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Abstract—A fingerprinting process is an efficient means of
protecting multimedia content and preventing illegal distri-
bution. The goal is to find individuals who were engaged
in the production and illicit distribution of a multimedia
product. We investigated discrete wavelet transform (DWT)
based blind video watermarking strategy tied with proba-
bilistic fingerprinting codes to avoid collusion among higher-
resolution videos. We used FFmpeg to run a variety of
collusion attacks (e.g., averaging, darkening, and lighten)
on high resolution video and compared the most often
suggested code generator and decoders in the literature to
find at least one colluder within the necessary code length.
The Laarhoven codes generator and nearest neighbor search
(NNS) decoder outperforms all other suggested generators
and decoders in the literature in terms of computational time,
colluder detection and resources.
Index Terms—Collusion, Video watermarking, Fingerprinting
codes

I. INTRODUCTION

The digital revolution and peer-to-peer networks have
significantly influenced our daily lives, particularly dig-
ital information piracy [9]. Consumers may now access
digital content and services at any time and from any
location. In this context, copyright crimes such as free
distribution, illicit usage, and unauthorized sharing of
copyrighted digital content are getting more common.
Videos are perhaps the most vulnerable multimedia
content [1], and unauthorized individuals are spreading
videos for their own gain and profit. As a result, digital
operations may suffer and the business model may be
impacted.
The problem of super re-distribution can be addressed
using fingerprint-based approaches [17, 5, 19]. Each con-
sumer’s fingerprint (a unique watermark, or customer
ID) is embedded in the video clip. One of the design
characteristics of fingerprinting scheme is that it gener-
ates a code for each client that allows the distributor to
identify the authentic users. If a digital pirate chooses

to publish his fingerprinted content publicly, the content
owner can get a copy, extract the fingerprint, connect it to
the responsible user, and take necessary action. To avoid
being recognized, digital pirates may work together to
make a mixed copy of the information [6], denoted as
a collusion. To avoid the collusion of media content,
collusion-resistant fingerprinting approaches are needed
like Tardos codes [20], which provide an acceptable
trade-off between code length and decoding time. Tardos
codes properties have been improved in order to make
them more resistant to collusion attempts [3, 10]. Previ-
ous fingerprinting systems attempted to strike a balance
between tracing code and watermarking technology in
order to provide a tracing method that could survive a
variety of collusion attacks [2, 26, 23, 6]. Nonetheless,
they only utilized a normal average collusion attack
with excessively lengthy fingerprinting codes to evaluate
the durability of these systems. There are various joint
fingerprinting and encryption (JFE) techniques [25, 18,
21] that employ DWT watermarking, which is resistant to
brute force, differential, and statistical attacks. However,
there is no justification for the various components of
fingerprint schemes (e.g. multimedia compression, col-
lusion resistance codes, error probabilities and collusion
attacks). Other works demonstrate the usage of finger-
printing code with DWT watermarking [13, 12], but the
resilience has only been proven with an average attack
on gray-scale images.
In this paper, we investigate the embedding of prob-
abilistic fingerprinting codes using DWT watermarking
technique. We first compare the combination of several
probabilistic fingerprinting codes generation with sev-
eral decoders without embedding. We then embed these
probabilistic fingerprinting codes using DWT into high
resolution color videos using FFmpeg. The performance
are evaluated for several attacks (darken, lighten and
average) and we show that taking into account the



embedding do change the conclusion regarding the best
code generation - decoder combination.
Our paper is organized as follows. In Section II we
remind the basic techniques to generate and decode
fingerprinting codes related to probabilistic fingerprint-
ing codes. Then in Section III, we describe the two
modes considered in this paper: the first mode considers
collusion attacks without embedding whereas the second
one considers collusion attacks with DWT-based embed-
ding. Then the performance and comparison of these
techniques are presented. Based on these comparisons,
a discussion is proposed in Section IV and a conclusion
is provided in Section V.

II. PROBABILISTIC CODE SCHEMES

The probabilistic fingerprinting code schemes are di-
vided into two steps: (1) generation, which involves
creating a code or identifier for each authentic users, and
(2) decoding, which involves finding the users that are
participating in the collusion.

