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Abstract. TAMARIN is a popular tool dedicated to the formal analysis of security protocols. One major strength of the tool is
that it offers an interactive mode, allowing to go beyond what push-button tools can typically handle. TAMARIN is for example
able to verify complex protocols such as TLS, 5G, or RFID protocols. However, one of its drawback is its lack of automation.
For many simple protocols, the user often needs to help TAMARIN by writing specific lemmas, called “sources lemmas”, which
requires some knowledge of the internal behaviour of the tool.

In this paper, we propose a technique to automatically generate sources lemmas in TAMARIN. Following the intuition of
manually written sources lemmas, our lemmas try to keep track of the origin of a term by looking into emitted messages or
facts. We prove formally that our lemmas indeed hold, for arbitrary protocols that make use of cryptographic primitives that can
be modelled with a subterm convergent equational theory (modulo associativity and commutativity). We have implemented our
approach within TAMARIN. Our experiments show that, in most examples of the literature, we are now able to generate suitable
sources lemmas automatically, in replacement of the hand-written lemmas. As a direct application, many simple protocols can
now be analysed fully automatically, while they previously required user interaction.

Keywords: Formal Verification, Tamarin Prover

1. Introduction

Security protocols are notoriously subtle to design and analyse. Many different tools have been devel-
oped in order to detect flaws and prove security properties such as authentication, secrecy, or privacy.
However, even a simple property like secrecy is undecidable in general [1]. Hence several tools focus
on the analysis of a decidable fragment, e.g. by bounding the number of sessions (e.g. AVISPA [2],
DeepSec [3]). But when considering wider classes of protocols, more general cryptographic primitives,
and an unlimited number of sessions, one necessarily goes beyond the decidable fragment, possibly
losing termination or even automation.

One popular tool in that direction is ProVerif [4], a push-button tool that has been able to analyse
hundred of protocols including e.g. TLS 1.3 [5], the ARINC823 avionic protocol [6], or the Neuchâ-
tel voting protocol [7]. However, ProVerif may fail to prove some protocols because of some internal
approximations. In that case, the user must either simplify the model or just give up.
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Another approach has been developed in the tool TAMARIN [8]. One key feature of TAMARIN is that
it provides an interactive mode: if the tool fails to automatically prove a property by itself, the user may
help the tool, for example by writing intermediate lemmas, or by manually guiding the proof search.
Thanks to this approach, TAMARIN supports many features that are typically out of reach of many tools
(Diffie-Hellman, stateful protocols), and has been able to prove complex protocols such as 5G AKA [9]
with exclusive or, group key agreement protocols [10], or Noise framework [11] with Diffie-Hellman
keys.

However, the fact that TAMARIN is not fully automatic makes it more difficult to use, at least in the
learning phase. In particular, TAMARIN fails to automatically prove some “simple” protocols of the
literature such as the well-known Needham-Schroder protocol or the Denning-Sacco protocol. This is a
barrier when teaching the tool for example at the university or in summer schools.

Automation in TAMARIN fails in particular if it encounters “partial deconstructions”. To speed up
the analysis, TAMARIN computes in advance, for each protocol and intruder fact, all possible origins
(called sources) of these facts, which are then repeatedly used in later steps of the analysis. However,
this pre-computation can stop in an incomplete stage if TAMARIN lacks sufficient information about the
origins of some fact(s). In practice, as soon as TAMARIN encounters such a “partial deconstruction”, it
is unlikely that it will be able to prove any interesting property automatically. To solve the issue, the user
needs to manually write a “sources lemma” to help TAMARIN. Unfortunately, this manual step has to be
done for many protocols, even simple ones.

Our contribution. In this paper, we automate the generation of sources lemmas. The main idea is to pro-
vide a systematic analysis of the origins of a term in a protocol. Intuitively, either a term has been forged
by the attacker, or it comes from an earlier step in the protocol. To avoid the exploration of too many
cases, we base our analysis on “deepest protected” subterms (when such a subterm exists). We prove
that the sources lemmas that we generate are indeed true. Our result holds for any protocol provided
that the cryptographic primitives can be expressed as a convergent subterm theory (modulo associativ-
ity and commutativity) with the finite variant property. This is the case of most standard cryptographic
primitives such as symmetric and asymmetric encryptions, as well as signatures.

A preliminary version of these results have been presented in [12]. However, we noticed that some-
times, reasoning on the origin of a term by following the message flow is not enough. Indeed, a term may
be first stored in a protocol fact and then released later on. This happens for example for protocols with
private channels or counters, as those are often modeled through dedicated facts. Hence in this paper,
we have also developed a way to generate sources lemmas that reason on protocol facts when following
messages is not enough.

Interestingly, the correctness of TAMARIN does not rely on the fact that we are able to prove that our
sources lemmas hold. TAMARIN will verify them anyway (as done with sources lemmas written by the
user). This means that our technique can also be used even in cases where our theoretical justification
does not apply. Our theoretical justification simply explains why TAMARIN has a good chance to work.
We have implemented our technique in TAMARIN, as a new option --auto-sources. With this
option, when partial deconstructions are detected, a sources lemma is generated automatically and added
to the original model, so that the user can see it and possibly amend it, if needed. We have validated our
approach with two kind of experiments.

• First, we consider simple protocols of the literature, used as benchmarks for most tools. We mod-
elled a handful of them and ran TAMARIN. Our approach is able to solve all partial deconstructions.
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Actually, we found out that for these simple examples, this was the only reason they were not en-
tirely automatic, hence thanks to our --auto-sources option, TAMARIN can now analyse all
these examples automatically.

• We also wanted to evaluate how our technique behaves on more complex protocols and on protocols
that have not been specified by ourselves. Hence we considered all the models provided within
TAMARIN’s distribution, and that contained “partial deconstructions” and “sources lemmas”. For a
majority of them, our technique successfully close all partial deconstructions and for about a half
of these, TAMARIN is now even able to analyse the whole protocol automatically.

Unsurprisingly, complex protocols still require the existing manually written intermediate lemmas or tai-
lored heuristics. However, our technique considerably improves the degree of automation of TAMARIN,
yielding a better trade-off between what can be done automatically, and what needs to be done manually.

Related work. The TAMARIN prover was first presented in 2012 [13]. Since then, work on the tool mostly
focused on widening its scope and adding new features. In particular, support for various equational
theories has been added (bilinear pairing [14], user-defined convergent equational theories [15], and
exclusive-or [16, 17]), as well as the possibility to perform equivalence proofs [18]. There also have been
various extensions, e.g., for different input languages (e.g., [19, 20]). Concerning improved automation,
there is prior work aiming at automatically learning proof heuristics [21]. To the best of our knowledge,
this work, initially presented at ESORICS 2020 [12], is the first to focus on the automatic generation of
sources lemmas.

In the context of symbolic models, several other tools have been developed for analysing the security
of protocols and most of them are fully automated like AVISPA [2], Maude-NPA [22, 23], DeepSec [3],
or SPEC [24], at the cost of bounding the number of sessions or limiting the expressivity of the tool w.r.t.
covered primitives or properties. The main competitor of TAMARIN prover is ProVerif [4], that is fully
automated but cannot handle primitives like exclusive-or.

2. Overview

We illustrate our technique on a simple challenge-response protocol.

I → R : {req, I, n}pk(R)

R→ I : {rep, n}pk(I)

The initiator sends a nonce n encrypted with the public key of the responder, and then waits for the
corresponding answer, i.e. the nonce n encrypted with his own public key. The symbols req and rep
are constants used to avoid confusion between the two types of messages: they indicate whether the
ciphertext corresponds to a request or a reply. The full TAMARIN input file modeling this protocol is
given in Appendix. In particular, the responder role is as follows:

rule Rule_R:
[ In(aenc{’req’, I, x}pk(ltkR)), !Ltk(R, ltkR), !Pk(I, pkI) ]
--[]-> [ Out(aenc{’rep’, x}pkI) ]

Intuitively, at the reception of a message of the form aenc{’req’, I, x}pk(ltkR), the agent R
(with private key ltkR) sends the message aenc{’rep’, x}pkI on the network to the agent I (with
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public key pkI). Note that there are other rules modeling the Initiator role, as well as the key generation.
The latter rule creates the !LtK and !Pk facts used here to retrieve the agents’ public and private keys.

