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To determine the Lie groups that admit a flat (eventually complete) left invariant semi-Riemannian metric is an open and difficult problem. The main aim of this paper is the study of the flatness of left invariant semi Riemannian metrics on quadratic Lie groups i.e. Lie groups endowed with a bi-invariant semi Riemannian metric. We give a useful necessary and sufficient condition that guaranties the flatness of a left invariant semi Riemannian metric defined on a quadratic Lie group. All these semi Riemannian metrics are complete. We show that there are no Riemannian or Lorentzian flat left invariant metrics on non Abelian quadratic Lie groups, and that every quadratic 3 step nilpotent Lie group admits a flat left invariant semi Riemannian metric. The case of quadratic 2 step nilpotent Lie groups is also addressed.

Introduction

This article outlines some facts known by the authors about the semi Riemannian geometry of a Lie group provided with a semi Riemannian metric invariant under left translations. Contents 1. General results about left invariant semi Riemannian metrics on Lie groups 2. Quadratic Lie groups 3. Jacobi fields on quadratic Lie groups, conjugate points. 4. On flat left invariant semi Riemannian metrics on quadratic Lie groups. 5. The nilpotent quadratic case.

When the relations between curvature or (geodesically) completeness of a semi Riemannian metric and another topological or geometrical properties are studied it is very useful to have many examples. This paper describes a rich collection of examples which are obtained by providing a Lie group G with a semi Riemannian metric invariant under left translations. It is well known that every left Riemannian metric is complete and in [START_REF] Milnor | Curvatures of left invariant metrics on Lie groups[END_REF] Milnor described the Lie groups with flat left invariant Riemannian metrics. By contrast, the study of completeness and/or flatness of a non definite metric is in general very difficult. Even in the 3 dimensional non unimodular case, there is not in the literature a necessary and sufficient condition that guaranties the completeness of a left invariant Lorentzian metric. When the 3 dimensional Lie group is unimodular, the completeness of a left invariant Lorentzian metric is equivalent to the completeness of the geodesics of light type ( [START_REF] Bromberg | Geodesically complete Lorentzian metrics on some homogeneous 3 manifolds[END_REF]).

Our class of examples can be enlarged substantially, with no extra effort, as follows. If Γ is any discrete subgroup of G, then a left invariant semi Riemannian metric on G gives rise to a metric on the quotient space Γ\G with identical properties of curvature and (in)completeness. The case where Γ\G is compact is of particular interest.

The first section will survey general old and new results on left invariant semi Riemannian metrics on Lie groups.

The principal and new result (Theorem 4) gives necessary and sufficient conditions for the flatness of a left invariant semi Riemannian metric on unimodular Lie groups. Under these conditions flatness implies completeness.

In section 2, necessary and sufficient conditions that guarantees the existence of bi-invariant semi Riemannian metrics on Lie groups are given. These groups, called quadratic or orthogonal Lie groups, are the central objets of our study. Section 3 is devoted to the Jacobi vector fields corresponding to a left invariant semi Riemannian metric on Lie groups and on quadratic Lie groups in particular. The equation that defines the reflection on the Lie algebra of G of a such vector field is particularly simple when the metric is bi-invariant. The reflections of the Jacobi vector fields corresponding to the Lorentzian bi-invariant metrics on the oscillator Lie groups are determined.

Theorem 5, Theorem 6, Theorem 7, and Theorem 8 are the main results of section 4. The first one specializes Theorem 4 to the case of quadratic Lie groups. One of the consequences of Theorem 6 is that every left invariant Lorentzian metric on a non Abelian quadratic Lie group is non flat. Theorem 7 shows the non existence of flat left invariant semi Riemannian metric on any indecomposable quadratic Lie group of dimension 4. The case of left invariant semi Riemannian metrics on quadratic nilpotent Lie groups is also treated.

Theorem 8 shows that every 3 step nilpotent Lie group admits a flat left invariant connection given by an invertible f -derivation. This connection is the Levi Civita connection of a semi Riemannian metric if the group is quadratic (Theorem 9). A left semi Riemannian metric on a nilpotent quadratic Lie group (G, k) defined by a k symmetric linear isomorphism u is complete when u preserves the descending central sequence of the Lie algebra G ( Proposition 9 ). If (G, k) is 2 step nilpotent and its corank is 0 then G admits many non isometric flat left invariant semi Riemannian metrics. If dim G > 8 there are infinitely many non isometric such metrics (Theorem 10).

The following result is an important and final remark concerning the classical or generalized solutions of the Yang-Baxter equation on quadratic Lie groups and the relations with left invariant semi Riemannian metrics.

Theorem 1 ([2]

) Every solution of the classical Yang-Baxter equation on a quadratic Lie group induces a flat left invariant semi Riemannian metric on the dual Lie groups associated to the solution. Furthermore a solution of the generalized Yang-Baxter equation determines a left invariant semi Riemannian metric such that the covariant derivative of its curvature tensor vanishes.

General results about left invariant semi Riemannian metrics on Lie groups

Let G be a Lie group, ε the unit element in G. A non degenerate symmetric bilinear form , on G := G ε defines a left invariant semi Riemannian metric on G given by the formula

v σ , w σ σ := (L σ -1 ) * ,σ v σ , (L σ -1 ) * ,σ w σ , σ ∈ G, v σ , w σ ∈ G σ
where L σ : τ → στ, and conversely. The Levi-Civita connection ∇ of a semi Riemannian left invariant metric is left invariant, and defines a product on the Lie algebra given by the formula xy + := ∇ x + y + , where x + stands for the left invariant vector field with infinitesimal generator x ∈ G. This product, called the Levi-Civita product, verifies the Koszul formula

2 xy, z = [x, y], z -[y, z], x + [z, x], y . By means of x(t) := L σ(t) -1 * ,σ(t) σ ′ (t),
the equation for the geodesics of the semi Riemannian metric becomes, in the Lie algebra, ẋ = -xx.

Since the Levi-Civita connection is torsion free, the Levi-Civita product satisfies xy -yx = [x, y].

Moreover the Koszul formula implies that the map L x : y → xy is , skew symmetric.

Many features of the geometry of left invariant semi Riemannian metrics on Lie groups can be studied in the Lie algebra.

A semi Riemannian metric is called complete when its geodesics are defined for all t ∈ R. Notice that a left invariant semi Riemannian metric is complete if and only if the solutions of equation ( 1) are defined for all values of the parameter.

The exponential map associated to a semi Riemannian metric with base point σ ∈ G is denoted by Exp σ . This map is defined on all of G σ for all σ whenever the semi Riemannian metric is complete. Notice that in general Exp ε differs from the exponential map in Lie theory (see remark 1 bellow). As a partial converse we have that a left symmetric product compatible with the Lie bracket induces a flat left invariant connection on G.

The existence of a flat left invariant metric on a Lie group imposes serious restrictions on the group as the following result shows Theorem 2 (Theorem 1.5 [START_REF] Milnor | Curvatures of left invariant metrics on Lie groups[END_REF]) A Lie group has a left invariant flat Riemannian metric if and only if its Lie algebra decomposes as a semidirect product of an Abelian Lie algebra with an Abelian ideal, the Abelian algebra acting on the Abelian ideal by infinitesimal isometries.