A. Generation

Boneh and Shaw [4] proposed a binary method alphabet
size (q = 2) that combined a partially randomized inner
code with a deterministic outer code. The code-length
for the scheme is m = c0

4 log n
η log 1

η , where η is the
chance of a False Positive (FP) error, n is total number
of users and c0 is maximum number of colluders. It also
gave a lower bound on the expected code-length m =
Ω(c0 log 1

c0η ). Tardos [20] showed an even tighter bound
of m = Ω(c0

2 log 1
ε1
), where ε1, represents the likelihood

that one specific innocent user is accused, and he gave
a fully randomized binary code with m = 100c0

2ln 1
ε1

,
that achieves that bound. Binary Tardos codes are gen-
erated as follows. The content owner creates a n × m
binary matrix X where each row Xj: corresponds to a
codeword (or identifier) for user j as shown in Fig. 1.
Each entry Xji in column i (with i = 1, ..., n) follows

Fig. 1. Code matrix X created by content owner

a Bernoulli distribution with parameter pi. Parameters
pi are drawn from an arcsine distribution [20] and are
denoted random biases. For Tardos codes, the random
biases generation is detailed in Appendix A Algorithm 1.
The q-ary generalization [3] makes use of a Dirichlet
distribution and, as stated, at q = 2, it reduces to the

arcsine distribution. In [10] Nuida proposed a discrete
distribution for pi that is based on c0. If the actual
collusion size c ≤ c0, the modified discrete distribution
enhances decoding; however, when the collusion size
c > c0 the modified discrete distribution has lower
performance. Finally, Laarhoven and de Weger in [22]
proved that Nuida discrete distribution [10] asymptot-
ically converges to the arcsine distribution of Tardos
codes. For Laarhoven codes, the bias distribution is
detailed in Appendix A Algorithm 2.
In this article, we chose to use and compare both the
Tardos codes with their continuous distribution and the
Laarhoven codes with their discrete distribution.

B. Decoding

Let y denote the extracted identification bit vector cor-
responding to a collusion attack, and thus not to a
legitimate user identifier. In this context, decoding means
to retrieve the legitimate users who participated to the
generation of the illegitimate copy. To this aim, scores
are calculated using some scoring function g: sji =
g(Xji, yi, pi). User j is declared as pirate if the cumulative
score ∑m

i=1 sji > Z for a given threshold Z. Another
strategy consist in accusing the users with the greatest
cumulative scores.
Along with Tardos codes, the optimal scoring function
without embedding, regardless of the collusion attack,
denoted as Tardos-Skoric scoring function, was proposed
in [20], and then generalized in [3, 24]. The Tardos-Skoric
function is provided in [3] by Equation (1).

g(Xji, yi, pi) :=

 +
√

1− pi
2yi−1(pi)

1−2yi if Xji = yi;

−
√

pi
2yi−1(1− pi)1−2yi if Xji 6= yi;

(1)
When the maximum number of colluders cmax can be
defined and assuming apriori information about the
collusion attack represented by parameter θc, an opti-
mal decoder is provided in [16], and will be denoted
Desoubeaux decoder hereafter. The Desoubeaux scoring
function is reminded in [16] by Equation (2).

gθc(Xji, yi, pi) := log
(P(Y=yi |Xji ,pi ,θc)

P(Y=yi |pi ,θc)

)
(2)

Here θc is collusion model and the probabilities can be
found in [7, Eq. (8-9)]. The decoder presented in [14]
is still based on the knowledge of cmax but without
any need for apriori information on the collusion attack.
We will refer to this score as the Laaroven score. It is
described in [14] by Equation (3).

g(Xji, yi, pi) :=

{
log
(
1 + 1

cmax

( 1−pi
pi

)2yi−1) if Xji = yi;
log (1− 1

cmax
) if Xji 6= yi;