This protocol rule models the behavior of the responder role. It can be triggered arbitrary many times,
possibly with different values for x. When loading this model in TAMARIN, it turns out that the proof
attempt of e.g. a simple secrecy property of nonce n does not terminate due to partial deconstructions. In
TAMARIN’s interactive interface, they are identified by dashed green arrows as shown in Figure 1. The
green arrow symbolizes a deconstruction chain. Deconstruction chains are used in TAMARIN’s intruder
reasoning to extract values from messages output by the protocol. In this example, TAMARIN tries to
extract a fresh value from the message output by the rule Rule_R (at the top). TAMARIN has computed
that if it can decrypt the output of the rule (rule d_0_adec) and then extract the second term (rule
d_0_snd), it obtains the value x.7 (a renaming of the variable x given in the initial rule definition).
However, here TAMARIN is unable to continue its deconstruction, as x.7 can potentially be any value:
directly the desired fresh value, or a pair of values, or an encryption, or something completely different.
As this deconstruction is incomplete, it is called a partial deconstruction.

Fig. 1. Example of a partial deconstruction

In the above example, TAMARIN does not know anything about the contents of the variable x.7, hence,
to ensure soundness, it is obliged to consider this case as a potential source for any value, which leads to
an explosion of the number of cases, and often to non termination issues. This is the case here: the rule
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Rule_R producing the x.7 requires an input, which could itself be the result of (a different instantiation
of) the same source, and so on.

To get rid of partial deconstructions, TAMARIN uses sources lemmas. They are a special type of
lemmas which are applied at the precomputation phase. More precisely, after computing the initial raw
sources without any lemmas, TAMARIN computes the refined sources using the sources lemmas to hope-
fully discard partial deconstructions. To ensure that the refined sources are correct, one further has to
prove the sources lemmas correct, using only the raw sources. This can be done either automatically by
TAMARIN or manually in the interactive mode.

The idea behind a sources lemma is to provide more information regarding the origin of the message
mentioned in the partial deconstruction, i.e., the one corresponding to the variable identified by the
dashed green arrow. Going back to our example and assuming that:

(1) R(aenc{’req’, I, x}pk(ltkR), x) is added as a label to the responder rule; and
(2) I(aenc{’req’, I, n}pkR) is added as a label to the initiator rule,

a sources lemma could be as follows:

lemma typing [sources]:
"All x m #i. R(m,x)@#i ==> ( (Ex #j. I(m)@#j & #j < #i)

|(Ex #j. KU(x)@#j & #j < #i ))"

This lemma says that whenever the responder receives the value x inside a message m (at time point #i),
either this message (actually a ciphertext) has been forged by the attacker who therefore knew x before,
denoted KU(x), or it has been produced (for the first time) by another protocol rule, here the one denoted
I(m). Indeed, a quick inspection of the protocol shows that here this is the only option to produce an
output having the right format.

When generating the refined sources from the raw sources, TAMARIN applies the sources lemmas. In
this case, the sources lemma above will allow it to learn that x is either a nonce (generated by the initiator
role) or a message already known by the attacker. This solves the partial deconstruction as the previous
sources will be refined into two refined sources. The first one is the case where the intruder learns the
nonce generated by the initiator, by passing the initiator’s message to the responder, and then extracting
the nonce like the variable x.7 above. However, TAMARIN now knows that x.7 is not any value, but the
initiator’s nonce. The second case will be discarded by TAMARIN since, if the intruder already knew x
before, it is useless to extract it again.

3. TAMARIN syntax and semantics

We explain here the syntax and semantics of TAMARIN, as presented in [13, 16], as necessary back-
ground for the remainder of the paper.

3.1. Term algebra

Cryptographic messages are represented by a (sorted) term algebra. In TAMARIN, terms are all of sort
msg and there are two incomparable subsorts fr and pub used to represent respectively fresh names (e.g.
nonces or keys) and public names (e.g. agent names). We assume an infinite setN of names of each sort
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and an infinite set V of variables of each sort as well. A variable x of sort s is denoted x : s. The sort msg
is often omitted, that is, the variable x typically denotes a variable of sort msg. Each cryptographic
primitive is represented by a function symbol f : s1 × · · · × sn → s that takes n arguments of sort resp.
s1, . . . , sn and returns a term of sort s. We assume given a signature Σ, i.e. a set of function symbols with
their arities. Then the set of terms is built from the application of symbols of Σ to names and variables
and is denoted TΣ(N ,V). The set of variables occurring in a term t is denoted vars(t). A term is ground
if it contains no variable. A substitution θ is grounding for t if tθ is ground.

Example 1. The standard primitives are often expressed by the signature

Σstand = {enc(_, _), dec(_, _), encA(_, _), decA(_, _), pk(_), 〈_, _〉, fst(_), snd(_)}

where all functions are of sort msg× · · · × msg→ msg.
They model respectively symmetric encryption and decryption, asymmetric encryption and decryption,

and concatenation and (left and right) projections.

The properties of the primitives are reflected through an equational theory E. In TAMARIN, user de-
fined equational theories are given as a convergent rewrite system. TAMARIN additionally supports built-
in theories such exclusive or [16] and a set of equations for Diffie-Hellman (DH) exponentiation [13].
The equality modulo associativity and commutativity (AC) is denoted =AC and the normal form of a
term t, modulo AC, is denoted t↓ (we consider any representative of the normal form of t). Two terms t1
and t2 are unifiable (modulo AC) if there exists a substitution θ such that t1θ =AC t2θ. Positions of a
term t are defined as usual considering AC operators as binary symbols. A subterm of t is a term t′ such
that t′ = t|p for some position p.

TAMARIN assumes equational theories that have the finite variant property [25], that is where all the
instances of a given term follow a finite number of different patterns. Formally, a convergent equational
theory E has the finite variant property if for any term t, there exists a finite number of substitutions
σ1, . . . , σk such that, for any substitution θ, there is 1 6 i 6 k, there exists a substitution θ′ such that
(tθ)↓ =AC tσiθ

′. A particular class of rewriting systems is the class of subterm rewriting system. A
rewriting system is said subterm if it is defined by a set of equations of the form l → r such that r is
a subterm of l or a (public) constant. Many cryptographic primitives can be modeled by (convergent)
subterm rewriting systems, such as signatures, symmetric and asymmetric encryption, pair, hash, etc.
Our theoretical development only consider equational theories that can be defined by a subterm rewriting
system, convergent modulo AC, that have the finite variant property. TAMARIN is not limited to subterm
equational theories, and actually our approach can be applied in this general setting too, relying on
Tamarin to establish the correctness of the generated lemmas.

Example 2. Orienting from left to right the equations below yields a subterm convergent rewrite system
that is usually used to model concatenation and asymmetric encryption. Here, there is no AC symbol.

decA(encA(x, pk(y)), y) = x fst(〈x, y〉) = x snd(〈x, y〉) = y

In what follows, we will consider sets and multisets. Given a multiset S , set(S ) denotes the set of its
elements. The symbol ⊆ denotes the set inclusion. We will write S ⊆ S ′ even if S and S ′ are multisets,
which is then interpreted as set(S ) ⊆ set(S ′). In contrast, ⊆] denotes the multiset inclusion. Similarly,
∪] denotes the multiset union and \] the multiset difference.
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3.2. Transition system

In TAMARIN, a protocol execution is modeled as a transition system where a state contains a multiset
of facts, representing the current knowledge of the attacker and the current steps of the protocol, for
each agent and each session. Formally, we assume a set of fact symbols F partitioned into linear and
persistent fact symbols. A fact is an expression F(t1, . . . , tn) where F ∈ F and t1, . . . , tn ∈ TΣ(N ,V).
Given a multiset of facts F, lfacts(F) denotes the multiset of its linear facts while pfacts(F) denotes the
multiset of its persistent facts.

Linear facts represent resources that are consumed. TAMARIN includes three pre-defined linear fact
symbols: Fr(n) models the generation of a fresh name n, Out(m) represents a message m sent over the
network by a participant, and In(m) denotes that the adversary has sent message m, that can then be
received by an agent of the protocol. Persistent facts represent facts that remain forever and are not
consumed by rules. TAMARIN includes the persistent fact symbol K that models the knowledge of the
attacker, as well as K↑ and K↓ that allow to distinguish between the terms built by the attacker and those
obtained from listening to the network or by decomposing learned messages. Then the protocol may use
other user defined facts, that can be either linear or persistent. The latter are denoted using the ! operator
in front of the fact.

