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1. ABSTRACT 

Deceptive pollination often involves volatile organic compound (VOC) emissions that mislead 

insects into performing non-rewarding pollination. Among deceptively pollinated plants, Arum 

maculatum is particularly well-known for its potent dung-like VOC emissions and specialized 

floral chamber, which traps pollinators – mainly Psychoda phalaenoides and P. grisescens – 

overnight. However, little is known about the genes underlying the production of many A. 

maculatum VOCs, and their influence on variation in pollinator attraction rates. Therefore, we 

performed de novo transcriptome sequencing of A. maculatum appendix and male floret tissue 

collected during- and post-anthesis, from ten natural populations across Europe. These RNA-

seq data were paired with GC-MS analyses of floral scent composition and pollinator data 

collected from the same inflorescences. Differential expression analyses revealed candidate 

transcripts in appendix tissue linked to malodourous VOCs including indole, p-cresol, and 2-

heptanone. Additionally, we found that terpene synthase expression in male floret tissue during 

anthesis significantly covaried with sex- and species-specific attraction of Psychoda 

phalaenoides and P. grisescens. Taken together, our results provide the first insights into 

molecular mechanisms underlying pollinator attraction patterns in A. maculatum, and highlight 

floral chamber sesquiterpene (e.g. bicyclogermacrene) synthases as interesting candidate genes 

for further study. 
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Chemical ecology; GC-MS; molecular ecology; plant-pollinator interactions; RNA-seq; 
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2. INTRODUCTION 

Angiosperms have evolved to produce a wide array of specialized metabolites to mediate their 

interactions with other organisms and their environment, including volatile organic compounds 

(VOCs) emitted from flowers, leaves, fruits, and roots. While VOCs represent a relatively small 

proportion of all plant metabolomic diversity (Knudsen and Gershenzon 2020), they play 

important functional roles in defence against predators, pathogens, and abiotic stresses 

(Pichersky and Gershenzon 2002; Holopainen 2004; Irwin et al. 2004) and as cues for 

pollinator attraction (Pellmyr and Thien 1986; Knudsen and Tollsten 1993; Whitehead and 

Peakall 2009; Junker and Parachnowitsch 2015). Pollination, particularly by insects, appears 

to be a  major driver of angiosperm diversification (van der Niet and Johnson 2012; Schiestl 

and Johnson 2013; Hernández-Hernández and Wiens 2020). Recent research has hypothesized, 

and partially demonstrated, that floral trait diversity is the result of complex interactions 

between plant genomic diversity among populations, pollinator network composition, and 

environmental conditions – all of which vary through space and time (Thompson et al. 2013, 

2017; Friberg et al. 2019). Large molecular and ecological datasets with wide spatial and 

temporal coverage are therefore still needed, in order to further our understanding of the 

evolution of key traits such as floral scent. 

Pollinator-mediated selection is known to influence floral morphology (Bröderbauer et al. 

2013; Gervasi and Schiestl 2017) and colour (Schemske and Bradshaw 1999; Newman et al. 

2012; Trunschke et al. 2021), and recent studies have also identified strong evidence for 

variation in VOC emissions driven by pollinator preferences. Notably, comparative community 

ecology data and gas chromatography – mass spectrometry (GC-MS) have been combined to 

identify convergent VOC bouquets in unrelated plant species with similar pollinators (Fenster 

et al. 2004; Schiestl and Johnson 2013; Junker and Parachnowitsch 2015), and divergent VOC 

bouquets in related species with different pollinators (Dobson et al. 1997; Urru et al. 2010; 
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Byers et al. 2014; Friberg et al. 2019). Moreover, the discovery of biochemical pathways 

underlying floral VOCs has greatly accelerated by next-generation sequencing (NGS) 

technologies such as mRNA sequencing (Dhandapani et al. 2017; Wong et al. 2017b; Xiao et 

al. 2019). Here, we aimed to combine these techniques, in order to understand how pollinator-

mediated selection influences transcriptomic variation underlying floral scent divergence in 

deceptively pollinated Arum maculatum L. (Araceae). 