The existence of a flat left invariant metric on a quadratic Lie group imposes even more restrictive conditions on the group. In fact under this hypothesis the group is Abelian (see proposition 6). In the same line of thought Proposition 7 states that on non Abelian quadratic Lie groups there are no flat left invariant Lorentzian metrics.

In what follows, the following result will be useful Theorem 3 A flat left invariant semi Riemannian metric is complete if and only if the Lie group is unimodular.

For the proof see [START_REF] Aubert | Groupes de Lie pseudo-riemanniens plats[END_REF].

In [START_REF] Grunewald | Transitive and quasitransitive actions of affine groups preserving a generalized Lorentz-structure[END_REF] the simply connected Lie groups with flat, complete left invariant Lorentz metrics are characterized. The nilpotent case was treated alternaternatively by means of the double extension in [START_REF] Aubert | Groupes de Lie pseudo-riemanniens plats[END_REF].

The Jacobi fields measure the variation of geodesics: If t → τ (t) is a geodesic, the vector field t → Y (t) defined on the curve τ is a Jacobi vector field provided that it satisfies the second order differential equation

D 2 Y dt 2 = R Y τ ′ (τ ′ ) ( 2 
)
where DY /dt stands for the affine covariant derivative of (G, ∇) of the vector field Y on the curve τ and R is the curvature tensor.

Hence if the semi Riemannian metric is flat, then a vector field Y on a geodesic is a Jacobi field if and only if the vector field DY dt is parallel along the geodesic, that is if and only if D 2 Y dt 2 = 0. Then a necessary condition for a left invariant semi Riemannian metric to be flat is that the second covariant derivative of any right invariant vector field along every geodesic vanishes.

Notice that every right invariant vector field is a Jacobi vector field along any geodesic, because it is a Killing vector field ( [START_REF] Kobayashi | Foundations of differential geometry[END_REF]). Lemma 1 Let (M, , ) a flat semi Riemannian manifold. Let U be a connected neighborhood of 0 ∈ M σ where Exp σ is defined. If the semi Riemannian metric is flat then Exp σ is a local isometry.

Proof. Let x ∈ M σ , v, w ∈ (M σ ) x ≈ M σ . Let J v , J w the unique Jacobi fields along a geodesic τ : [0, 1] → G, τ (0) = σ, τ (1) = ρ such that J v (0) = J w (0) = σ, DJ v dt (0) = v, DJ w dt (0) = w.
The derivatives of the map

ϕ(t) := J v (t), J w (t) . are ϕ ′ (t) = DJ v dt (t), J w (t) + J v (t), DJ w dt (t) , ϕ ′′ (t) = 2 DJ v dt , DJ w dt , ϕ ′′′ (t) = 0 since J v , J w are parallel along τ. Hence ϕ ′′ (t) = 2 v, w , ϕ ′ (t) = 2t v, w , ϕ(t) = t 2 v, w , and 
dExp σ (0)v, dExp σ (0)w = ϕ(1) = v, w .
As a corollary we have that a complete semi Riemannian flat metric has no conjugate points. Furthermore Lemma 2 Let (M, , ) be a flat semi Riemannian manifold. If Exp p is defined for all v ∈ M p , then Exp p : (M p , , ) → (M, , ) is a semi Riemannian covering, where , is the affine metric induced by , p .

Proof. We have to show that Exp p has the lifting property for geodesics. Let τ : [0, 1] → M a geodesic and x 0 ∈ M p such that Exp σ (x 0 ) = τ (0). By lemma 1, there are neighborhoods U and V of x 0 in M p and τ (0) in M such that Exp p defined on U onto V is an isometry. If t satisfies τ ([0, t)) ⊂ V, then s → Exp -1 p τ (s) is a geodesic in M p . By hypothesis this geodesic is defined in [0, 1] and it is a lifting of σ. The conclusion follows from Theorem 28.7 in [START_REF] O'neil | Semi-Riemannian geometry. With applications to relativity[END_REF].

The following theorem puts together some scattered results Theorem 4 Let G be a connected unimodular Lie group and , a left invariant semi Riemannian metric on G. Then the following assertions are equivalent: i) , is flat and complete. ii) Exp ε is a local isometry (hence, for every σ in G, Exp σ is a local isometry). iii) , is flat.

In any case G is solvable, and (G, , ) has no conjugate points.

Proof. By Theorem 3 a flat left invariant semi Riemannian metric defined on an unimodular Lie group is complete. The hypothesis of , being flat implies that G is locally symmetric and that Exp q is a local isometry that has the lifting property for geodesics. Hence it is a semi Riemannian covering.

To prove that G is solvable notice that the hypothesis imply that the Levi-Civita connection defined by the semi Riemannian metric is a left invariant affine structure. Then there is a representation θ of G by affine transformations of G with an open orbit and discrete isotropy (see [START_REF] Medina | Flat left invariant connections adapted to the automorphism structure of a Lie group[END_REF]). The action of G on G induced by θ is transitive because the metric is complete. Hence the restriction of the representation to a Levi subalgebra is completely reducible. This contradiction implies the solvability.

Example. Let G = R 2 ⋊ SO(R 2 ) be the connected component of the unit element of the group of rigid motions of the plane. The product on G is given by

(x, y, α)(x ′ , y ′ , β) = (x + x ′ cos α -y ′ sin α, y + x ′ sin α + y ′ cos α, α + β). Let G = Span{e 1 , e 2 } ⋊ R e 3
, where e 1 , e 2 is an Abelian Lie ideal and [e 3 , e 1 ] = e 2 , [e 3 , e 2 ] = -e 1 . Define a left invariant semi Riemannian metric by the Lorentzian quadratic form on G :

q(x 1 e 1 + x 2 e 2 + x 3 e 3 ) = x 2 1 + x 2 2 -x 2 3 .
Some straightforward calculations show that

L e1 = L e2 = 0 L e3 = ad e3 .
Then L [x,y] = 0 and

L x L y = L y L x . Hence the Lorentzian metric is flat. Equa- tion (1) is in this case ẋ1 = x 2 x 3 ẋ2 = -x 1 x 3 ẋ3 = 0
The solution to this equation with initial condition (x 1 , x 2 , x 3 ) is

x(t) = (x 1 cos(x 3 t) -x 2 sin(x 3 t), x 1 sin(x 3 t) + x 2 cos(x 3 t), x 3 ) .
The geodesic on G starting at ε with initial velocity (x 1 , x 2 , x 3 ) is for

x 3 = 0 γ(t) = (tx 1 , tx 2 , 0),
and when x 3 = 0 :

γ(t) = (- x 2 2x 3 + x 2 2x 3 cos(2x 3 t)+ x 1 2x 3 sin(2x 3 t), x 1 2x 3 - x 1 2x 3 cos(2x 3 t)+ x 2 2x 3 sin(2x 3 t), x 3 t).
Hence the exponential map based at ε is, for

x 3 = 0, Exp ε (x 1 , x 2 , x 3 ) = (x 1 , x 2 , 0)
and for x 3 = 0, (-

x 2 2x 3 + x 2 2x 3 cos(2x 3 ) + x 1 2x 3 sin(2x 3 ), x 1 2x 3 - x 1 2x 3 cos(2x 3 ) + x 2 2x 3 sin(2x 3 ), x 3 ).
Hence Exp ε is a global isometry. Let (G, k) be a quadratic Lie algebra. Then k is a non degenerate quadratic form and ad x is k skew symmetric for all x ∈ G :

Quadratic Lie groups

k(ad x y, z) + k(y, ad x z) = 0.
For every left invariant semi Riemannian metric , on G there is a k symmetric isomorphism u of the vector space underlying G such that, for all x, y ∈ G

x, y = k(u(x), y).