The protocol execution is specified through labelled multiset rewriting rules [l]−−[ a ]→[r] where l, a, r
are multisets of facts. The multiset l denotes the premises of the rule that need to be present in the state
in order for the rule to be executed; a denotes the actions of the rule (later used to specify properties),
while r contains the conclusions, added to the state. There are three kinds of rules.

3.2.1. Fresh name generation (FRESH)
This is the only rule that can produce facts of the form Fr(n). Moreover, to ensure freshness, a distinct

name n is used for each application.

[]−−[]→[Fr(x : fr)]

3.2.2. Message deduction rules (MD)
They are pre-defined in TAMARIN and represent the attacker’s actions.

[Out(x)]−−[]→[K↓(x)] and [K↑(x)]−−[ K(x) ]→[In(x)]

model the fact that the attacker can learn any message sent by the protocol and conversely, may send any
message of her knowledge. Note that this is the only rule where the predicate K appears as an action of
a rule. The rules

[]−−[ K↑(x) ]→[K↑(x : pub)] and [Fr(x : fr)]−−[ K↑(x) ]→[K↑(x : fr)]

express respectively that the attacker can learn any public name and can create fresh name on his own.
Finally, the attacker can extend his knowledge by applying function symbols. The intuitive rule is:

[K(x1), . . . ,K(xn)]−−[]→[K(f(x1, . . . , xn))] for any f ∈ Σ

Actually, this rule is split into two cases in TAMARIN, depending on whether the attacker is building a
term, or decomposing it. Formally, for any substitution θ (in normal form), we consider the rule

[K↑(x1θ), . . . ,K
↑(xnθ)]−−[ K↑(f(x1, . . . , xn)θ) ]→[K↑(f(x1, . . . , xn)θ)]
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when f(x1, . . . , xn)θ is in normal form. When the term f(x1, . . . , xn)θ reduces to a subterm of xi0θ for
some i0 (remember that we only consider subterm theories), then we consider

[Kα1(x1θ), . . . ,K
αn(xnθ)]−−[ K↓(f(x1, . . . , xn)θ ↓) ]→[K↓( f(x1, . . . , xn)θ

y)]

where αi =↑ for all i 6= i0 and αi0 =↓. Intuitively, the deduction rule is annotated with K↑ when the
attacker applies a “constructor” term such as an encryption and a pair. It can also be annotated with K↑

when the attacker applies a deconstructor (for example, a decryption), if the term cannot be further
reduced (for example, the decryption fails). Conversely, the deduction rule is annotated with K↓ when
the attacker decomposes a term. Finally, it is possible to switch from K↓ to K↑ thanks to the “coerce”
rule:

[K↓(m)]−−[ K↑(m) ]→[K↑(m)]

for any message m in normal form that is not a pair.

3.2.3. Protocol rules
Then the protocol as well as additional attacker capabilities are specified through protocol rules, that

are multiset rewriting rules that satisfy some conditions.

Definition 1. A protocol rule is a multiset rewriting rule [l]−−[ a ]→[r] such that

(1) it does not contain fresh names and Fr does not occur in r
(2) K, K↑, K↓, and Out do not occur in l
(3) K, K↑, K↓, In do not occur in r
(4) vars(r) ⊆ vars(l) ∪ {x ∈ V | x : pub}.

The first condition guarantees in particular that fresh names are only produced thanks to the fresh
name generation rule. The last three rules are easily met by any rule modeling a protocol step.

Example 3. Going back to our running example, the rule given in Section 2 is a protocol rule where Ltk
and Pk are user-defined persistent facts used to model generation of long-term keys. Actually, our model
contains the following rule:

[Fr(xsk)]−−[]→[!Ltk(xid, xsk), !Pk(xid, pk(xsk)),Out(pk(xsk))]

where xsk is variable of sort fr, and xid is a variable of sort pub. This protocol rule represents the
possibility to generate key pairs (xsk, pk(xsk)) for any identity xid. The public part of the key is revealed
to the attacker.

3.3. Execution traces

A set of protocol rules P induces a transition relation →P between states. We have S  set(aθ)
P S ′ if

there exists a rule ru ∈ P ∪MD ∪ {Fresh} of the form [l]−−[ a ]→[r] and a grounding substitution θ such
that

• lfacts(lθ) ⊆] S , the linear facts of lθ should be present in S , with enough occurrences,
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• pfacts(lθ) ⊆ S ,
• and S ′ = (S r# lfacts(lθ)) ∪# rθ. The linear facts of lθ are removed and all the conclusion facts

are added to the state.

Moreover, if the applied rule is the FRESH rule then rθ = {Fr(n)} and n must be a new name not used
earlier. The execution of a protocol is simply modeled by a sequence of transitions. A trace of a protocol
is the sequence of actions that appear in the execution. Formally, we have that:

traces(P) = {[A1, . . . , An] | ∅ A1
P · · · 

An
P S ′}.

Example 4. Continuing Example 3, the protocol rule modeling key generation can be used twice (or
even more) to generate two key pairs for two different identities leading to the following trace:

{} {Fr(ska)} Fa ∪ {Out(pk(ska))}
 {Fr(skb)} Fa ∪ Fb ∪ {Out(pk(ska)),Out(pk(skb))}
 Fa ∪ Fb ∪ {K↓(pk(ska)),Out(pk(skb))}

where Fa = {!Ltk(A, ska), !Pk(A, pk(ska))}, Fb = {!Ltk(B, skb), !Pk(B, pk(skb))}. Here ska and skb
are names of sort fr whereas A, B are public names of sort pub. This corresponds to the application of
the FRESH rule followed by the protocol rule to obtain key material for the first agent A and then for a
second agent B. The last rule corresponds to an application of an MD rule adding the public key of A to
the knowledge of the attacker.

3.4. Properties

Security properties are expressed as properties on the traces of a protocol. TAMARIN offers a first
order logic to specify properties. Formulas make use of variables of a novel sort temp to reason about
when a fact occurs and to be able to express that some event occurs before another one. The full syntax
and semantics of the logic is provided in [13]. We provide here only informally the semantics of atomic
formulas:

• F@i, where i is of sort temp, refers to the fact F that occurs in the ith element of the trace;
• i .= j expresses that the timepoints i and j are equal;
• i l j expresses that timepoint i occurs before j;
• t1 ≈ t2 says that t1 and t2 are equal (modulo the equational theory).

The first order logic is built from atomic formulas and closed by the boolean connectors ∨, ∧, and ¬, as
well as the quantifications ∃ and ∀.

A set of protocol rules P satisfies a formula φ, denoted P |= φ if, for any trace tr ∈ traces(P), then tr
satisfies φ.

Example 5. Continuing the running example, a typical lemma expressing nonce secrecy of the challenge
is as follows:

lemma nonce_secrecy:
"not(Ex A B s #i #j. (SecretI(A, B, s)@#i & K(s)@#j))"
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This requires us to annotate the rule of the Initiator role with the action fact SecretI. Then intuitively
this lemma expresses that there does not exit any trace such that SecretI(A,B,s) occurs at stage i
(for some A, B, and s) and the attacker knows s at stage j. If we consider only the three protocol rules
mentioned so far (initiator’s rule, responder’s rule, and key generation), then this security property is
satisfied. However, as expected, the same lemma is not satisfied as soon as we model corruption, for
example with the following rule.

rule Reveal_ltk: [!Ltk(xid, xsk)] --[RevLtk(xid)]-> [Out(xsk)]

TAMARIN also allows to express diff-equivalence, a refined notion of equivalence. This can be used
for example to state that a protocol preserves unlinkability, anonymity, or other privacy properties such
as ballot privacy. For example, the fact that Alice remains anonymous is often expressed as the property
that P(Alice) ∼ P(Bob). This intuitively says that an adversary should not see the difference when Alice
is playing protocol P or Bob is playing protocol P. The formal definition of diff-equivalence can be
found in [13]. We do not need to provide it here as our automatically generated lemmas are simple trace
properties and do not use diff-equivalence. Note however that our approach applies to protocols with
diff-equivalence as well since our generated lemmas also helps TAMARIN to terminate in the case of
diff-equivalence properties.

