to the articles with abstracts available in PubMed.

Table 3. Inter-annotator agreement on a random sample of 200 articles

Topic Size (percentage) Pearson correlation

Case Report 15 (7.50%) 0.90
Diagnosis 37 (18.50%) 0.71
Epidemic Forecasting 5 (2.50%) 0.51
Mechanism 35 (17.50%) 0.72
Prevention 94 (47.00%) 0.84
Transmission 4 (2.00%) 0.66
Treatment 66 (33.00%) 0.77
Macro-average – 0.73
Micro-average – 0.78

Note that the General Information topic is excluded as the annotation 
priority is given to the articles with abstracts available in PubMed.

The distribution of the topics in the random sample is also 
consistent with that of the entire dataset. Given the scale of 
the dataset, the curator each annotated half of the remaining 
dataset and discussed difficult cases together. 

Baseline method
We chose Machine Learning (ML)-Net [14] as the baseline 
method. ML-Net is a deep learning framework specifically 
for multi-label classification tasks for biomedical literature. It 
has achieved favorable state-of-the-art performance in a few 
biomedical multi-label text classification tasks, and its source 
code is publicly available [14]. ML-Net first maps texts into 
high-dimensional vectors through deep contextualized word 
representations (ELMo) [19] and then combines a label pre-
diction network and label count prediction to infer an optimal 
set of labels for each document. We ran ML-Net with ten 
different random seeds and reported the median performance.

Evaluation measures
Evaluation measures for multi-label classification tasks can be 
broadly divided into two groups: (i) label-based measures, 
which evaluate the classifier’s performance on each label, 

and (ii) instance-based measures (also called example-based 
measures), which aim to evaluate the multi-label classifier’s 
performance on each test instance [20–22]. Both groups have 
unique strengths and complement each other: label-based 
measures quantify the effectiveness of each individual label, 
whereas instance-based measures quantify the effectiveness of 
instances which may contain multiple labels. We employed 
representative metrics from both groups to provide a broader 
evaluation of the performance. Specifically, for label-based 
measures, we calculated macro- and micro-averages on pre-
cision, recall and F1-score. The macro-average computes 
the arithmetic average by considering all the topics equally 
regardless of the number of instances per class, whereas the 
micro-average computes the weighted average according to 
the number of instances. For instance-based measures, we cal-
culated instance-based precision, recall and F1-score. Out of 
these nine metrics, we focus on the three F1-scores because 
these aggregate both precision and recall.

Results and discussion
Participating teams
Table 4 provides details on the participating teams and their 
number of submissions. Each team is allowed to submit up to 
five test set predictions. Overall, 19 teams submitted 80 valid 
testing set predictions in total. 

System descriptions
Out of 19 teams, 17 teams agreed to participate in the track 
overview and described their approaches. Table 5 summa-
rizes their methods and associated performance. The full 
detail is further provided in Table S1. Overall, we notice 
that the transformer approach has been used extensively: 14 
out of the 17 teams (82.3%) used transformers purely (nine 
teams) and a combination of transformers and other tradi-
tional deep learning approaches (five teams). In contrast, only 
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Table 4. Team participation details, ordered alphabetically by team name

Team name Team affiliation Submissions

Bioformer Children’s Hospital of Philadelphia 5
BJUT-BJFU Beijing University of Technology and 

Beijing Forestry University
5

CLaC Concordia University 4
CUNI-NU Navrachana University and Charles 

University
5

DonutNLP Taipei Medical University, Taipei 
Medical University Hospital and 
National Tsing Hua University

5

DUT914 Dalian University of Technology 3
E8@IJS Jozef Stefan Institute 3
ElsevierHealth-

Sciences
Elsevier 1

FSU2021 Florida State University 5
ittc University of Melbourne and RMIT 

University
4

KnowLab University of Edinburgh and 
University College London

5

LIA/LS2N Avignon Universit ́e 4
LRL_NC Indian Institute of Technology Delhi 5
Opscidia Opscidia 5
PIDNA Roche Holding Ltd 3
polyu_cbsnlp The Hong Kong Polytechnic 