(3)
Finally, the last decoder considered in this article will be
denoted as NNS and was proposed in [15] as a nearest



neighbourhood search. The NNS score does not require
any a priori on cmax nor on the collusion attack and is
detailed in [15] by Equation (4).

g(Xji, yi, pi) :=
(2Xji−1)(2yi−1)√

pi(1−pi)
(4)

The decoding time and computing resources are cru-
cial criteria to consider when determining a decoder’s
efficiency. The complexity for all the above described
decoders are given in Table I, where ρ ≤ 1 is determined
by the initial settings of the fingerprinting scheme [15],
and k ≤ cmax is the length needed in the generalized
linear decoders [16]. From Table I, we can forsee that

TABLE I
THIS TABLE DISPLAYS THE DECODING TIME NEEDED BY ALL THE

DECODER IN TERMS OF THEIR NEED TO ACCUSE THE COLLUDERS.

Decoders Decoding complexity
Tardos-skoric O(mn)

Laarhoven O(mncmax)
Desoubeaux O(mnkcmaxθc)

NNS O(mnρ)

the NNS score decoder is the less time-consuming one.

III. PROPOSED SCHEME AND EXPERIMENTS

In order to compare the performance of the code gener-
ator and decoders, we considered two modes to analyze
collusion codes and their decoding scores, namely mode
A and mode B. In mode A, we consider collusion codes
without embedding. In mode B, we consider a DWT
and FFmpeg based embedding of the collusion codes
in 4K resolution videos. In the following, the studied
collusions are described according to the considered
mode.

A. Mode A: no embedding

A collusion of c colluders uses their identifiers Xj, j ∈ J ,
where J is the set of c colluders, to create a pirated copy
y. Note that we assume that if all of the c colluders have
the same bit at position i in their codes, then the yi will
be given this bit also. The attacks are then defined when
at least one bit is different among the users. Hereafter,
we define in this context 2 attacks: majority and minority,
as illustrated in Table II for c = 3 colluders.
To compare the performance of the code generation
schemes and the decoder scores, we conducted 100
Monte Carlo simulations with a fixed X matrix, code-
length m = 128 bits and c = 12 colluders that are
randomly selected from a range of users.
The average number of detected colluders is provided in
Table III when using the Tardos code generation and in
Table IV when using the Laarhoven code generation.
We can observe that the Desoubeaux and Laarhoven
scores have the best detection rate whatever the genera-
tion technique. Also, when comparing the 2 generation

TABLE II
COMMON COLLUSION ATTACKS WITHOUT EMBEDDING FOR c = 3

COLLUDERS

Attack collusion codes

Majority
1 0 0 0
1 1 0 0
0 1 0 1
1 1 0 0

Minority

1 0 0 0
1 1 0 0
0 1 0 1
0 0 0 1

techniques, the best performance is obtained with the
Laarhoven code generator.

TABLE III
MODE A: AVERAGE DETECTED COLLUDERS USING DIFFERENT

DECODERS FOR TARDOS CODES WITH c = 12

Attack n Tardos Laarhoven Desoubeaux NNS
score score score score

Majority
30 3.95 6.86 6.65 5.81
50 3.85 4.87 4.96 3.95
100 1.91 1.96 2.86 2.91

minority
30 3.96 6.62 6.56 5.69
50 3.83 4.53 4.48 3.64
100 1.71 1.78 2.85 1.79

TABLE IV
MODE A: AVERAGE DETECTED COLLUDERS USING DIFFERENT

DECODERS FOR LAARHOVEN CODES WITH c = 12

Attack n Tardos Laarhoven Desoubeaux NNS
score score score score

Majority
30 4.81 6.62 6.96 5.92
50 4.62 4.79 4.81 4.98
100 1.89 1.81 2.82 2.89

minority
30 5.77 5.32 7.96 5.83
50 3.96 4.96 6.51 3.62
100 2.00 1.98 2.98 2.99

B. Mode B: Embedding with DWT watermarking

Since their publication, Tardos codes have been em-
ployed into several type of embeddings. In [26], they
were used to fingerprint H.264/AVC utilizing a wide
spectrum resilient watermarking approach. Huge lim-
itations however on the memory usage and massive
code length prevent them to be considered for real
time implementations. Tardos fingerprinting algorithm
and zero-bit broken arrows watermarking approach for
photos were proposed in [23]. They’ve demonstrated
that this combination has ruled out fusion attacks. In [2],
a unique collusion-secure Tardos code based fingerprint-
ing strategy for 3D movies was presented, which uses a
conventional least significant bit (LSB) replacement for
all frames of both the 2D video and the depth map
components. However, here again extremely long codes
were employed without considering real-time attacks on