4. Automatically generated sources lemmas

Whenever TAMARIN fails to complete a deconstruction, we aim at providing the tool with a sources
lemma that resolves the partial deconstruction. We formalise here our approach and prove it to be correct.

4.1. Definitions

We introduce the notion of protected term, which is any term that is headed by a function symbol that
is not a pair (because we know the adversary can always open such terms) nor an AC symbol (simply
because our heuristic does not apply to case of failures due to an AC theory).

Definition 2. A protected term t is a term whose head symbol is not 〈_, _〉 nor an AC symbol. Given
a term t and a variable x occurring in t, we say that t′ is a deepest protected subterm w.r.t. x if t′ is a
protected term, subterm of t that contains x and such that one of the paths from the root of t′ to x contains
only pair symbols 〈_, _〉 (except for head symbol at top level).

Intuitively, if t′ is a deepest protected subterm w.r.t. x, then the only way to obtain t′ is either by
extracting it directly from some output, or by building it, in which case x is already known to the attacker.

Example 6. Let t = enc(〈x, enc(〈b, x〉, k2)〉, k1). There are two deepest protected subterms w.r.t. x,
namely t itself and t′ = enc(〈b, x〉, k2).

We denote by Stpair(u) the set of subterms of u that can be obtained from u simply by projecting.
Formally, Stpair(u) is formally defined as

Stpair(u) =

{
{u} ∪ Stpair(u1) ∪ Stpair(u2) if u = 〈u1, u2〉
{u} otherwise



V. Cortier et al. / Automatic generation of sources lemmas in TAMARIN 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Normalised traces. In order to keep track of the origin of a protected subterm, we need to assume
that the shape of a term is not modified by the application of the equational theory. Fortunately, since
we assume an equational theory with the finite variant property, it is possible to compute in advance the
shapes of all the terms obtained after normalisation. Given a set of protocol rules P, TAMARIN computes
the variants Variant(P) of P such that, for any rule ru ∈ P, for any substitution θ, there is ru′ ∈ Variant(P)
and a substitution θ′ such that ruθ =E ru′θ′ and (ru′, θ′) is normalised, that is, for any fact F(u′) occurring
in ru′, we have that (uθ′)

y =AC u′θ′. Moreover, ru′ = (ruσ)
y for some σ. TAMARIN considers only

traces that are normalised, i.e. executions of the form ∅ A1

Variant(P) S 1 · · · An
Variant(P) S n and such that:

• the execution involves only rules ru ∈ Variant(P) and substitutions θ such that (ru, θ) is normalised;
• pairs are always decomposed before being used, that is, if K↑(u) appears in Ai then K↑(t) ∈ S i−1

for any t ∈ Stpair(u)1.

We write P |=norm φ if for any normalised trace tr of P, tr satisfies φ. Then, given a formula φ that does
not contain the fact K↑ nor K↓, we have P |= φ if, and only if, P |=norm φ, which is what is actually
checked by TAMARIN. This follows from the soundness of TAMARIN [13].

In some cases, computing the variants Variant(ru) of a protocol rule ru may introduce new variables
on the right of the rule, and thus lead to rules that are not protocol rules (according to Definition 1).

Example 7. The rule [In(decA(x, y))]−−[]→[Out(x)] is a protocol rule. However, one of its variant is
[In(z)]−−[]→[Out(encA(z, pk(y)))] which is not a protocol rule according to Definition 1.

However, such cases correspond to badly defined protocols and TAMARIN typically raises a warning in
this case. Hence, in what follows, we consider well-formed protocol rules P, that is such that Variant(P)
is still a set of protocol rules. In practice, protocol rules representing a protocol are indeed well-formed.

4.2. Algorithm

Given a set P of protocol rules, TAMARIN first computes its variants Variant(P). It then precomputes
sources as already explained. Whenever TAMARIN fails to complete a deconstruction, it returns the par-
tial deconstruction. For the moment, assume that we can extract a rule ru = [l]−−[ a ]→[r] of Variant(P)
and a variable x for which the deconstruction has failed. In practice there might be multiple composed
rules, as explained in Section 7.1, but the approach is similar. It must be the case that x appears in some
fact of l.

For each deepest protected subterm t occurring in a rule of P, we assume new fact symbols Leftt and
Rightt that will be used to further annotate the rules of Variant(P). These facts will appear only in the
sources lemmas we generate.

The sources lemma SourceLemma1(P, ru, x) associated to a partial deconstruction on variable x and
rule ru for protocol P is defined by Algorithm 1. Intuitively, we first look for any occurrence of x in the
premisses of ru, under a (deepest) protected term t1 and we annotate the rule ru with Leftt1(t1, x). Then
we look for all facts in the conclusions of a rule that may have produced t1, that is that contain a term t2
that can be unified with t1 and we annotate those rules with Rightt1(t2). Finally, we generate the formula
that says that if we have Leftt1(y, x) at some step i, then either x is already known to the attacker, that is

1This comes from the fact that, whenever the attacker learns a pair K↓(〈m1,m2〉), she cannot directly convert it in
K↑(〈m1,m2〉) since the coerce rule does not apply to terms headed with a pair. Hence it is necessary to decompose it first
(with K↓ rules) and then reconstruct it (with K↑ rules).
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K(x) holds at an earlier step, or y has been obtained from the protocol, that is Rightt1(y) holds at some
earlier step.

Algorithm 1 SourceLemma1(P, ru, x)

Input: P, ru = [l]−−[ a ]→[r], x
Ψ := >
for all t1 deepest protected term w.r.t. x that is subterm of vi for some F(v1, . . . , vn) ∈ l do

% we annotate ru with the fact that x may provide from t1
a := a ∪ {Leftt1(t1, x)}
% then we identify from which facts t1 may provide.
for all rule ru′ = [l′]−−[ a′ ]→[r′] ∈ P do

if t1 unifiable with t2 modulo AC for some t2 protected subterm in F′(v′) ∈ r′ then
% we annotate ru′ with the fact that t2 may be used to produce x
a′ := a′ ∪ {Rightt1(t2)}

end if
end for
Let φ the formula defined as follows

∀y, x, i Leftt1(y, x)@i =⇒
(
(∃k Rightt1(y)@k ∧ k l i) ∨ (∃k K↑(x)@k ∧ k l i)

)
Ψ := Ψ ∧ φ

end for
return Ψ

Example 8. Going back to our running example developped in Section 2, our algorithm SourceLemma1
will be applied on the rule Rule_R and the variable x.

rule Rule_R:
[ In(aenc{’req’, I, x}pk(ltkR)), !Ltk(R, ltkR), !Pk(I, pkI) ]
--[]-> [ Out(aenc{’rep’, x}pkI) ]

The only deepest protected subterm w.r.t. x is aenc{’req’, I, x}pk(ltkR) and it plays the
role of t1. Therefore, we annotate this rule with Leftaenc{′req′,I,x}pk(ltkR)(aenc{′req′, I, x}pk(ltkR), x), and
then we identify which fact may provide t1. Actually the only candidate is the encrypted term t2 =
aenc{′req′, I, n}pkR coming from the Rule_I given below:

rule Rule_I:
[ Fr(~n), !Pk(R, pkR),!Ltk($I, ltkI)]

--[SecretI($I,R,~n)]->
[ Out(aenc{’req’,I, ~n}pkR)]

Therefore, an annotation Rightaenc{′req′,I,x}pk(ltkR)(aenc{′req′, I, n}pkR) is added to this rule. The result-
ing formula φ is exactly the one given by the algorithm, i.e.:

∀y, x, i Leftaenc{′req′,I,x}pk(ltkR)(y, x)@i =⇒
(
(∃k Rightaenc{′req′,I,x}pk(ltkR)(y)@k ∧ k l i)

∨ (∃k K↑(x)@k ∧ k l i)
)
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In the implementation, since it is not possible to use terms as indices of a fact, we use the position of the
term t1 inside the rule Rule_R as part of the fact name. The formula above alone allows us to get rid
of the 6 partial deconstructions produced on this simple example, and the secrecy lemma, as well as the
sources lemma itself, are proved automatically by Tamarin.