University and Tencent AI Lab
5

robert-nlp Bosch Center for Artificial 
Intelligence and Bosch Global

5

SINAI Universidad de Ja ́en 4
TCSR Tata Consultancy Services 4

two teams used deep learning approaches besides transform-
ers only and two teams used machine learning approaches 
only. This is different from previous BioCreative challenge 
tasks, where most teams used machine learning approaches 
or a combination of machine learning and deep learning tech-
niques [11, 23–26]. In addition, of the 14 teams using the 
transformer approach, seven teams (50%) proposed innova-
tive methods beyond the default approach (fine-tuning the 
transformers). For instance, the Bioformer team proposed a 
lightweight transformer architecture, which reduces the num-
ber of parameters by two-thirds (the detail is summarized 
in [27]); the DUT914 team proposed an enhanced trans-
former model, which learns the correlations between labels 
for the multi-label classification task (the detail is summarized 
in [28]). Such innovative approaches demonstrated superior 
performance and achieved top-ranked results. In addition, 
six teams (35%) used additional data (beyond titles and 
abstracts) for training the models, including metadata (e.g. 
paper types and journals), entity annotations (e.g. Unified 
Medical Language System (UMLS) [29] and DrugBank [30]) 
and synonyms (e.g. WordNet [31]). 

Bioformer team [27]
We performed topic classification using three BERT mod-
els: BioBERT [32], PubMedBERT [33] and Bioformer 
(https://github.com/WGLab/bioformer/). For BioBERT, we 
used BioBERTBase-v1.1, which is the version described in 
the publication [32]. PubMedBERT has two versions: one 
version was pretrained on PubMed abstracts (denoted by 
PubMedBERTAb in this study) and the other version was pre-
trained on PubMed abstracts plus PMC full texts (denoted 

by PubMedBERTAbFull). We used Bioformer8L, which is pre-
trained on PubMed abstracts and 1 million PMC full-text 
articles for 2 million steps. We formulated the topic classifica-
tion task as a sentence pair classification problem where the 
title is the first sentence and the abstract is the second sentence. 
The input is represented as ‘[CLS] title [SEP] abstract [SEP]’. 
The representation of the [CLS] token in the last layer was 
used to classify the relations. We utilized the sentence classi-
fier in the transformers python library to fine-tune the models. 
We treated each topic independently and fine-tuned seven dif-
ferent models (one per topic). We fine-tuned each BERT model 
on the training dataset for three epochs. The maximum input 
sequence length was fixed to 512. We selected a batch size of 
16 and a learning rate of 3e−5.

BJUT-BJFU team [34]
We combined the training and development sets to create our 
training set, which we further grouped into 10 disjoint subsets 
with nearly equal size and similar label distribution using the 
stratification method in Sechidis et al. [35]. Our method takes 
advantage of four powerful deep learning models: FastText 
[36], Text Recurrent Convolutional Neural Network (TextR-
CNN) [37], Text Convolutional Neural Network (TextCNN) 
[38] and Transformer [39]. We also consider the correlations 
among labels [40].

CLaC team [41]
We used a multi-label classification approach, where a base 
network (shared by several classifiers) is responsible for rep-
resentation learning for all classes. Although the classes might 
be related, different classes often require focus on different 
parts of the input. To allow a differential focus on the input, 
we used the multi-input Recurrent Independent Mechanisms 
(RIM) model [42] with seven class modules, one for each 
class, each using ClinicalBERT [43] as input. We also used 
a gazetteer module for leveraging annotations from Drug-
Bank [30] and MeSH [44]. The modules sparsely interact 
with one another through an attention bottleneck, enabling 
the system to achieve compositional behavior. The proposed 
model improves all classes, especially the two least frequent 
classes, Transmission and Epidemic Forecasting. Moreover, 
the functionality of the modules is transparent for inspection 
[45].

CUNI-NU team [46]
Our approach implemented the Specter model [47], which 
incorporates SciBERT [48] to produce the document-level 
embedding using citation-based transformers. SciBERT can 
decipher the dense biomedical vocabulary in the COVID-19 
literature, making it a valuable choice. Furthermore, we used 
a dual-attention module [39], consisting of two self-attention 
layers applied to the embeddings in sequential order. These 
self-attention layers allow each input to establish relation-
ships with other instances. To obtain unique vectors, i.e. 
query (Q), key (K) and value (V), three individually learned 
matrices are multiplied with the input vector. A single self-
attention layer can learn the relationship between contextual 
semantics and sentimental tendency information. The dual 
self-attention mechanism helps retain more information from 
the sentence and thus generates a more representative fea-
ture vector. However, the dual self-attention mechanism can 
only generate relationships among the input instances while 

https://github.com/WGLab/bioformer/
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Table 5. Systems and performance. The systems are categorized in terms of additional training data and knowledge sources, backbone models and 
methods. The best performance in terms of each metric is also reported