Equation (1) becomes in this case

u( ẋ) = [u(x), x].
The following propositions characterizes quadratic Lie groups.

Proposition 2 ([10]

) A Lie group is quadratic if and only if the adjoint and co-adjoint actions are isomorphic.

Proposition 3

The Lie group G is quadratic if and only if the linear Poisson structure on G * given by the Lie bracket of G has a quadratic, non degenerate Casimir.

Proof. Let (G, k) be an orthonormal Lie algebra. Denote by Φ :

G → G * the symmetric isomorphism Φ(x) := k(x, •). For x ∈ G, define x ∈ (G * ) * by x(ξ) = ξ(x), ξ ∈ G * . Let f : G * → R be given by f (ξ) = ξ(Φ -1 (ξ)). Clearly f is a non degenerate quadratic form, hence its differential is (d f ) ξ (ξ ′ ) = 2ξ ′ Φ -1 (ξ) or, equivalently, (d f ) ξ = 2Φ -1 (ξ) ∧ . If x 0 = Φ -1 (ξ), we get, using the ad invariance of k, that {f, x} ξ := ξ[2Φ -1 (ξ), x] = Φ(x 0 )[2x 0 , x] = k(x 0 , [2x 0 , x]) = 0, for all x ∈ G. Therefore f is a Casimir for the Lie-Poisson bracket {•, •}.
Conversely, let f (α) = b(α, α) be a Casimir, b being a quadratic, symmetric and non degenerate quadratic form. Define k : G×G → R by k(x, y) := Ψ -1 (x)y, where Ψ(α) := b(α, •). Since Ψ is a symmetric isomorphism, so is k. Moreover, f being a Casimir, we get that for all x ∈ G, {f, x} = 0, that is,

∀ α ∈ G * , ∀ x ∈ G, 0 = {(df ) α , x} α = {Ψ(α), x} α . Hence for all y, z ∈ G, k(z, [z, y]) = 0. Replacing z by a + b, a, b ∈ G, we get that ∀ a, b, y ∈ G, k(a, [b, y]) + k(b, [a, y]) = 0.
Hence k is a quadratic structure on G.

Remark 1 The Levi-Civita product and the curvature of a bi-invariant semi Riemannian metric on a Lie group are given (resp.) by:

xy = 1 2 [x, y], R(x, y) = 1 4 ad [x,y]
Hence every semi Riemannian bi-invariant metric is geodesically complete, the geodesics through the unit element ε of G are the 1-parameter subgroups of G, and the bi-invariant metric is flat if and only if the group is 2-step nilpotent.

3 Jacobi fields on quadratic Lie groups, conjugate points

Every vector field X on a Lie group defines a map X : G → G given by σ → (L σ -1 ) * ,σ X σ . Obviously, a vector field is left invariant if and only if the associated map is constant. Given a curve σ : [t 0 , t 1 ] → G, every vector field Y on σ defines a curve in G :

Ỹ (t) = L σ(t) -1 * ,σ(t) Y (t)
and conversely, every curve in G defined on [0, 1] determines a vector field on σ.

We say that one is the reflection of the other and we write either

y ∼ = Y or Y ∼ = y. Notice that y(t) = (Y (t)) ∼ is equivalent to y(t) + σ(t) = Y (t).
The following proposition describes the Jacobi fields for a left invariant semi Riemannian metric defined on a Lie group.

Proposition 4 Let G be a Lie group, ∇ a left invariant torsion free connection on G and let σ : [0, 1] → G be a geodesic such that σ(0) = ε. Then the vector field on σ, t → Y (t) is a Jacobi vector field if and only if its reflection y := Ỹ satisfies the differential equation

ÿ + 2x ẏ = [y, x]x + x[y, x] + [xx, y] (3) 
where, as before,

x(t) = L σ -1 (t) * ,σ(t) σ ′ (t).
This proposition is a consequence of the following technical result.

Lemma 3 With the notations introduced in the previous proposition, the first and second covariant derivatives of the vector field Y on σ are given by

DY dt = (y ′ + xy) ∼ D 2 Y dt 2 = (y ′′ + 2xy ′ + x ′ y + x(xy)) ∼
Proof. Let G be a n dimensional Lie with Lie algebra G and {e i , 1 ≤ i ≤ n} be a basis for the vector space underlying G. Expressing Y by means of e

+ i (i = 1, • • • , n), as in proposition 4, we get DY dt = D dt n i=1 y i (t)e + i,σ(t) = n i=1 y ′ i (t)e + i,σ(t) + n i=1 y i (t)∇ σ ′ (t) e + i = (y ′ (t)) ∼ + n i=1 y i (t)∇ σ ′ (t) e + i . Since ∇ σ ′ (t) e + i = (x(t)e i ) + σ(t) , n i=1 y i (t)∇ σ ′ (t) e + i = n i=1 y i (t)(x(t)e i ) + σ(t) = (x(t)y(t)) + σ(t) = (x(t)y(t)) ∼ , that is D dt (ỹ) = (y ′ + xy) ∼ .
Hence

D 2 Y dt 2 = D dt (y ′ + xy) ∼ = ((y ′ + xy) ′ + x(y ′ + xy)) ∼ = (y ′′ + x ′ y + xy ′ + xy ′ + x(xy)) ∼ = (y ′′ + x ′ y + 2xy ′ + x(xy)) ∼ Proof of Proposition 4. Recall that R x + y + z + = ([x, y]z -x(yz) + y(xz)) + .
A straightforward calculation shows that,

R Y σ ′ (t) σ ′ (t) = ([y, x]z -y(xz) + x(yz)) ∼ .
Thus Y = y ∼ is a Jacobi vector field if and only if

ÿ + ẋy + 2x ẏ + x(xy) = [y, x]z -y(xz) + x(yz). ( 4 
)
Since σ is a geodesic ẋ = -xx, and since the connection is torsion free, xy -yx = [x, y], then equation (4) becomes

ÿ + 2x ẏ = [y, x]x + (xx)y -y(xx) + x[y, x] = [y, x]x + x[y, x] + [(xx), y]
Remark 2 If x 0 = 0 is a solution of xx = 0, then the geodesic σ through ε with velocity x 0 is the one-parameter subgroup of G with infinitesimal generator x 0 and the reflections of Jacobi fields on σ are the solutions of the equation

ÿ + 2x 0 ẏ = [y, x 0 ]x 0 + x 0 [y, x 0 ]
Corollary 1 If ∇ is the Levi-Civita connection defined by a bi-invariant semi Riemannian metric, then a vector field Y on a geodesic σ : [0, 1] → G with σ(0) = ε, is a Jacobi vector field is and only if its reflection curve y = Y ∼ is a solution of the differential equation

ÿ = [ ẏ, x 0 ],
where x 0 is the initial velocity of the geodesic.