5. Soundness of our algorithm

We can show that under our assumptions the generated sources lemmas always hold, which explains
why TAMARIN is usually able to prove them.

Theorem 1. Given a set of well-formed protocol rules P, a rule ru ∈ Variant(P), a variable x occurring
in ru, and Ψ =

∧n
i=1 φi be the conjunction of formulas returned by SourceLemma1(Variant(P), ru, x),

then for any i ∈ {1, . . . , n}, we have that φi is satisfied by Variant(P), that is Variant(P) |=norm φi.

Proof. Let P be a set of protocol rules, ru ∈ Variant(P), and x a variable occurring in ru. Let Ψ =∧n
i=1 φi be the formula returned by SourceLemma1(Variant(P), ru, x), and let i0 ∈ {1, . . . , n}. The rule

ru is of the form [l]−−[ a ]→[r] and φi0 is of the form:

∀ỹ, x̃,i Leftt1(ỹ, x̃)@i =⇒
(
∃k Rightt1(ỹ)@k ∧ k l i) ∨ (∃k K↑(x̃)@k ∧ k l i)

)
for some t1 deepest protected term w.r.t. x. By definition of a deepest protected subterm, t1|p0 = x for
some position p0 and there are only pairs along the path p0 (except at position ε).

Let tr be a normalised trace of Variant(P). Let us show that tr satisfies φi0 .

tr = ∅ A1 S 1 · · · An−1 S n−1  
An S n

Let i be such that Leftt1(m, n) ∈ Ai for some terms m, n. Then the ith applied rule must be a rule ru′ in
Variant(P) such that t1 is a subterm of some t′ with t1|p′0 = x′ for some p′0 and there are only pairs along
the path p′0 (except at position ε):

ru′ = [{F′(t′)} ∪ l′]−−[ Leftt1(t1, x′) ∪ a′ ]→[r′]

Moreover, there exists a substitution σi in normal form (the one used to instantiate ru′) such that m =AC
(t1σi)

y and n =AC x′σi
y. Since the trace is normalised, m =AC t1σi and n =AC x′σi. Let u =AC (t′σi)

y.
Again, we have u =AC t′σi. Since t1 is a subterm of t′ and t1 is not headed by an AC symbol, we have
that m is a subterm of u (modulo AC). Moreover F′(u) ∈ S i−1 by definition of the application of a rule.

Let j < i be the first occurence of j such that m (modulo AC) is a subterm of a fact in S j and consider
the jth rule that has been applied.

• Either this rule is a rule ru′′ in Variant(P) of the form

ru′′ = [l′′]−−[ a′′ ]→[{F′′(w′′)} ∪ r′′]

and there exists σ j in normal form (the substitution used to instantiate ru′′) such that m (modulo
AC) is a subterm of u′ = (w′′σ j)

y. Since the trace is normalised, (w′′σ j)
y =AC w′′σ j. Let p′ be

the position at which m occurs in w′′σ j, i.e. such that w′′σ j|p′ =AC m.
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* Either p′ is a path of w′′ that does not end on a variable. Then w′′|p′ = w′ with w′ a protected
subterm of w′′.
We have that w′σ j =AC m =AC t1σi thus w′ and t1 are unifiable (modulo AC) thus we have
annotated ru′′, that is, Rightt1(w′) ∈ a′′, which concludes this case.

* Or p′ is a path of w′′ that ends on a variable or is not a path at all. Then there must exist a
variable y in w′′ such that m (modulo AC) is a subterm of yσ j. Then y also appears in some
premise fact F′′′(w′′′), thanks to the definition of a protocol rule and the fact that the variant
rules are still protocol rules. Therefore m (modulo AC) is a subterm of a fact in S j−1 (since
(w′′′σ j)

y =AC w′′′σ j), which contradicts the minimality of j.

• Or the rule is a MD rule. Since m is a protected term, the rule cannot be []−−[ K↑(x) ]→[K↑(x : pub)]
nor [Fr(x : fr)]−−[ K↑(x) ]→[K↑(x : fr)] since these two rules only generate names. By minimal-
ity of j, it cannot be the rule [Out(x)]−−[]→[K↓(x)], nor [K↑(x)]−−[ K(x) ]→[In(x)], nor the rule
[K↓(x)]−−[ K↑(x) ]→[K↑(x)] either. So it must be a deduction rule, either in the K↑ version or in
the K↓ version.

* Either it is the rule

[K↑(x1θ), . . . ,K
↑(xnθ)]−−[ K↑(f(x1, . . . , xn)θ) ]→[K↑(f(x1, . . . , xn)θ)]

with f(x1, . . . , xn)θ in normal form. We have K↑(x1θ), . . . ,K↑(xkθ) ∈ S j−1. Then, by minimality
of j, and since m is not headed with an AC symbol, we must have m =AC t1σi =AC f(x1θ, . . . , xkθ),
otherwise we would have that m is subterm of some xiθ hence subterm of S j−1 or m is a constant,
which cannot be the case since m is a protected subterm. Remember that x′σi is a subterm at
position p′0 = i0.p′ (for some i0) of

m =AC t1σi =AC f(x1θ, . . . , xkθ)

such that there are only pairs along p′, that is, x′σi ∈ Stpair(xi0θ). Since the trace is normalised
(i.e. pairs are decomposed before being used), we get that K↑(x′σi) ∈ S j−1, that is K↑(n) ∈ S j−1.
Now, by inspection of the rules, we notice that the only way to obtain K↑(t) in a state is through
a rule annotated by K↑(t), hence we can conclude that K↑(n) appears in one of the actions of an
earlier rule.

* Or the rule

[Kα1(x1θ), . . . ,K
αn(xnθ)]−−[ K↓( f(x1, . . . , xn)θ

y) ]→[K↓( f(x1, . . . , xn)θ
y)]

has been applied, with f(x1, . . . , xk)θ that can be reduced at top level. Since the equational theory
is a subterm theory, it must be the case that f(x1, . . . , xk)θ

y is a subterm of one of the xiθ, hence
a subterm of a fact of S j−1, which contradicts the minimality of j.

This concludes the proof. �

Even if all the sources lemmas generated using our algorithm are correct, we will see in Section 7 that
we make the choice to implement a slightly different version of our algorithm for practical reasons, in
particular to avoid non-termination issues.
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6. Improvement over the first algorithm

Unfortunately, the algorithm presented in Section 4 does not allow one to discard all partial decon-
structions. In particular, it is useless to solve partial deconstructions that do not come from an encrypted
term.

6.1. Motivation

We illustrate the weakness of this first algorithm through a simple example.

Example 9 (Private Channel). Consider the following TAMARIN rules:

rule SendPwd: [ Fr(~pw) ] --[ Pwd(~pw) ]-> [ Ch(~pw) ]

rule Auth: [ Ch(x) ] --[ Forward(x) ]-> [ Ch(x) ]

rule Corrupt: [ Ch(x) ] --[ Corrupt(x) ]-> [ Out(x) ]

The first rule allows a user to send his password on a private channel (modelled using the fact Ch),
and the second one can be used to model the fact that when a first authority receives such a password,
she may send it to another authority for performing additional checks. The third rule allows one to model
corruption: at some point a password may be leaked and revealed to the attacker.

Fig. 2. Example of a partial deconstruction

On the above example, TAMARIN will generate 3 partial deconstructions, one of them is reproduced
in Figure 2. TAMARIN does not know anything about the contents of the variable t.5, it is thus obliged
to consider this case as a potential source for any value, and this will actually lead to non termination
when trying to prove for instance a simple secrecy lemma as the one stated below:

lemma password_secrecy:
" not(

Ex #i x. Pwd(x)@i & (Ex #j. K(x) @ j) & not(Ex #r. Corrupt(x)@r)
)"



16 V. Cortier et al. / Automatic generation of sources lemmas in TAMARIN

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

It is easy to see that our algorithm SourceLemma1 will be of no help since there is no encrypted term
involved in this protocol.