 Systems  Best performance

Team name
Additional training data and 
knowledge sources Models and methods Micro-F1 Macro-F1 Instance F1

Bioformer – BioBERT, PubMedBERT and Bioformer 0.9181 0.8875 0.9334
BJUT-BJFU – FastText, TextRCNN, TextCNN, Transformer 

and correlation learning
0.8556 0.7847 0.8701

CLaC DrugBank and MeSH Multi-input RIM model and ClinicalBERT 0.8897 0.8487 0.9102
CUNI-NU – SciBERT, dual-attention modules and LWAN 0.8959 0.8673 0.9153
DonutNLP – BioBERT and ensemble learning 0.9174 0.8754 0.9346
DUT914 – BioBERT and label feature enhancement 

module
0.9175 0.8760 0.9394

E8@IJS – AutoBOT and doc2vec 0.8430 0.7382 0.8518
FSU2021 – PubMedBERT and multi-instance learning 0.9067 0.8670 0.9247
ITTC – SVM, SciBERT, Specter, BioELECTRA and 

ensemble learning
0.9000 0.8669 0.9185

KnowLab Back translation (to Ger-
man), keywords, journals, 
UMLS, MeSH, SJR journal 
categories

BlueBERT-Base, PubMedBERT, JMAN, 
HLAN, HA-GRU, HAN, CNN, LSTM and 
ensemble learning

0.8932 0.8601 0.9169

LIA/LS2N – TARS transformer, few-shot learning and 
TF-IDF

0.8830 0.8366 0.9094

LRL_NC – Co-occurrence learning, TF-IDF and LGBM 0.8568 0.7742 0.8830
Opscidia – BERT, data augmentation and ensemble 

learning
0.9135 0.8824 0.9296

polyu_cbsnlp MeSH BioBERT-Base, BioBERT-Large, Pub-
MedBERT, CovidBERT, BioELECTRA, 
BioM-ELECTRA, BioMed_RoBERTa and 
ensemble learning

0.9139 0.8749 0.9319

robert-nlp Publication type, keywords 
and journals

SciBERT 0.9032 0.8655 0.9251

SINAI Synonyms from WordNet Logistic regression and TF-IDF 0.8254 0.7643 0.8086
TCSR Biomedical entities BioBERT and ensemble learning 0.8495 0.7896 0.8845

completely discarding the output. A Label-Wise-Attention-
Network (LWAN) [49] is used to improve the results further 
and overcome the limitation of dual attention. LWAN pro-
vides attention to each label in the dataset and improves 
individual word predictability by paying special attention to 
the output labels. It uses attention to allow the model to focus 
on specific words in the input rather than memorizing the 
essential features in a fixed-length vector. Label-wise attention 
mechanism repeatedly applies attention L (number of labels) 
times, where each attention module is reserved for a specific 
label. Weighted binary cross-entropy is used as a loss func-
tion. This loss function was most appropriate as it gives equal 
importance to the different classes during training, which was 
necessary due to the significant imbalance in the data. Thus, 
this approach overcame the significant imbalance among class 
labels and attained extensive results on labels like Case study, 
Epidemic Forecasting, Transmission and Diagnosis.

DonutNLP team [50]
We proposed a BERT-based Ensemble Learning Approach to 
predict topics for the COVID-19 literature. To select the best 
BERT model for this task, we conducted experiments estimat-
ing the performance of several BERT models using training 
data. The results demonstrate that BioBERTv1.2 achieved the 
best performance out of all models. We then used ensem-
ble learning with a majority voting mechanism to integrate 
multiple BioBERT models, which are selected by the results 
of k-fold cross-validation. Finally, our proposed method can 
achieve remarkable performances on the official dataset with 

precision, recall and F1-score of 0.9440, 0.9254 and 0.9346, 
respectively.