The proof follows immediately from the fact that the Levi-Civita product of a bi-invariant metric is given by xy = (1/2)[x, y].

Corollary 2 Let ∇ be the Levi-Civita connection defined by a bi-invariant semi Riemannian metric on a nilpotent Lie group. Then the reflection of Jacobi fields along a geodesic σ : [0, 1] → G are polynomial.

Proof. Let Y be a Jacobi field along a geodesic σ, and y its reflection. Then by the previous corollary y (2) (t) = [y ′ (t), x 0 ]. Hence y (k+1) (t) = [y (k) (t), x 0 ], and y (m+1) ≡ 0, where m is such that G (m) = 0.

Jacobi fields on the oscillator groups

Consider the quadratic Lie algebra (R 2n , k 0 ), where k 0 is an Euclidean inner product. Let λ := (λ 1 , . . . , λ n ) where each λ i is a positive real number and θ the antisymmetric isomorphism of (R 2n , k 0 ) given by the matrix (with respect to an orthonormal basis) B = {e 1 , . . . , e n , ě1 , . . . , ěn )

M B θ = 0 -diag(λ 1 , . . . , λ n ) diag(λ 1 , . . . , λ n ) 0
where diag(λ 1 , . . . , λ n ) stands for the diagonal matrix with λ 1 , . . . , λ n on the main diagonal.

Obviously θ defines a representation of the Lie algebra R by endomorphisms of G, noted also by θ.

Let G(λ) be Lie algebra obtained by a process of double extension (see [START_REF] Medina | Ph. Les groupes oscillateurs et leurs rseaux[END_REF]) of (R 2n , k 0 ) by R by means of θ. This means that the algebra is obtained by a central extension R e 0 × ω R 2n of R 2n by R by means of the scalar 2-cocycle ω(x, y) := k 0 (θ(x), y), then by semi-direct product of R e -1 by R e 0 × ω R 2n where the action is given by

[e -1 , e 0 ] = 0, [e -1 , x] = θx, for x ∈ R 2n .
This algebra has a quadratic structure k that extends k 0 and is given in the Minkowski plane, V = Span{e -1 , e 0 }, by k(e 0 , e 0 ) = k(e -1 , e -1 ) = 0, k(e -1 , e 0 ) = 1 and is orthogonal to R 2n .

Since the algebra G(λ) is solvable, the connected and simply-connected Lie group with Lie algebra G(λ 1 , . . . , λ n ) can be identified as a manifold to

R 2n+2 ≡ R × C n × R with product (s, z 1 , . . . , z n , t) • (s ′ , z ′ 1 , . . . , z ′ n , t ′ ) = (s + s ′ + 1 2 n j=1 Im zj exp(i tλ j )z ′ j , z 1 + exp(i tλ 1 )z ′ 1 , . . . , z n + exp(i tλ n )z ′ n , t + t ′ ) Definition 4
The groups G(λ) are called Oscillator groups and the corresponding Lie algebras G(λ) are called Oscillator algebras.

The equation that defines the reflection of a Jacobi field in the oscillator algebra is given by

y ′′ -1 = 0 y ′′ 0 = x1 y ′ 1 + • • • + xn y ′ n -x 1 y′ 1 -• • • -x n y′ n y ′′ 1 = -λ 1 x1 y ′ -1 + x -1 λ 1 y′ 1 . . . y ′′ n = -λ n xn y ′ -1 + x -1 λ n y′ n y′′ 1 = λ 1 x 1 y ′ -1 -x -1 λ 1 y ′ 1 . . . y′′ n = λ n x n y ′ -1 -x -1 λ n y ′ n ,
where x(0) = n i=-1 x i e i + n i=1 xi ěi . In order to find the conjugate points to ε, it is also necessary that y(0) = 0 and y(t 1 ) = 0 for some t 1 = 0. This implies that y -1 ≡ 0 and the system is equivalent to the system

y ′′ 0 = x1 y ′ 1 + • • • + xn y ′ n -x 1 y′ 1 -• • • -x n y′ n y ′′ j = x -1 λ j y′ j y′′ j = -x -1 λ j y ′ j , 1 ≤ j ≤ n. When x -1 = 0, the solutions are y j (t) = r j x -1 λ j sin(x -1 λ j t) yj (t) = r j x -1 λ j (1 -cos(x -1 λ j t)) ,
since y(0) = 0. In order to have y(t 1 ) = 0, it is necessary that

x -1 λ j t 1 = 2πk, k ∈ Z, or r j = 0 for all 1 ≤ j ≤ n. Hence, letting r j = 0 for j = i, y 0 must be a solution to the equation

y ′′ 0 = xi y ′ i -x i y′ i = r i (x i cos(x -1 λ i t) -x i sin(x -1 λ i t))
which implies that

y ′ 0 (t) = c + r i x -1 λ i (x i cos(x -1 λ i t) + xi sin(x -1 λ i t))
and thus

y 0 (t) = d + ct + r i (x -1 λ i ) 2 (x i sin(x -1 λ i t) -xi cos(x -1 λ i t)) .
Since y 0 (0) = y 0 (t 1 ) = 0,

y 0 (t) = r i (x -1 λ i ) 2 (x i sin(x -1 λ i t) + xi (1 -cos(x -1 λ i t)))
and the vector field Y = y ∼ , where

y(t) = y 0 (t)e 0 + r i x -1 λ i sin(x -1 λ i t)e i + r i x -1 λ i (1 -cos(x -1 λ i t)) ěi ,
is a Jacobi field along the geodesic t → exp(tx(0)). The points exp(

πk x -1 λ i x(0)), k ∈ Z, 1 ≤ i ≤ n, are conjugate to ε.
Notice that when x -1 = 0 then a Jacobi field along the geodesic t → exp(tx(0)), with y(0) = 0 vanishes everywhere.

In what follows, G is a connected Lie group. As for the existence of non-trivial 1-parameter subgroups of translations, since the metric is complete, the Levi-Civita product has no non trivial idempotents, hence there is an element x 0 ∈ G, x 0 = 0 such that x 0 x 0 = 0. The 1-parameter subgroup with infinitesimal generator x 0 is a geodesic for the metric.

Definition 5

The index of a non degenerate quadratic form q defined on a real vector space V is the maximal dimension of a q totally isotropic subspace of V.

The principal result of this section is

Theorem 6 If a connected non Abelian quadratic Lie group (G, k) admits a flat left invariant semi Riemannian metric , , then , is geodesically complete, G is solvable, the index of , is > 1 and the universal covering of G viewed as a group of affine transformations contains central 1-parameter groups of translations.

The two first assertions of the theorem follow from Theorem 4. The other assertions will follow from a series of lemmas and propositions. Suppose that there exists e ∈ Z(G) such that L e = 0, and let x such that L e x = 0. Then for every y ∈ G, there is a λ ∈ R such that L e y = λL e x. Notice that x, L e x = 0 because L e is , skew symmetric. Then 0 = L e y, x + y, L e x = λ L e x, x + y, L e x = y, L e x , thus, for all y ∈ G, y, L e x = 0. This equality implies that L e x = 0, because the semi Riemannian metric is non degenerate, contrary to the assumption.