6.2. Algorithm

The sources lemma SourceLemma2(P, ru, x) associated to a partial deconstruction on a variable x
and a rule ru for protocol P are defined by Algorithm 2. Intuitively, we now consider any unprotected
occurrence of x in the premisses of ru that occurs in a fact F(v1, . . . , vn) that is not an input, and we
annotate the rule with LeftF(v1,...,vn)(v1, . . . , vn). Then, we look for all facts in the conclusions of a rule
that may have produced F(v1, . . . , vn), that is, facts F(v′1, . . . , v

′
n) that can be unified with F(v1, . . . , vn),

and we annotate the rule with RightF(v1,...,vn)(v′1, . . . , v
′
n). We then generate the lemma as expected, that

says that if we have LeftF(v1,...,vn)(y1, . . . , yn) at some step i, then RightF(v1,...,vn)(y1, . . . , yn) holds at an
earlier step. The reason why we do not need to consider the case where x is already known by the
attacker is that we reason here on protocol facts, which cannot be accessed or modified by the attacker.

Algorithm 2 SourceLemma2(P, ru, x)

Input: P, ru = [l]−−[ a ]→[r], x
Ψ := >
for all F(v1, . . . , vn) ∈ l \ {In(_)} such that x unprotected subterm of some vi do

% we annotate ru with the fact that x may come from vi

a := a ∪ {LeftF(v1,...,vn)(v1, . . . , vn)}
% then we identify from which facts F(v1, . . . , vn) may provide.
for all rule ru′ = [l′]−−[ a′ ]→[r′] ∈ P do

if F(v1, . . . , vn) unifiable with F(v′1, . . . , v
′
n) modulo AC for some F(v′1, . . . , v

′
n) ∈ r′} then

% we annotate ru′ with the fact that F(v′1, . . . , v
′
n) may be used to produce F(v1, . . . , vn)

a′ := a′ ∪ {RightF(v1,...,vn)(v′1, . . . , v
′
n)}

end if
end for
Let φ the formula defined as follows

∀y1, . . . , yn, j LeftF(v1,...,vn)(y1, . . . , yn)@ j =⇒ (∃k{RightF(v1,...,vn)(y1, . . . , yn)@k ∧ k l j)

Ψ := Ψ ∧ φ
end for
return Ψ

Example 10. Going back to our running example developped in Section 6.1, we will apply our algo-
rithm on rule Auth w.r.t. x. An annotation LeftCh(x)(x) will be added on rule Auth, and the annotation
RightCh(x) will be added twice: one on SendPwd with pw as a parameter, and the other one on Auth
with x as a parameter. Indeed, these two rules are the only ones producing a fact of the form Ch(·).

The resulting sources lemma is as follows (with t1 = Ch(x)):

∀y, i Leftt1(y)@i =⇒ (∃k Rightt1(y)@k ∧ k l i)

This sources lemma is correct (as formally stated and proved in the theorem above). However, it does
not allow TAMARIN to generate the refined sources due to a loop on rule Auth. We will come back to
this issue in Section 7.
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We can show that under the same assumptions than Theorem 1, the sources lemmas generated by
Algorithm 2 always hold, which explains why TAMARIN is usually able to prove them. The proof follows
the same lines as the one done for Theorem 1. Actually, its proof is easier since the fact F(v1, . . . , vn)
(where F is a fact symbol) cannot be produced by the attacker.

Theorem 2. Given a set of (well-formed) protocol rules P, a rule ru ∈ Variant(P), a variable x occur-
ring in ru, and Ψ =

∧n
i=1 φi be the conjunction of formulas returned by SourceLemma2(Variant(P), ru, x),

then for any i ∈ {1, . . . , n}, we have that φi is satisfied by Variant(P), that is Variant(P) |=norm φi.

Proof. Let P be a set of protocol rules, ru ∈ Variant(P) and a variable x occurring in ru, let Ψ =
∧n

i=1 φi

be the formula returned by SourceLemma2(Variant(P), ru, x), and let i0 ∈ {1, . . . , n}. The rule ru is of
the form [l]−−[ a ]→[r] and φi0 is of the form:

∀y1, . . . , yn, i LeftF(v1,...,vn)(y1, . . . , yn)@i =⇒
(
∃k RightF(v1,...,vn)(y1, . . . , yn)@k ∧ k l i)

)
for some F(v1, . . . , vn) such that x is an unprotected subterm of some vi.

Let tr be a normalised trace of Variant(P). Let us show that tr satisfies φi0 .

tr = ∅ A1 S 1 · · · An−1 S n−1  
An S n

Let i be such that LeftF(v1,...,vn)(m1, . . . ,mn) ∈ Ai for some terms m1, . . . ,mn. Then the ith applied rule
must be an instance of a rule ru′ in Variant(P) such that:

ru′ = [{F(v1, . . . , vn))} ∪ l′]−−[ LeftF(v1,...,vn)(v1, . . . , vn) ∪ a′ ]→[r′]

Moreover, there exists a substitution σi in normal form (the one used to instantiate ru′) such that mk =AC
(vkσi)

y for any k ∈ {1, . . . , n}. Since the trace is normalised, mk =AC vkσi for any k ∈ {1, . . . , n}. We
have that F(m1, . . . ,mn) ∈ S i−1 by definition of the application of a rule.

Let j < i be the first occurrence of j such that F(m1, . . . ,mn) is a fact in S j and consider the jth rule
that has been applied. This rule is necessarily an instance of a rule ru′′ ∈ Variant(P) of the form:

ru′′ = [l′′]−−[ a′′ ]→[{F(v′1, . . . , v
′
n)} ∪ r′′]

and there exists σ j in normal form (the substitution used to instantiate ru′′) such that mk =AC v′kσ j
y for

any k ∈ {1, . . . , n}. Since the trace is normalised, (v′kσ j
y =AC v′kσ j for any k ∈ {1, . . . , n}. We have

that vkσi =AC mk =AC v′kσ j for any k ∈ {1, . . . , n}, thus F(v1, . . . , vn) and F(v′1, . . . , v
′
n) are unifiable

(modulo AC) thus we have annotated ru′′, that is RightF(v1,...,vn)(v′1, . . . , v
′
n) ∈ a′′, which concludes this

case. �

7. Implementation and experimental evaluation

We have implemented our approach in TAMARIN version 1.6.1 [26]. The automatic generation of
sources lemmas is activated using the command line option --auto-sources. When TAMARIN is
called, it will first load the theory and run the pre-computations normally (in particular it computes
rule variants and sources). If TAMARIN is called using --auto-sources, and if the theory does
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not contain a sources lemma but has partial deconstructions, our new algorithm(s) are executed on the
computed rule variants to generate a new sources lemma, which is then added to the theory, as well as
the required rule annotations. In the interactive mode, the user can inspect the generated lemmas and
annotations, and prove lemmas as usual. He can also download the modified theory if he wants to export
the lemma, or modify it. In the automatic mode, TAMARIN directly tries to prove the generated sources
lemma. When showing the results, TAMARIN displays the sources lemma among the other lemmas, and
whether it managed to prove it.

7.1. Implementation

Dealing with composed rules. Actually, during the precomputations, TAMARIN might compute the com-
position of several rules. For example, when a rule ru1 depends on a rule ru2 in the sense that ru1 can
only be executed if ru2 has been executed previously, TAMARIN will return the composition of both, not
only ru1. This yields bigger steps and it allows TAMARIN to prove lemmas more quickly.

Thus, the sources computed by TAMARIN are actually composed variants of initial protocol rules.
Formally, given two rules ru1 = [l1]−−[ a1 ]→[r1] and ru2 = [l2]−−[ a2 ]→[r2], we define the composition
of ru1 and ru2 w.r.t. θ, denoted ru1 ◦θ ru2 as the rule [l]−−[ a ]→[r] defined as follows:

l = l1θ ∪# (l2θ r# r1θ), a = a1θ ∪ a2θ, and r = (r1θ r# l2θ) ∪# r2θ.

We denote ru1 ◦θ ru2 ◦θ · · · ◦θ ruk the rule ru obtained by iterating k − 1 compositions: ru = ((ru1 ◦θ
ru2) ◦θ · · · ) ◦θ ruk. Since the rules do not share any variable, θ is just the union of substitutions θi where
the domain of θi is the set of variables of rui. It is easy to check that compositions of protocol rules yield
protocol rules. Not all compositions are computed by TAMARIN, but we do not need to characterize
which compositions are considered exactly. We simply show that any sources lemma generated from a
composed rule is also sound.