DUT914 team [28]
We designed a feature enhancement approach to address the 
problem of insufficient features in medical datasets. First, we 
extract the article titles and the abstracts from the dataset. 
Then the article title and the abstract are concatenated as 
the first input part. We only take the article titles as the sec-
ond input part. Additionally, we count the distribution of 
labels in the training set and design a tag association matrix 
based on the distribution. Second, we process the features 
to achieve feature equalization. The first input part is tok-
enized and then encoded by the pretrained model BioBERT 
[32]. The second input part is embedded randomly. Then, we 
concatenate the processed features and the tokenization of the 
title to obtain the equalized features. Finally, we design a fea-
ture enhancement module to integrate the previously obtained 
label features into the model. We multiply the equalized fea-
tures by the label matrix to obtain the final output vector used 
for classification.

E8@IJS team [51]
Our approach [51] used the automated Bag-Of-Tokens (auto-
BOT) system by Škrlj et al. [52] with some task-specific 
modifications. The main idea of the autoBOT system is rep-
resentation evolution by learning the weights of different 
representations, including token, sub-word and sentence-level 
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(contextual and non-contextual) features. The system pro-
duces a final representation that is suitable for the specific 
task.

First, we transformed the multi-label classification task into 
a binary classification problem by treating each assignable 
topic as a binary classification. Next, we developed three con-
figurations of the autoBOT system. The first configuration 
Neural includes two doc2vec-based latent representations, 
each with a dimensionality of 512. The second configuration, 
Neurosymbolic-0.1, includes both symbolic and sub-symbolic 
features, where the symbolic features include features based 
on words, characters, part-of-speech tags and keywords; the 
dimension of the symbolic feature subspaces is 5120. The 
third configuration, Neurosymbolic-0.02, has symbolic and 
sub-symbolic features, the same as the second configuration, 
but the dimensionality of the symbolic feature subspaces is 
25 600.

Even if the organizers’ baseline model [14] has better 
performance in most of the metrics, the Neurosymbolic-
0.1 configuration of the autoBOT system achieves label-
based micro- and macro-precision of 0.8930 and 0.9175, 
respectively, by which it outperforms the baseline system 
(for 8% points in terms of macro-precision). Moreover, 
by our results of label-based F1-score (micro) of 0.8430 
(Neurosymbolic-0.02 configuration) and F1-score (macro) of 
0.7382 (Neural configuration), the system has results compa-
rable to the state-of-the-art baseline system (cca. 2% below), 
which indicates that autoML is a promising path for future
work.

FSU2021 team [53]
In our participation in the BioCreative VII LitCovid track, 
we evaluated several deep learning models built on PubMed-
BERT, a pretrained language model, with different strate-
gies to address the challenges of the task. Specifically, we 
used multi-instance learning to deal with the large varia-
tion in the lengths of the articles and used the focal loss 
function to address the imbalance in the distribution of dif-
ferent topics. We also used an ensemble strategy to achieve 
the best performance among all the models. Test results of 
our submissions showed that our approach achieved a sat-
isfactory performance with an F1-score of 0.9247, which 
is significantly better than the baseline model (F1-score: 
0.8678) and the average of all the submissions (F1-score:
0.8931).

ITTC team [54]
Team ITTC combined traditional bag-of-words classi-
fiers such as their implementation of MTI ML (a lin-
ear Support Vector Machine (SVM) model using gradient 
descent and the modified Huber loss [55, 56], available 
at https://github.com/READ-BioMed/MTIMLExtension) and 
neural models including SciBERT [48], Specter [47] and Bio-
ELECTRA [57]. We combined these into two ensemble meth-
ods: averaging across the results of SciBERT, MTI ML and 
Specter, on the one hand, and taking the maximum of scores 
assigned by SciBERT and MTI ML, on the other. The rea-
son for such ensembles was that SciBERT tended to give 
high scores to well-represented categories such as Treatment 
while assigning scores close to zero for weaker classes such 
as Transmission, so its performance varied greatly depending 
on the composition of the test set. Conversely, Specter and 

MTI ML were more conservative but assigned more scores 
close to 0.5 even for underrepresented labels, which improved 
precision for difficult categories. The ensemble based on the 
maximum value proved to be an effective strategy for recall, 
while averaging improved precision, especially for underrep-
resented and challenging categories, which led to very strong 
macro-precision results.