For the second part of the assertion, the Koszul formula

xy, z = 1 2 ( [x, y], z -[y, z], x + [z, x], y ) for x = e, e ∈ Z(G), reduces to L e y, z = - 1 2 [y, z], e
for all y, z ∈ G. Let u be the k symmetric isomorphism of the underlying vector space of G induced by the semi Riemannian metric , . Then, using that L e = 0,

0 = L e (y), z = - 1 2 [y, z], e = - 1 2 k([y, z], u(e)) = - 1 2 k([u(e), y], z).
The former equality implies that 0 = [u(e), y],

because k is non degenerate. Thus, for a flat left invariant semi Riemannian metric of index < 2, u(e) ∈ Z(G).

Corollary 3 Under the hypothesis of proposition 5 if G is viewed as a group of affine transformations of G, it has one-parameter subgroups of translations.

As announced in Section 2, the existence of flat left invariant Riemannian metrics on quadratic Lie groups imposes severe restrictions on the group: 

G = Z(G) ⊕ ⊥ k [G, G] because, as noted before [G, G] = Z(G) ⊥ k . Furthermore, [G, G]
e ∈ Z(G), that is e 0 ∈ Z(G) ∩ [G, G]. By Proposition 5, u(e 0 ) ∈ Z(G), hence e 0 , [x, y] = k(u(e 0 ), [x, y]) = k([u(e 0 ),
x], y) = 0 for all x, y ∈ G. This implies that Span {e 0 , u(e 0 )} is , totally isotropic. The semi Riemannian metric being Lorentzian, the vector space is of dimension 1, hence u(e 0 ) = νe 0 , for some ν = 0. Since [G, G] is invariant by u, the algebra [G, G]/Re 0 is a quadratic Lie algebra with a flat left invariant Riemannian metric. By Proposition 6 it is Abelian, that is, ∀ x, y ∈ [G, G], [x, y] ∈ Re 0 . The isomorphism u induces an isomorphism ũ on [G, G]/Re 0 , and the reduced metric induced by , on [G, G]/Re 0 , is positive definite. Then there is an orthonormal basis, { Ẽi }, relative to the reduced metric, that diagonalizes ũ : ũ( Ẽi ) = ν i Ẽi .

Let

E i an element in [G, G] that projects onto Ẽi in [G, G]/Re 0 . Then {e 0 , E 1 , • • • , E n } is a basis of [G, G] and E i , E j = δ ij k(e 0 , E i ) = 0 i, j ≥ 1. Let u(E i ) = ν i E i + µ i e 0 . (µ i ∈ R , i ≥ 1), then k(E i , E j ) = δ ij ν i .
The same construction can be done for Z(G)/Re 0 . The isomorphism u induces an isomorphism ũ on Z(G)/Re 0 , and the reduced metric induced by k u on Z(G)/Re 0 , is positive definite. Then there is an orthonormal basis relative to the induced metric { Fi }, that diagonalizes the induced isomorphism: ũ( Fi ) = ν ′ i Fi . Let e -1 any vector in G not in Z(G)+[G, G]. Then the vector space underlying the Lie algebra G decomposes as:

G = Span {F i : 1 ≤ i ≤ m} ⊕ Span {E i : 1 ≤ i ≤ n} ⊕ Span {e -1 , e 0 }.
The vector e -1 can be chosen to satisfy e -1 , e 0 = 1 and

e -1 ⊥ Span {F i : 1 ≤ i ≤ m} e -1 ⊥ Span {E i : 1 ≤ i ≤ n}. Since u is k-symmetric, u(e -1 ) = νe -1 + ρe 0 + µ i E i + µ ′ i F i where ρ = e -1 , e -1 .
Denote by [E i , E j ] = ρ ij e 0 , (for i, j ≥ 1) and notice that ρ ij = -ρ ji . In order to calculate R e-1Ei E i , e -1 some remarks are needed:

1. ∀i ≥ 1, L Ei E i = 0, because L Ei E i , x = [x, E i ], E i = k([x, E i ], ν i E i + µ i e 0 = 0, ∀x ∈ G. 2. ∀x, y ∈ G, L x y, y = 0. 3. ∀x, y ∈ G, L x y, e 0 = 0. 4. [e -1 , E i ] = j ρ ij E j because [e -1 , E i ] = ae 0 + j α j E j and k([e -1 , E i ], E j ) = k(e -1 , [E i , E j ]) = ρ ij , a = k[e -1 , E i ], e -1 ) = 0. 5. L Ej e -1 , E i = = (1/2){ [E j , e -1 ], E i -[e -1 , E i ], E j + [E i , E j ], e -1 = (1/2)(-ρ ji ν i -ρ ij ν j + ρ ij ν) = (ρ ij /2)(ν i -ν j + ν)
After a rather cumbersome, yet straightforward calculation, we get

R e-1Ei E i , e -1 = L [e-1,Ei] E i , e -1 -L e-1 L Ei E i -L Ei L e-1 E i , e -1 = - j ρ ij E i , L Ej e -1 -L e-1 E i , L Ei e -1 = -(1/2) j ρ 2 ij (ν i -ν j + ν) -L Ei e -1 , L Ei e -1 + [e -1 , E i ] . Since L Ei e -1 , L Ei e -1 = j ρ 2 ji 4ν j (ν j -ν i + ν) 2
and

L Ei e -1 , [e -1 , E i ] = j L Ei e -1 , ρ ij E j = j ρ 2 ij 2 (ν j -ν i + ν), we have R e-1Ei E i , e -1 = j ρ 2 ij (ν j -ν i ) - j ρ 2 ij 4ν j (ν j -ν i + ν) 2 and i R e-1Ei E i , e -1 = - i,j ρ 2 ij 4ν j (ν j -ν i + ν) 2 .
Recall that the metric is Lorentzian and flat, then ν j > 0 and

0 = i,j ρ 2 ij 4ν j (ν j -ν i + ν) 2 ,
implies that, for all i, j ≥ 1,

0 = ρ 2 ij (ν j -ν i + ν) 2 .
Notice that ρ ij = 0, for some i, j for otherwise [G, G] would be Abelian. Then

ν j -ν i + ν = 0 ν i -ν j + ν = 0
and ν = 0, which contradicts the hypothesis.

Proof of Theorem 6. Let G be a quadratic non Abelian Lie group. By Theorem 5 every flat left invariant semi Riemannian metric on G is geodesically complete, and by Theorem 4 , G is solvable. By Proposition 5, the geodesic through the unit of G with velocity e 0 is the 1-parameter subgroup of G with infinitesimal generator e 0 , because e 0 e 0 = 0. Finally, Proposition 7 states that the index of the metric is ≥ 2.

The following corollaries are also consequences of Theorem This equality contradicts the fact that e 0 , e 1 , e 2 are linearly independent. If x -1 = 0, and x 2 1 + x 2 2 = 0, then u(e 0 ) = x 0 e 0 + x 1 e 1 + x 2 e 2 , and dim (ker ad u(e0) ) = 2. Hence dim (im ad u(e0) ) = 2, and im (ad u(e0) ) = u(ker ad u(e0) ).