Algorithm 3 describes how to generate a sources lemma from a composed rule. The idea is sim-
ply to identify, given a variable x, for which the partial deconstruction is incomplete, at which po-
sitions x appears in the some rule rui used for composition. We then generate the sources lemmas
based on this rule. Note that Algorithm 3 is well defined only if SourceLemma1(P, rui, vi|p) (resp.
SourceLemma2(P, rui, vi|p)) is called only in case vi|p is a variable. However, this follows from the
fact that viθ|p = x is a variable (with the notations of Algorithm 3).

Note that there are two subtleties here: First, in the first part of the algorithm concerning the protected
subterms (SourceLemma1), we examine the premises of all rules inside the composed rule for occur-
rences of the variable x. For the second part, concerning the facts (SourceLemma2), we only examine the
premises of the composed rule, meaning that if the variable occurs in the premise of an initial rule which
was already solved during the composition, this occurrence is ignored. This turns out to be sufficient to
resolve the partial deconstructions, and simplifies the generated lemmas. Second, we only use the second
algorithm if the first one did not produce a lemma for a given variable x. Again, this is sufficient and
generates simpler lemmas which are easier to prove for TAMARIN.

Theorem 3. Given a set of well-formed protocol rules P, a composed rule ru = ru1◦θru2◦θ · · ·◦θruk with
rui ∈ Variant(P), a variable x occurring in ru, and Ψ =

∧n
i=1 φi be the conjunction of formulas returned

by SourceLemmaComp(Variant(P), ru, x), then for any i ∈ {1, . . . , n}, we have that φi is satisfied by
Variant(P), that is Variant(P) |=norm φi.
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Algorithm 3 SourceLemmaComp(P, ru, x)

Input: P, ru = ru1 ◦θ ru2 ◦θ · · · ◦θ ruk, x
let l, a, r such that ru = [l]−−[ a ]→[r], and li, ai, ri such that ruiθ = [li]−−[ ai ]→[ri]
Ψ = >
for all position p and 1 6 j 6 k such that there exists F(v) ∈ l j such that v|p = x do

for all i such that F(v) = F(viθ) with F(vi) in the premisses of rui do
if p is a position of vi then

Ψi,p = SourceLemma1(P, rui, vi|p)
if Ψi,p 6= > then

Ψ = Ψ ∧Ψi,p

end if
end if

end for
end for
if Ψ 6= > then

return Ψ
else

for all position p such that there exists F(v) ∈ l such that v|p = x do
for all i such that F(v) = F(viθ) with F(vi) in the premisses of rui do

if p is a position of vi then
Ψi,p = SourceLemma2(P, rui, vi|p)
if Ψi,p 6= > then

Ψ = Ψ ∧Ψi,p

end if
end if

end for
end for
return Ψ

end if

Proof. The correctness of Algorithm 3 is a direct consequence of Theorems 1 and 2. Indeed, let Ψ =∧n
i=1 φi be the formula returned by SourceLemmaComp(Variant(P), ru, x), and i ∈ {1, . . . , n}. Then φi is

actually an element of the conjunction of the formula returned by SourceLemma1(Variant(P), rui, vi|p)
or SourceLemma2(Variant(P), rui, vi|p) for some rui ∈ Variant(P) and some variable vi|p of rui. Apply-
ing Theorem 1 (or Theorem 2, respectively), we have that Variant(P) |=norm φi, hence the conclusion. �

Heuristic and Optimizations. Our first experiments using Algorithm 3 showed that, for some examples,
the generated lemmas, while true, caused TAMARIN to loop in the precomputations. This happened when
the algorithm considered the case where a fact in the premises of a rule might have been produced by
a fact in the conclusion of the same rule, as in Example 9. Hence, we have implemented an additional
check that ignores this case, should it arise. For instance, in Example 9, the rule Auth is not annotated
with RightCh(x), although the conclusion fact unifies with its premise fact. Note that in this example the
generated lemma is still true, as the premise and conclusion are actually equal, and TAMARIN success-
fully proves the lemma.
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In general, this additional condition means that the generated lemmas could potentially be false, how-
ever we did not observe this in practice. On the contrary, the examples that looped can now be proven
correct, as described for Example 9. Also note that this does not contradict our theorems, as our lemmas
are not minimal - we consider potentially too many cases, so removing some (unnecessary) ones can
still result in a correct lemma.

Finally, we implemented a small optimization: in the case where our algorithm is unable to find any
matching conclusions (i.e., no Right annotation is placed), we simplify the generated formula by replac-
ing the Right by ⊥. For example, instead of

∀y, i Leftt1(y)@i =⇒ (∃k Rightt1(y)@k ∧ k l i)

we obtain

∀y, i Leftt1(y)@i =⇒ ⊥.

This is obviously correct if there are no Rightt1(y) annotations.

7.2. Evaluation

To evaluate the effectiveness of our approach, we selected several classical examples from the SPORE
library of cryptographic protocols [27] and checked for standard properties such as secrecy of the ex-
changed key and mutual (injective and non-injective) authentication. Because of partial deconstructions,
many of them were not entirely automatically verifiable in TAMARIN previously (except for extremely
simple examples such as CCITT with only one message). The results are presented in Table 1, the
TAMARIN models are available in the directory examples/features/auto-sources/spore
of the TAMARIN repository [26]. Our approach succeeded in all cases.

To see whether our approach works on more complicated examples, we selected all files from the
TAMARIN github repository [26] that contained lemmas annotated with sources, and that were not
marked as “experimental”, “work in progress”, or “manual”. It turned out that in some cases these exam-
ples did not actually contain any partial deconstructions, and that these “sources” lemmas were actually
used to prove other protocol invariants. As our approach is only meant to handle partial deconstructions,
we removed these examples from the set. Table 2 summarizes our results on the remaining examples,
the files can be found in the directory examples/features/auto-sources/tamarin-repo
of the TAMARIN repository [26].

It turns out that our algorithm still succeeds in generating successful sources lemmas in the majority of
cases, in the sense that the sources lemma resolve all the partial deconstructions and can be proved cor-
rect by TAMARIN. Our examples include protocols with equivalence properties and SAPIC-generated2

theories. However, as the examples are more complex, even with a correct sources lemma, TAMARIN
does not always succeed in proving all other lemmas fully automatically.

Note also that although most examples are handled by Algorithm 1, Algorithm 2 applies for some more
complex examples (OpenID Connect, Alethea, 5G AKA, PKCS11 AEAD/SIV). Again, the algorithm
is successful in resolving the partial deconstructions in most cases, even though many of the files do
not become fully automatic. However, for example in the case of Alethea, all following lemmas can be
proven using the same heuristics as used in the initial files. Note also that two Alethea models initially

2SAPIC translates from applied pi models to TAMARIN theories.
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Protocol Name Partial Dec. Resolved Automatic Time

Andrew Secure RPC 14 45.5s
Modified Andrew Secure RPC 21 135.3s
BAN Concrete Andrew Secure RPC 0 - 10.3s
Lowe modified BAN Andrew Secure RPC 0 - 31.8s
CCITT 1 0 - 0.9s
CCITT 1c 0 - 1.2s
CCITT 3 0 - 181.4s
CCITT 3 BAN 0 - 4.0s
Denning Sacco Secret Key 5 0.8s
Denning Sacco Secret Key - Lowe 6 2.8s
Needham Schroeder Secret Key 14 3.4s
Amended Needham Schroeder Secret Key 21 7.1s
Otway Rees 10 8.5s
SpliceAS 10 5.6s
SpliceAS 2 10 6.7s
SpliceAS 3 10 7.1s
Wide Mouthed Frog 5 0.6s
Wide Mouthed Frog Lowe 14 3.3s
WooLam Pi f 5 0.7s
Yahalom 15 3.4s
Yahalom - BAN 5 0.9s
Yahalom - Lowe 21 2.4s

Table 1
SPORE examples. “Partial Dec.” indicates the number of partial deconstructions, “Resolved” indicates whether our auto-
generated lemmas resolve them, and can be proven correct by TAMARIN. “Automatic” means that our auto-generated lemmas
are then sufficient to directly prove or disprove the desired security properties.

did not contain a sources lemma although partial deconstructions are present, and by using our auto-
generated lemmas we were able to improve the verification times slightly. In the first version of our
work [12], our approach failed on these examples as we only used Algorithm 1.