Fig. 2. Result of 3-level DWT decomposition of Lena using CDF 9/7
and its coefficient distribution in different sub-bands (Ref. [11].)

the videos. The embedding of Tardos code with DWT
watermarking was demonstrated in [13, 12], but the
resilience has only been proven with an average attack
on gray-scale images.
In this article, we propose to embed the collusion codes
using the DWT watermarking technique and FFmpeg
blending filters on high resolution (4K) videos. We ana-
lyzed watermarked image using the Cohen-Daubechies-
Feauveau (CDF9/7) wavelets because according to [8],
CDF9/7 wavelet outperforms all the other approaches
of DWT watermarking. Fig. 2 depicts a three-level split
of Lena as well as the dispersion of its coefficients
into several sub-bands. There are 10 sub-bands. So far,
many watermarking approaches that take use of the
wavelet transform’s multi-resolution capacity to embed
a watermark in the host image have shown that a 3-
level wavelet decomposition is enough to successfully
obstruct the watermark (see e.g. [11]). So we chose to ex-
amine our proposed strategy also with a 3-level wavelet
decomposition. The embedding procedure is illustrated
in the top of Fig. 3 and consist in the following steps:

• Create a random image of size 360 x 640.
• In this image, merge fingerprinting codes.

Fig. 3. DWT-based Embedding and analyzing of fingerprinting codes
in videos

• Apply a 3-level inverse discrete wavelet transform
(IDWT) to the given image.

• Up-sample the image to the resolution of the video
frame.

• Encode the watermarked image into video using the
FFmpeg blend filter.

The collusion code extraction procedure starts with the
DWT of the watermarked video frames as illustrated in
the lower part of Fig. 3.
Three different collusion attacks (average, darken, and
lighten filters) are simulated using FFmpeg blending
filters as shown in Table V. The number of detected

TABLE V
FFMPEG BLENDING FILTERS FOR COLLUSION ATTACKS (MODE B)

FFmepg function Mathematical method Attacks
Lighten max(A, B) Majority
Darken min(A, B) Minority
Average A+B

n Average

colluders against the collusions described previously for
the different decoding scores is given in Table VI for
Tardos codes and in Table VII for Laarhoven codes for
c = 12 colluders and a codelength m = 128 bits. We
observe that we can detect more than one colluders using
Desoubeaux and NNS decoders for average and darken
attacks for n = 100 users. On the other hand, when
the attack is lighten, we can detect only one colluder as
demonstrated in Table VI. In contrast, with Laarhoven
codes we may find multiple colluders for all attacks
utilizing Desoubeaux’s, laarhoven and NNS decoders as
shown in Table VII.

TABLE VI
MODE B: DETECTED COLLUDERS USING DIFFERENT DECODERS FOR

TARDOS CODES WITH c = 12

Filter n Tardos Laarhoven Desoubeaux NNS
score score score score

Darken
30 3 5 5 6
50 3 3 3 4
100 1 1 2 2

Lighten
30 3 4 4 5
50 3 4 3 4
100 1 1 1 1

Average
30 5 6 6 5
50 2 2 2 3
100 1 1 2 2

IV. DISCUSSION

1) About the choice of the Bias distribution: In this arti-
cle, 2 different bias distribution functions were studied:
discrete (Laarhoven) and continuous (Tardos) distribu-
tion. Based on our simultations, we determined that the
Laarhoven discrete bias distribution function performs
slightly better than the continuous Tardos one, as shown
in Table VI and VII due to the shorter code length
constraint.