Moreover ker (ad u(e0) ) = Span {e 0 , u(e 0 )} and e 0 ∈ im ad u(e0) .

By ( 5), e 0 = λu(e 0 ) + µu 2 (e 0 ) with µ = 0, because we are supposing that u(e 0 ) / ∈ Re 0 . Then 0 = k(e 0 , e 0 ) = k(λu(e 0 ) + µu 2 (e 0 ), e 0 ) = λk(u(e 0 ), e 0 ) + µk(u 2 (e 0 ), e 0 ) and the hypothesis imply that 0 = k(u 2 (e 0 ), e 0 ) = k(u(e 0 ), u(e 0 )) = x 2 1 -x 2 2 .

Then x 1 = ±x 2 . Suppose first that x 1 = x 2 = a (a = 0,because u(e 0 ) / ∈ Re 0 ). Then u(e 0 ) = αe 0 + a(e 1 + e 2 ). Consider a new basis of G consisting of e -1 , e 0 , v 1 = e 1 + e 2 , v 2 = e 1 -e 2 . Then V := ker ad u(e0) = Span {e 0 , v 1 }.

We have that u(e -1 ) = -x 2 e 1 -x 1 e 2 = -av 1 . Hence im ad u(e0) = Span {e 0 , u(e 1 )} = Span {e 0 , v 1 }. This implies that u leaves V invariant. In particular u(v 1 ) ∈ V. Hence u(v 1 ) = Ae 0 + Bv 1 , and

A = k(u(v 1 ), e -1 ) = k(v 1 , u(e -1 )) = -ak(v 1 , v 1 ) = 0.
Then u(v 1 ) and u(e -1 ) are linearly dependent, which is not possible.

If x 1 = -x 2 = a, then the same proof applies, with v 2 playing the role of v 1 .

Finally, suppose that rank ad u(e0) = 0, that is u(e 0 ) ∈ Re 0 . Without loss of generality, suppose that u(e 0 ) = e 0 . Adding the two equations, we get

0 = a 2 -a -d(-1 + d) = (a -d)(a + d -1).
It is easy to check that neither a = d nor a

+ d = 1 satisfy 3a 2 -2a(1 + d) -(-1 + d) 2 = 0.
In order to conclude the proof of Theorem 7, it is easy to check that the linear map G → gl (G) given by

x = x -1 e -1 + x 0 e 0 + x 1 e 1 + x 2 e 2 → L x = 1 2     0 0 0 0 0 0 x 2 -x 1 0 0 0 2x -1 0 0 2x -1 0    
is a left symmetric product on G compatible with the Lie bracket.

Remark 3 In fact, for this latter quadratic group there is a left invariant affine structure which is holomorphic ( [START_REF] Diatta | Classical Yang-Baxter equation and left invariant affine geometry on Lie groups[END_REF]).

As a consequence, we have that for undecomposable quadratic Lie groups of dimension 4, no exponential map of a left invariant semi Riemannian metric is a local isometry.

The following results give flat left invariant semi Riemannian metrics on nilpotent Lie groups. Let f be an endomorphism of the underlying vector space of a Lie algebra G, such that

f ([x, y]) -[f (x), f (y)] ∈ Z (G)
for all x, y ∈ G. Such an endomorphism is called a q-homomorphism of Lie algebras. An endomorphism d of the linear space G is called an f derivation if

d[x, y] = [dx, f y] + [f x, dy],
for all x, y ∈ G. In particular a derivation is a Id derivation. Proof. The Levi-Civita product is given by the Koszul formula:

2 xy, z = [x, y], z -[y, z], x + [z, x], y
By the definition of the metric,

2k(d(xy), dz) = k(d[x, y], dz) -k(d[y, z], dx) + k(d[z, x], dy). Using the fact that d is a f derivation, 2k(d(xy), dz) = k([dx, f y], dz) -k([dy, f z], dx) + k([dz, f x], dy) +k([f x, dy], dz) -k([f y, dz], dx) + k([f z, dx], dy) = 2k([f x, dy], dz). Hence d(xy) = [f x, dy]
because k is non degenerate. A simple calculation shows that

(xy)z = d -1 [f x, [f y, dz]]. Therefore, (xy)z -(yx)z = d -1 ([f x, [f y, dz]] -[f y, [f x, dz]]) = d -1 [[f x, f y], dz] . Finally, [x, y]z = d -1 ([f [x, y], dz]) = d -1 ([[f x, f y], dz])
because d is a f derivation and f is a q-homomorphism of Lie algebras.

Theorem 8 Every 3 step nilpotent Lie group has an invertible f derivation d that induces a flat left invariant connection on G.

Proof. Every 3 step nilpotent can be decomposed as

G = G 0 ⊕ G 1 ⊕ G 2 where G 0 = [G, [G, G]] ⊂ Z(G), G 1 is a supplement of G 0 in [G, G] and G 2 is a supplement of [G, G] in G. Define f (x) = a i x for x ∈ G i ,
where a 1 = 4/9, a 2 = 2/3, and

d(x) = α i x for x ∈ G i ,
with α 0 = α 1 . The conditions on the parameters in order that d is an f derivation are:

α 0 α 2 = 0 α 0 = (4/9)α 2 + α 0 a 0 α 2 = 1/3.
The f derivation d is invertible and the product

xy := d -1 ([f x, dy])
is left symmetric hence defines a flat left invariant connection on G.

Theorem 9 Every quadratic 3 step nilpotent Lie group admits a flat left invariant semi Riemannian metric induced by an invertible f derivation on its Lie algebra.

Another general situation with flat left invariant complete semi Riemannian metric is for quadratic Lie groups with a left invariant symplectic form ( [START_REF] Medina | Groupes de Lie à Structure Symplectique invariante à gauche[END_REF]).

Proposition 9 Let (G, k) be a nilpotent, quadratic Lie algebra and u a k symmetric isomorphism of the vector space underlying G. If u preserves the descending central sequence G (and hence the ascending central sequence of G) then the metric k u is complete. Moreover, the solutions of the Euler equation ( 1) are polynomial.

The proposition follows from the following lemma.

Lemma 5 If (G, k) is a nilpotent, quadratic Lie algebra of degree m and v ∈ End(G) preserves the descending central sequence of G, then the mth derivative of the vector field given by ẋ

= [x, v(x)] is zero. Proof. Let t → α(t) be a curve in G. Define β(t) := [α(t), v(α(t))]. Then ∀ i ∈ N \ {0}, β (i) (t) = i j=0 C i j [α (j) (t), v(α (i-j) (t))]
and It is easy to check that u is k symmetric. Equation ( 1) is (in the same coordinate system) ẋ0 = -x 2 x 0 + x 1 x 2 ẋ1 = 0 ẋ2 = x 4 x 0 + x 1 x 3 ẋ3 = x 2 x 4 + x 2 x 3 ẋ4 = 0.