We also encountered a few examples (most 5G AKA models and TPM Envelope) where the generated
lemmas are sufficient to resolve the partial deconstructions, but TAMARIN does not succeed in (automat-
ically) proving those lemmas correct. This is probably due to the complexity of the models – the initial
files contained stronger invariants as sources lemmas and/or used special heuristics to prove them. In
the case of PKCS11 AEAD/SIV, the generated lemma causes a loop in the precomputations similarly
to the case of a rule where its conclusion matches its premise, but this time involving multiple interme-
diate rules. This causes our safeguard of avoiding unifications within the rule itself to fail in avoiding
the problem. We tried to manually break the loop by removing the problematic annotation, but then the
lemma becomes incorrect. Again, this model seems to require a stronger lemma.

We also analysed the examples where our algorithm failed to generate a correct sources lemma. The
reasons turned out to be either a too complex equational theory (e.g., FOO and Okamoto, using blind sig-
natures, or NSLPK3XOR and Chaum using XOR), or a particular modeling used in SAPIC that causes
rules to have unbound variables (PKCS11-templates). Both cases are out of scope for our approach, as
the files violate our initial assumptions on the equational theories or the well-formedness of the rules. It
is thus expected that our generated lemmas do not solve the partial deconstructions, and even that they
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Name Partial
Dec.

Resolved Automatic Time
(new)

Time
(previous)

Feldhofer (Equivalence) 5 3.8s 3.7s
NSLPK3 12 1.8s 1.8s
NSLPK3 untagged 12 1 - -
NSPK3 12 2.5s 2.3s
JCS12 Typing Example 7 2 0.3s 0.2s
Minimal Typing Example 6 0.1s 0.1s
Simple RFID Protocol 24 2 0.6s 0.5s
StatVerif Security Device 12 0.2s 0.3s
Envelope Protocol 9 2 26.0s 26.8s
TPM Exclusive Secrets 9 2 1.8s 1.9s
NSL untagged (SAPIC) 18 4.1s 21.2s
StatVerif Left-Right (SAPIC) 18 19.4s 14.2s

OpenID Connect 18 18.0 26.7
Alethea Voting Phase Privacy (Equiv.) 30 3 1423.5 1454.6
Alethea Voting Ph. Receipt-Freeness (Equiv.) 30 3 1727.0 1849.0
Alethea Voting Phase Malicious Server4 30 3 1961.1 2036.2
Alethea Voting Phase Voter Abstention4 15 3 92.5 113.4
5G AKA Privacy (Equivalence) 390 2,5 - -

5G AKA Binding Channel 225 - - -
5G AKA Binding Channel Fix 225 - - -
5G AKA Non Binding Channel 225 - - -
5G AKA Non Binding Channel Fix 225 - - -
TPM Envelope (Equivalence) 9 - - -
PKCS11 AEAD 144 6 - - -
PKCS11 SIV 162 6 - - -

PKCS11-templates (SAPIC) 68 - - -

NSLPK3XOR 24 - - -
Chaum Offline Anonymity 128 - - -
FOO Eligibility 70 - - -
Okamoto Eligibility 66 - - -

Table 2
Examples from TAMARIN repository. “New” and “previous” verification times indicate the total verification time of all lemmas,
either with the auto-generated lemma, or the manual sources lemma (if provided).
Resolved:

The generated lemma removes all partial deconstructions and is automatically proven correct by TAMARIN.
The generated lemma removes all partial deconstructions, however TAMARIN does not terminate while trying to prove its

correctness automatically.
The generated lemma fails to remove all partial deconstructions.

Automatic:
All other lemmas are automatically proven or disproven by TAMARIN, without further annotations or special proof heuristics.
TAMARIN fails to prove (some of) the other lemmas without additional annotations or special proof heuristics.

1The sources lemma needs to be annotated with reuse for the following lemmas to be proven automatically.
2The file contains further intermediate lemmas annotated with reuse.
3The file requires the use of a special proof heuristic.
4The original file did not contain a sources lemma, although partial deconstructions are present.
5TAMARIN does not terminate while trying to prove the other lemmas using the generated lemma.
6TAMARIN does not terminate while trying to compute the refined sources using the generated lemma.
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may be wrong. In the NSLPK3XOR example, the generated sources lemma helps a bit by discarding
some partial deconstructions (the number of partial deconstructions went down from 24 to 12). How-
ever, in all other examples, this is not the case, and the number of partial deconstruction even increases.
This can happen if the lemma causes the existing partial deconstructions to occur repeatedly instead of
removing them.

When our approach succeeds, the verification times are close to timings measured using the manual
sources lemmas. All timings have been measured on a standard laptop (Core i7, 16GB RAM, Ubuntu
20.04).

8. Conclusion

We have provided a technique that allows to automatically generate sources lemmas in TAMARIN,
which otherwise had to be written by the user. In return, most simple protocols can now be analyzed
automatically with TAMARIN.

As future work, it should be possible to further improve the level of automation. First, in several cases
where our sources lemmas solve the partial deconstructions but are not yet sufficient to prove the security
properties specified by the user, we are actually close to full automation. What is missing is to indicate
to TAMARIN that it should reuse one of the properties (e.g. secrecy of some long-term key) to prove
another property (e.g. authentication). One interesting direction is to investigate how to automate these
“re-use” annotations, without increasing the complexity of the tool.

Our result holds for subterm convergent theories (modulo AC) that have the finite variant property.
However, our algorithm does not generate lemmas for terms headed with an AC symbol (for example
exclusive or) as the resulting lemmas would be false in most cases. Hence, manual sources lemmas are
still necessary. A future research direction is to explore how to extend our result to tackle this case, which
may require to write more complex sources lemmas, e.g. to account for all possible decompositions
induced by the exclusive or operator.

Thanks to our sources lemma, the automation of TAMARIN has improved, in particular on simple
protocols. It would be interesting to compare extensively the tools ProVerif and TAMARIN, in order to
identify on which cases they are both automatic, and on which kind of protocols, one of the two tools is
more likely to conclude automatically. This should also provide directions to improve the automation of
both tools.
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Appendix A. TAMARIN source of our running examples

These files are also available on our fork of the TAMARIN github repository [26].

theory runningAlgo1
begin

/* We formalize the following challenge-response protocol
1. I -> R: {’req’,I, n}pk(R)
2. I <- R: {’rep’,n}pk(I) */

builtins: asymmetric-encryption

// Public key infrastructure
rule Register_pk:

[ Fr(~ltkA) ]
-->
[ !Ltk($A, ~ltkA), !Pk($A, pk(~ltkA)), Out(pk(~ltkA)) ]

rule Reveal_ltk:
[ !Ltk(A, ltkA) ] --[ RevLtk(A) ]-> [ Out(ltkA) ]

rule Rule_I:
let m1 = aenc{’req’, $I, ~n}pkR in

[ Fr(~n), !Pk(R, pkR),!Ltk($I, ltkI)]
--[SecretI($I,R,~n)]->

[ Out(m1), State_I($I, R, ~n)]

rule Rule_R:
let m1 = aenc{’req’, I, x}pk(ltkR)

m2 = aenc{’rep’, x}pkI in
[ !Ltk(R, ltkR), In(m1), !Pk(I, pkI)]

-->
[ Out(m2), State_R(R, I, x)]

lemma nonce_secrecy:
"not(Ex A B s #i. SecretI(A, B, s) @ i & (Ex #j. K(s) @ j)

& not (Ex #r. RevLtk(A) @ r)
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& not (Ex #r. RevLtk(B) @ r)
)"

theory runningAlgo2
begin

/*
We formalize the following password-based protocol

1. U -> A1: pw
2. A1 -> A2: pw

The two first exchanges are done on a private channel.
This corresponds to the fact the password is sent on a
private channel to an authority A1, and then forwarded
to another authority A2.
We also add a rule to model corruption.

*/

rule SendPwd: [ Fr(~pw) ] --[ Pwd(~pw) ]-> [ Ch(~pw) ]

rule Auth: [ Ch(x) ] --[ Forward(x) ]-> [ Ch(x) ]

rule Corrupt: [ Ch(x) ] --[ Corrupt(x) ]-> [ Out(x) ]

lemma password_secrecy:
"not(
Ex #i x. Pwd(x)@i & (Ex #j. K(x) @ j) & not(Ex #r. Corrupt(x)@r)
)"

end
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