TABLE VII
MODE B: DETECTED COLLUDERS USING DIFFERENT DECODERS FOR

LAARHOVEN CODES WITH c = 12

Filter n Tardos Laarhoven Desoubeaux NNS
score score score score

Darken
30 3 6 5 5
50 4 4 4 4

100 1 2 2 2

Lighten
30 5 5 7 5
50 3 4 4 4

100 1 1 2 2

Average
30 4 6 7 5
50 5 6 6 5

100 1 2 2 2

2) About the code length: The fingerprinting code length
is totally determined by the fingerprinting technique’s
generating parameters, error probability (ε1), and the
number of colluders c. However, it should be as low as
possible. We used 128-bit fingerprinting code lengths for
our research, because our aim was to find at least one
colluder. However, if the aim is to accuse all the colluders
while accommodating a larger number of users, the code
length should be raised according to design parameters
of fingerprinting scheme.

Majority Minority Average
200
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Attacks
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Fig. 4. Tracing time for all the decoders after embedding in videos
(Mode B) for three attacks with parameters n = 100, c = 12 averaged
over 100 trials

3) About the choice of the decoder score: Without embed-
ding (Mode A), Desoubeaux outperforms all other de-
coders and still depends on the collusion attack model θc,
which is not so convenient in realistic conditions. When
embedding (Mode B) is taken into account, the NNS
decoder surpasses all the others, in terms of decoding
performance as shown in Fig.4, complexity, as it takes
51% less CPU time compare to the most recommended
Desoubeaux decoder for all the proposed attacks. In
this context and considering realistic embedding, we
advocate utilizing the NNS decoder.

V. CONCLUSION

In this paper, we investigated a DWT video watermark-
ing system based on the Tardos and Laarhoven collusion
codes on high resolution videos, and their performance
against realistic attacks. To this aim, decoding strategies
based on four different scores were studied, both in
term of performance to detect colluders and in term of
complexity: Tardo-Skoric, Laarhoven, Desoubeaux and
NNS scores. Simulations show that using Laarhoven
codes decoded by the NNS decoder offer the best per-
formance with the lowest complexity, which makes this
tandem a good candidate for real-time implementation
on the protection of high resolution video watermarking
against collusion attacks. As only a part of the colluders
can be found, a perspective of the work is to improve
the capability of the decoder by performing an iterative
processing.

APPENDIX A
ALGORITHMS

In this appendix, the generation algorithm of the ran-
dom biases related to the Tardos codes (resp. Laarhoven
codes) is described in Algorithm 1 (resp. Algorithm 2).

Algorithm 1 Random bias for Tardos codes

1: let t = 1
300c , where c is number of colluders and let

t′ = arcsin
√

t.
2: ∀i ∈ [1, m]; draw a random ri according to uniform

distribution in [t′, π
2−t′ ].

3: ∀i ∈ [1, m]; calculate pi = sin2(ri).

Algorithm 2 Random bias for Laarhoven codes
1: ∀i ∈ [1, m]; draw ri according to uniform distribution

from
(

3π
(8c+4) , 7π

(8c+4) .... π
2 ,− 3π

(8c+4)

)
, where c is number

of colluders.
2: ∀i ∈ [1, m]; calculate pi = sin2(ri).

REFERENCES

[1] Karama Abdelhedi, Faten Chaabane, and Chokri Ben Amar.
“A SVM-Based Zero-Watermarking Technique for 3D Videos
Traitor Tracing”. In: Advanced Concepts for Intelligent Vision
Systems. Ed. by Jacques Blanc-Talon et al. Cham: Springer
International Publishing, 2020, pp. 373–383. ISBN: 978-3-030-
40605-9.

[2] Karama Abdelhedi et al. “Toward a Novel LSB-based
Collusion-Secure Fingerprinting Schema for 3D Video”. In:
trans. by Nicolas Tsapatsoulis et al. Computer Analysis of
Images and Patterns. Cham: Springer International Publishing,
2021, pp. 58–68. ISBN: 978-3-030-89128-2.
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