β (i) ∈ C (i+1) (G). Hence, if x : t → x(t)

The curve

x 0 (t) = -2 (1 + t) 2 ; x 1 (t) = 0; x 2 (t) = 2 1 + t ; x 3 (t) = c(1 + t) 2 -1; x 4 (t) = 1 is a non complete solution of Equation (1), see [START_REF] Bromberg | Complétude de l'équation d'Euler. Algebra and operator theory[END_REF]. Hence the semi Riemannian metric defined by u is not flat. Notice that the quadratic Lie algebra (G, k) given in the example above is a 3 step nilpotent quadratic algebra. The flat metric given by Theorem 9 is of signature [START_REF] Boucetta | Solutions of the Yang-Baxter equations on orthogonal groups : the case of oscillator groups[END_REF][START_REF] Bromberg | Complétude de l'équation d'Euler. Algebra and operator theory[END_REF]. This algebra is undecomposable. Let φ ∈ Gl(V ) and define u : V ⊕ V * → V ⊕ V * by u(x, α) := (φ(x), t φ(α)) = (φ(x), α • φ). It is easily verified that u ∈ GL(V ⊕ V * ). Denote by , φ the bilinear form induced on V ⊕ V * via k by u (hence by δ). Then , φ is non degenerate and u is , φ symmetric. We have Theorem 10 Let (G, k) be a quadratic Lie group with Lie algebra G := (V ⊕ V * , θ, k), as above. Then for every φ ∈ Gl(V ) the metric , φ defines a flat and geodesically complete semi Riemannian metric on G, and (G, , φ ), G, , φ ′ ) are isometric if and only if φ ′ = ψ -1 φψ for some ψ ∈ Gl(V ). Moreover, if V ≥ 9 there are infinitely many non isometric such metrics. 

Definition 1 A

 1 semi Riemannian metric is called flat if the curvature tensor vanishes. The Levi-Civita product for a flat left invariant semi Riemannian metric on a Lie Group G is a left symmetric product on G, compatible with the Lie bracket, that is (xy)z -x(yz) = (yx)z -y(xz), and xy -yx = [x, y].

Definition 2 Proposition 1

 21 Let τ : [a, b] → G a geodesic. The points τ (a), τ (b) are called conjugate points if there is a Jacobi field Y on τ such that Y (a) = Y (b) = 0. Let τ : [a, b] → G be a geodesic. Then τ (a) and τ (b) are conjugate if and only if the rank of Exp τ (a) at (b -a)τ ′ (a) is less than dim G.

Definition 3 A

 3 Lie group G with a bi-invariant semi Riemannian metric k is called orthogonal or quadratic Lie group. The pair (G, k), where G is the corresponding Lie algebra and k is the restriction of k to G, is called orthogonal or quadratic Lie algebra.

Lemma 4 Proposition 5

 45 The center of a quadratic Lie group with a flat left invariant semi Riemannian metric is non trivial. Proof. By Theorem 4 the Lie group is solvable. The result follows from the observation that Z(G) ⊥ k = [G, G]. Let (G, k) be quadratic Lie group with a flat left invariant semi Riemannian metric. Then then for all e ∈ Z (G), ∇ 2 e = 0. If the metric is either Riemannian or Lorentzian, then for all e ∈ Z (G), ∇ e = 0. In this case, if u ∈ Gl(G) is the k symmetric isomorphism induced by the semi Riemannian metric, then Z (G) is invariant by u. Proof. Consider the Levi-Civita product induced by the semi Riemannian metric. It is immediate from the Koszul formula that ee ′ = L e e ′ = 0 for e, e ′ ∈ Z(G). The following string of equalities L e L e x, y = -L e x, L e y = -L e x, L y e = L y L e x, e = L e L y x, e = -L y x, L e e = 0, implies the first assertion and it also implies that the subspace Im (L e ) is totally isotropic. If the metric is either Riemannian or Lorentzian dim Im (L e ) ≤ 1.

Proposition 6 A

 6 quadratic Lie group with a flat left invariant Riemannian metric is Abelian. Proof. By Lemma 4, Z(G) = 0. Consider the map L : G → gl (G) defined by x → L x . The fact that [x, y] = L x y -L y x implies that ker (L) is an Abelian ideal of G. By Proposition 5, Z(G) ⊂ ker (L). Since the metric is flat, by Theorem 1.5 in [13] G = ker (L) ⊕ H where H := ker (L) ⊥ and H acts on Ker(L) by adjoints. Hence [G, G] ⊂ ker (L). Since [G, G] is orthogonal to Z(G) relative to , (if e ∈ Z(G), and x, y ∈ G then [x, y], e = k([x, y], u(e)) = k(x, [y, u(e)]) = 0, because Z(G) is invariant by u.) Since G is quadratic, dimZ(G) + dim[G, G] = dimG. Hence H = (0). Proposition 7 A flat left invariant semi Riemannian metric on a non Abelian quadratic Lie group has index ≥ 2. Proof. Let (G, k) a non Abelian quadratic Lie algebra. Then, by Proposition 6, G has no flat left invariant Riemannian metric. Suppose that u is a k symmetric isomorphism of G such that k u := , is Lorentzian and flat. We proceed by induction on the dimension of G. A non Abelian quadratic algebra of dimension ≤ 3 has no flat left invariant semi Riemannian metric. Since Z(G) = (0), suppose first that Z(G) is non degenerate for k. Then

Then 0 =

 0 k(x 2 e 0 + x -1 e 2 , e 0 ) = k(A 1 u(e 0 ) + B 1 u 2 (e 0 ), e 0 ) 0 = k(-x 1 e 0 + x -1 e 1 , e 0 ) = k(A 2 u(e 0 ) + B 2 u 2 (e 0 ), e 0 ). and 0 = A 1 k(u(e 0 ), e 0 ) + B 1 k(u 2 (e 0 ), e 0 ) 0 = A 2 k(u(e 0 ), e 0 ) + B 2 k(u 2 (e 0 ), e 0 ).As a consequence, A 1 = λA 2 , B 1 = λB 2 , andx 2 e 0 +x -1 e 2 = A 1 u(e 0 )+B 1 u 2 (e 0 ) = λ(A 2 u(e 0 )+B 2 u 2 (e 0 )) = λ(-x 1 e 0 +x -1 e 1 ).

  Some calculations show that k R e-1,e1 e -1 , e 2 = b(-1 + a + d) b 2 + ad where b = k(u(e 2 ), e 1 ), a = k(u(e 1 ), e 1 ), and d = -k(u(e 2 ), e 2 ). The semi Riemannian metric being flat, either b = 0 or a + d = 1. If a + d = 1 then k R e-1,e1 e -1 , e 1 = 1. Since the former equality contradicts the hypothesis, b = 0. Using this, we get 0 = k R e-1,e1 e -1 , e 1 = 1 4ad (a 2 + 2a(-1 + d) -(-1 + d)(1 + 3d)), and 0 = k R e-1,e2 e -1 , e 2 = 1 4ad (3a 2 -2a(1 + d) -(-1 + d) 2 ).

Proposition 8

 8 Let (G, k) a quadratic Lie algebra with an invertible f derivation d. Then the semi Riemannian metric defined by x, y = k(dx, dy) is flat and the Levi-Civita product is given by xy = d -1 [f x, dy].