KnowLab team [58]
KnowLab group applied deep-learning-based document clas-
sification models, including BlueBERT-Base [59], PubMed-
BERT [33], Joint Multilabel Attention Network (JMAN) [60], 
Hierarchical Label-wise Attention Networks (HLAN) [61], 
Hierarchical Attention Network Gated Recurrent Unit (HA-
GRU) [62], Hierarchical Attention Network (HAN) [63], 
CNN [38], Long short-term memory (LSTM) [64], etc., 
and each with a different combination of metadata (title, 
abstract, keywords and journal name), knowledge sources 
(UMLS, MeSH and Scientific Journal Rankings (SJR) journal 
categories), pretrained embeddings and data augmentation 
with back translation (to German). A class-specific ensem-
ble averaging of the top-five models was then applied. The 
overall approach achieved micro-F1-scores of 0.9031 on the 
validation set and 0.8932 on the test set.

LIA/LS2N team [65]
We addressed the multi-label topic classification problem by 
combining an original keyword enhancement method with 
the TARS transformer-based approach [66] designed to per-
form few-shot learning. This model has first the advantage 
of not being constrained by the class number using a binary-
like classification. Second, it tries to integrate the semantic 
information of the targeted class name in the training pro-
cess by linking it to the content. Our best system architecture 
then uses a TARS model fed with various textual data sources 
such as abstracts, titles and keywords. Then, we applied a 
keyword-based enhancement that consists in applying a first-
term frequency-inverse document frequency (TF-IDF) pass on 
the data to extract the specific terms of each topic with a score 
>0.65. These terms are then framed by tags [67], the idea being 
to explicitly give more importance to these terms during their 
modeling by the TARS model. Experiments conducted during 
the BioCreative challenge on the multi-label classification task 
show that our approach outperforms the baseline (ML-Net), 
no matter the metric considered, while being close to the best 
challenge approaches.

LRL_NC team [68]
We propose two main techniques for this challenge task. The 
first technique is a data-centric approach, which uses insights 
on label co-occurrence patterns from the training data to 
segment the given problem into sub-problems. The second 
technique uses document-topic distribution extracted from 
contextual topic models as features for a binary relevance 
multi-label classifier. The best performance across different 
metrics was obtained using the first technique with TF-IDF 
representation of the raw text corpus as features. To solve 
each of these multi-label classification sub-problems, Ran-
dom k-Labelsets classifier [69] was used with Light Gradient 
Boosting Machine (LGBM) [70] as base estimator.

https://github.com/READ-BioMed/MTIMLExtension
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Opscidia team [71]
We propose creating an ensemble model by aggregating the 
sub-models at the end of each fine-tuning epoch with a weight-
ing related to the Hamming loss. These models, based on 
BERT, are first pretrained on heterogeneous corpora in the sci-
entific domain. The resulting meta-model is fed with several 
semi-independent samples augmented by random masking 
of COVID-19 terms, the addition of noise and the replace-
ment of expressions with similar semantic features. While it is 
resource intensive if used directly, we consider its purpose to 
be distilling its rich new representation into a faster model.

polyu_cbsnlp team [72]
We propose an ensemble-learning-based method that uti-
lizes multiple biomedical pretrained models. Specifically, we 
propose to ensemble seven advanced pretrained models for 
the LitCovid multi-label classification problem, including 
BioBERT-Base [32], BioBERT-Large [32], PubMedBERT 
[33], CovidBERT [73], BioELECTRA [57], BioM-ELECTRA 
[6] and BioMed_RoBERTa [74], respectively. The homoge-
neous and heterogeneous neural architectures of these pre-
training models assure the diversity and robustness of the 
proposed method. Furthermore, the extra biomedical knowl-
edge of MeSH terms is also employed to enhance the semantic 
representations of the ensemble learning method. The final 

Table 6. Overall team-submission-related statistics and the baseline per-
formance. The baseline performance is the median of ten repetitions using 
different random seeds

 Label-based Instance-based

Macro-F1 Micro-F1 F1

Teams
Mean 0.8191 0.8778 0.8931
Q1 0.7651 0.8541 0.8668
Median 0.8527 0.8925 0.9132
Q3 0.8670 0.9083 0.9254

Baseline
ML-Net 0.7655 0.8437 0.8678

experimental results on the LitCovid shared task show the 
effectiveness and success of our proposed approach. 

robert-nlp team [75]
Our system represents documents using n-dimensional vec-
tors using textual content (title and abstract) and metadata 
fields (pubtype, keywords and journal). Textual content and 
keywords are each encoded with SciBERT [48], and the two 
embeddings are concatenated. Following [76], this document 
representation is fed into a classification layer composed of 
several multi-layer perceptrons, each predicting the applica-
bility of a single label. The model outperforms the shared task 
baseline both in terms of macro-F1 and in terms of micro-F1. 
Also, it is at par with the Q3 of the task statistics, which means 
that results are better than 75% of all the submitted runs.