Remark 4

 4 is a solution of (1) and β(t) := [x(t), v(x(t))], thenβ (i) (t) = x (i+1) (t), ∀i ∈ N. It follows that x (m) ∈ C m (G) = {0}.Proof of Proposition 9. Consider in Lemma 5 the vector field ẋ = [x, u -1 (x)]. There are incomplete left invariant semi Riemannian metrics on nilpotent quadratic Lie groups.The following is an example of this situation. Example. Let G = Span{e 0 , e 1 , e 2 , e 3 , e 4 } with Lie bracket [e 4 , e 1 ] = e 2 ; [e 4 , e 2 ] = e 3 ; [e 1 , e 2 ] = e 0 , the non stated products are obtained either by antisymmetry or are zero. For x ∈ G, let x = x 0 e 0 + x 1 e 1 + x 2 e 2 + x 3 e 3 + x 4 e 4 . The Lie algebra G is 3 step nilpotent and for k given by k(x, x) := 2(x 0 x 4 -x 1 x 3 ) + x 2 2 , (G, k) is quadratic. Let u ∈ GL(G) with matrix given in the basis B = {e 0 , e 1 , e 2 , e 3 , e 4 }, M B (u) =

has rank at most 2 .

 2 Proof of the undecomposability. Remark that Z(G) is totally isotropic and that any ideal of dimension 1 is central. Let I an ideal of dimension 2. Since I ∩ Z(G) = (0), I = Span{x, y} where x = x 0 e 0 + x 3 e 3 , y = y 0 e 0 + y 1 e 1 + y 2 e 2 + y 3 e 3 + y 4 e 4 . The vectors x 0 e 0 + x 3 e 3 y 2 e 0 -y 4 e 2 = [e 1 , y] -y 1 e 0 -y 4 e 3 = [e 2 , y] y 1 e 2 + y 2 e 3 = [e 4 , y]are in I. Since we are assuming that the ideal is of dimension 2, the matrix This implies thaty 4 (x 3 y 1 -x 0 y 4 ) = 0 y 2 (x 3 y 1 -x 0 y 4 ) = 0 y 1 (x 3 y 1 -x 0 y 4 ) = 0 If x 3 y 1 -x 0 y 4 = 0, y 1 = y 2 = y 4 = 0 and y ∈ Z(G). If x 3 y 1 -x 0 y 4 = 0, then k(x, x) = 0 k(x, y) = k(x 0 e 0 + x3 e 3 , y 0 e 0 + y 1 e 1 + y 2 e 2 + y 3 e 3 + y 4 e 4 ) = x 0 y 4 -x 3 y 1 = 0. and the ideal I is degenerate. 5 Quadratic 2-step nilpotent Lie groups Let (G, k) be a quadratic 2-step nilpotent Lie algebra with 0 corank, that is such that [G, G] = Z(G). Under this hypothesis the Lie algebra (G, k) is isomorphic to a quadratic Lie algebra (V ⊕ V * , θ, k) where V * = [G, G], θ ∈ Λ 3 (V ), rank θ = dim V, the bracket is given by [(x, α), (y, β)] = (0, θ(x, y, •)), and k((x, α), (y, β)) = α(y) + β(x).

Proof.

  The Levi-Civita product associated to , φ is given by2ab := 2L a b = [a, b] + u -1 ([a, u(b)] + [b, u(a)]).

  Proof. A quadratic Lie group is unimodular, hence the first part of the theorem follows from Theorem 4.

	are equivalent
	i) , is flat.
	ii) the exponential map relative to , is a local isometry.
	iii) , is flat and complete.
	In any case, G is solvable, and (G, , ) has no conjugate points.
	Moreover G viewed as a group of transformations of G has non trivial central
	1-parameter subgroups of translations.

4 On flat left invariant semi Riemannian metrics on quadratic Lie groups Let G be a quadratic Lie group and , a flat left invariant semi Riemannian metric. Notice that a quadratic Lie group is unimodular because ad x is k skewsymmetric, for all x ∈ G, hence, by Theorem 3, every flat left invariant semi Riemannian metric on a quadratic Lie group is complete, and we have a companion theorem of Theorem 4, Theorem 5 Let G be a connected quadratic Lie group, , a left invariant semi Riemannian metric on G. Then the following assertions

6 :

 6 Corollary 4 Every left invariant semi Riemannian metric on a quadratic Lie group with non trivial Levi component (in particular when the group is reductive) is non flat.Definition 6 A quadratic Lie group (G, k) is called undecomposable if ithas no non trivial normal Lie subgroups N such that the restriction of the biinvariant metric k to N is non degenerate. At the algebra level, this means that every ideal of G is k degenerate.Corollary 5 Let (G, k) be an undecomposable quadratic Lie group that admits a flat left invariant semi Riemannian metric. Then the index of k is ≥ 2.

	Theorem 7 Every undecomposable quadratic Lie group of dimension 4 has
	affine left invariant structures and no flat left invariant semi Riemannian met-
	rics.
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Proof. There are two undecomposable quadratic connected Lie groups. The first one is the oscillator group of dimension 4 that was treated in [START_REF] Bromberg | A homogeneous space-time model with singularities[END_REF]. The Lie algebra of the second one is obtained as follows.

Let G be the Abelian Lie algebra obtained by quadratic double extension from the Minkowski plane Span {e 1 , e 2 } (viewed as an Abelian Lie algebra) by a central line R e 0 . This is a four-dimensional quadratic Lie algebra with an ad antisymmetric scalar product of index 2. It has a basis e -1 , e 0 , e We claim that G has no left invariant flat semi Riemannian metric. Suppose on the contrary that there exists a k symmetric isomorphism u of the vector space underlying G such that the metric

Recall that, for a left invariant semi Riemannian metric, the Levi-Civita product is given by: 2xy = [x, y] + u -1 ([x, u(y)] + [y, u(x)]).

This equation implies that rank ad u(e0) ≤ 2.

Let u(e 0 ) = x -1 e -1 + x 0 e 0 + x 1 e 1 + x 2 e 2 .

If x -1 = 0, then e 0 and u(e 0 ) are linearly independent and im ad u(e0) = u(ker ad u(e0) ) = Span{u(e 0 ), u 2 (e 0 )}.

It is easy to show that im ad u(e0) = Span{u(e 1 ) = x 2 e 0 + x -1 e 2 , u(e 2 ) = -x 1 e 0 + x -1 e 1 }.

By Equation 6, there exist A 1 , B 1 , A 2 , B 2 such that

for all a, b, c ∈ G. Hence , φ is flat, and geodesically complete because G is unimodular.

A straightforward calculation shows that (G, θ, k, φ) and (G, θ, k, φ ′ ) are isometric if and only if there exists ψ ∈ Gl(V ) such that φ ′ = ψ -1 φψ.

Finally the Vinberg-Elashvili classification Theorem [START_REF] Vinberg | A classification of the three-vectors in ninedimensional space[END_REF] implies that there are infinitely many non degenerate and non conjugate 3-linear forms on V when dim V ≥ 9. Consequently there are infinitely many non isometric flat left invariant semi Riemannian metrics on G. For more details on 2-step nilpotent quadratic Lie algebras, see [START_REF] Noui | Algèbres de Lie orthogonales et formes trilinéaires alternées[END_REF].