SINAI team [77]
To address the task of multi-label topic classification for 
COVID-19 literature annotation, the SINAI team opted for 
a problem transformation method that considers the predic-
tion of each label as an independent binary classification task. 
This approach allowed the team to use the Logistic Regres-
sion algorithm [78] based on TF-IDF [79] representation of 
the tokenized and stemmed text data, which was previously 
subjected to a corpus augmentation process. This process con-
sisted of using such techniques as back translation [80] of 
a selection of articles tagged with the less represented labels 
(Transmission, Case Report and Epidemic Forecasting) and 
the replacement of all nouns present in the abstracts with 
their synonyms retrieved from the WordNet [31]. The clas-
sifier achieved a label-based micro-average precision of 0.91, 
using negligible time and computational resources required to 
train our classifier addresses the fast growth of LitCovid.

TCS Research team [81]
We propose two different approaches for the task. The first 
approach, System 1, uses the training and validation datasets 
directly, whereas the second approach, System 2, performs 

Figure 2. The distributions of team submission and baseline F1-scores. Median F1-scores are shown in the legend.
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Figure 3. The distributions of team submission and baseline F1-scores for individual topics from (A) Case Report to (C) Epidemic Forecasting. Median 
F1-scores are shown in the legend. (B) The distributions of team submission and baseline F1-scores for individual topics from (D) Mechanism to (G) 
Treatment. Median F1-scores are shown in the legend.
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Figure 3. (Continued)

Table 7. Top-five team submission results ranked by each F1-score measure

Label-based  Instance-based

Macro-F1  Micro-F1  F1

Team Result Team Result Team Result

Bioformer 0.8875 Bioformer 0.9181 DUT914 0.9394
Opscidia 0.8824 DUT914 0.9175 DonutNLP 0.9346
DUT914 0.8760 DonutNLP 0.9174 Bioformer 0.9334
DonutNLP 0.8754 polyu_cbsnlp 0.9139 polyu_cbsnlp 0.9321
polyu_cbsnlp 0.8749 Opscidia 0.9135 ElsevierHealth Sciences 0.9307

named entity recognition (NER) on the training and valida-
tion datasets and uses the resulting tagged data for train-
ing/validation. NER on the abstract and title texts was per-
formed using our text-mining framework PRIORI-T [82], 
where we cover 27 different entity types, including human 
genes, Severe Acute Respiratory Syndrome (SARS)/Middle 
East Respiratory Syndrome (MERS)/Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2) genes, phenotypes, 
drugs, diseases, Gene Ontology (GO) terms, etc. In both 
approaches, training is performed by fine-tuning a BioBERT 
model pretrained on the Multi-Genre Natural Language Infer-
ence (MNLI) corpus [83]. Two separate BioBERT [32] fine-
tuned models were created; the first model uses only the 
‘abstract’ part of the training data and the second model uses 
only the ‘remaining’ part of the text, consisting of article title 
and metadata such as keywords and journal type. The final 
prediction was obtained by combining the predictions of both 
models, meaning that System 1 and System 2 each consist 
of a separate ensemble model. System 1 showed better per-
formance than System 2 on both label- and instance-based 
F1-scores. Furthermore, System 1 showed better label-based 
macro- and instance-based F1-scores than the challenge base-
line model (ML-Net) [14]. Finally, as per the challenge bench-
marks, the label-based macro F1-score for System 1 was close 

to the median F1-score and the instance-based F1-score was 
close to the mean score.

Evaluation results
Table 6 summarizes team-submission-related statistics and the 
baseline performance in terms of their macro-F1-score, micro-
F1-score and instance-based F1-score. The detailed results for 
each team submission and all the measures are provided in 
Table S1 in the supplementary material. The average macro-
F1-score, micro-F1-scores and instance-based F1-scores are 
0.8191, 0.8778 and 0.8931, respectively, all higher than the 
respective baseline scores. The baseline performance is close 
to the Q1 statistics for all the three measures, suggesting that 
∼75% of the team submissions have better performance than 
the baseline method.

Figure 2 shows the distributions of the overall perfor-
mance, whereas Figure 3A and B further show the distri-
butions of individual topic performance. Out of the seven 
topics, the teams achieved higher performance in terms of 
the median F1-score in six topics than the baseline (up to 
29% higher) except the Prevention topic (only 4% lower). The 
results show that the performance difference is larger in the 
topics with relatively lower frequencies: Epidemic Forecasting 
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(23% higher) and Transmission (29% higher). In addition, we 
observe that the teams achieved generally consistent perfor-
mance with the correlation of manual annotations in Table 3. 
For instance, it had the lowest performance on the Transmis-
sion topic, which is consistent with the correlation of manual 
annotations in Table 3. The only exception is the Epidemic 
Forecasting topic, where the inter-annotator agreement had a 
correlation of over 0.5, whereas the teams achieved an F1-
score of over 0.9. This is primarily because of the sample 
size: only 5 and 41 articles are annotated with the Epidemic 
Forecasting topic in the random sample for inter-annotation 
agreement and the entire testing set, respectively. Given the 
limited size, we believe the performance on the Epidemic Fore-
casting topic is less representative. In contrast, other topics 
(which have a higher number of instances) show consistent 
performance.

Table 7 provides the top-five team submission performance 
ranked by each of the F1-scores. The best score is 6.8%, 
4.1% and 4.1% higher than the corresponding team average 
score for macro-F1-score, micro-F1-score and instance-based 
F1-score, respectively. Four teams (Bioformer, DonutNLP, 
DUT914 and polyu_cbsnlp) consistently achieved top-ranked 
performance in the three rankings. As mentioned above, the 
Bioformer and DUT914 teams proposed innovative methods, 
which are beyond the default transfer learning approaches. In 
contrast, DonutNLP and polyu_cbsnlp used an ensemble of 
transformer approaches which also improve the performance. 
This is consistent with observations from previous challenge 
tasks [11, 24].

Conclusions
This overview paper summarizes the BioCreative LitCovid 
track in terms of data collection and team participation. It 
provides a manually curated dataset of over 33 000 biomed-
ical scientific articles. This is one of the largest datasets 
for multi-label classification for biomedical scientific litera-
ture, to our knowledge. Overall, 19 teams submitted 80 
testing set predictions and ∼75% of the submissions had 
better performance than the baseline approach. Given the 
scale of the dataset and the level of participation and team 
results, we conclude that the LitCovid track of BioCre-
ative VII ran successfully and is expected to make sig-
nificant contributions to innovative biomedical text-mining
methods.

One possible direction to explore is the efficiency of trans-
formers in real-world applications. As described above, over 
80% of the teams used the transformers; the top-five team 
submissions also show superior performance using the trans-
former approach. However, it has a trade-off on the efficiency 
side. Existing studies show that transformers are significantly 
slower than other deep learning approaches using word and 
sentence embeddings, e.g. up to 80 times slower for biomedi-
cal sentence retrieval [84]. This is more challenging under the 
setting of multi-label classification (may require more than 
one transformer model) on COVID-19 literature (∼10 000 
articles per month). The Bioformer team showed one candi-
date approach, which only uses one-third of the parameters 
used by the original transformer architecture and achieves 
similar performance. We expect that more innovative trans-
former approaches will be developed to improve the efficiency.

Another possible direction is to quantify the usability of 
systems by incorporating them into the curation workflow. 

The systems are ultimately used to facilitate data curation—
it is thus important to evaluate its usability in the curation 
workflow, e.g. what is the accuracy of systems for new arti-
cles and how much manual curation effort can be reduced 
by deploying the systems? We have conducted a preliminary 
analysis on the generalization capability and efficiency of the 
systems in the LitCovid production environment [85], and we 
encourage more studies to perform usability evaluation and 
accountability of systems in the curation workflow [86, 87].

A further possible direction is the development of datasets 
for biomedical multi-label classification tasks. As summa-
rized above, while multi-label classification is frequently used 
in biomedical literature, limited datasets are available for 
method development. This seems the major bottleneck for 
innovative biomedical text-mining methods. We expect that a 
community effort for dataset construction and a combination 
of automatic and manual curation approaches would address 
this issue. Also, given the scale of the BioCreative LitCovid 
dataset, it would be interesting to explore whether it can sup-
port transfer learning to other biomedical multi-label classifi-
cation tasks. We encourage further development of biomedical 
text-mining methods using the BioCreative LitCovid dataset.
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