Arum maculatum is a common European woodland flower with a long history of study due to 

its deceptive pollination strategy, which involves olfactory deception through brood-site 

mimicry (Schmucker 1925; Knoll 1926; Vogel 1965; Lack and Diaz 1991). Specifically, A. 

maculatum emit VOCs (e.g. 2-heptanone, indole, and p-cresol) during anthesis which are also 

present in cow manure (Kite 1995) and decomposing organic material (Gfrerer et al. 2021): 

the breeding substrates of Psychoda phalaenoides L. and Psychoda (Psycha) grisescens 

(Tonnoir) (Espíndola et al. 2011; Szenteczki et al. 2021). These two dipteran (Psychodidae) 

moth flies are trapped at varying frequencies across the species distribution of A. maculatum 

(Espíndola et al. 2011; Szenteczki et al. 2021; Gfrerer et al. 2021). Geographic variation in A. 

maculatum floral scent has also been observed, first in England  (Kite et al. 1998; Diaz and 

Kite 2002) and France (Chartier et al. 2011, 2013), and recently, across most of the species 

distribution range (Szenteczki et al. 2021; Gfrerer et al. 2021), and may be linked to variation 

in pollinator attraction (Szenteczki et al. 2021; Gfrerer et al. 2021).  

Arum maculatum VOC emissions during anthesis are highly variable, and also include several 

sesquiterpenes and other aliphatic, aromatic, monoterpene, and nitrogen-containing minor 

compounds which may also contribute to pollinator attraction (Kite 1995; Szenteczki et al. 

2021; Gfrerer et al. 2021). Intra- and interpopulation VOC variation mainly centres around 

variation in the proportion of indole to terpenes (Chartier et al. 2013; Szenteczki et al. 2021), 

which are respectively produced by aromatic amino acid (AAA; i.e. phenylalanine, tyrosine, 
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and tryptophan) metabolism and terpene synthases (TPS) via the mevalonate or 

methylerythritol 4-phosphate (MEP) pathways. Experiments with scented bait traps in England 

have shown that indole, 2-heptanone, and p-cresol are attractive to Psychoda phalaenoides 

(Kite et al. 1998). Large-scale field studies have further demonstrated that sesquiterpenes may 

also play a role in differential attraction of P. phalaenoides and P. grisescens (Szenteczki et al. 

2021) and influence fruit set size (Gfrerer et al. 2021). 

Another recognizable feature of A. maculatum is its inflorescence morphology. Like other 

monoecious Araceae, A. maculatum produce densely clustered, unisexual male and female 

florets arranged along a central spike (the spadix) which is surrounded by a leaf-like bract (the 

spathe). The spathe surrounds the fertile flowers, creating a basal trap chamber with only a 

narrow opening at the top of the chamber, which is surrounded by a ring of hair-like sterile 

flowers. The scent of the floral chamber during anthesis appears to be dominated by one 

sesquiterpene, bicyclogermacrene (Kite et al. 1998), which was previously misidentified as 

germacrene B (Kite 1995). The A. maculatum reproductive cycle takes place over two days 

(Gibernau 2004): on the evening of the first day, the appendix (sterile apex of the spadix) is 

thermogenic, heating up to 15°C above ambient air temperature. Pollinators are attracted by 

VOCs emitted by the appendix, and fall into the trap chamber, where they crawl over the male 

and female florets. No rewards are provided to pollinators within the chamber. A small amount 

of stigmatic secretions have been observed, but the low (9 - 12.5%) sucrose content suggests 

that this fluid is not nectar (Lack and Diaz 1991), and more likely is produced to collect pollen 

grains (Paiva et al. 2021). The following morning, after the female florets are no longer 

receptive, pollen is released onto the trapped pollinators. Finally, pollinators are able to escape 

later in the day, as the sterile hairs at the opening of the trap chamber begin to wither. 

In closely related Arum italicum, sesquiterpene biosynthesis appears to begin in the male florets 

several days prior to anthesis, but the full range of characteristic floral VOCs such as p-cresol 
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and skatole are only detected on the day of anthesis, in appendix tissue (Leguet et al. 2014). 

To date, the biosynthetic pathways underlying the production of p-cresol and skatole have only 

been characterized in bacteria (Selmer and Andrei 2001; Liu et al. 2018), and it is unclear 

whether A. maculatum and other angiosperms use similar aromatic amino acid fermentation 

pathways to produce these VOCs. Furthermore, tissue-specific RNA-seq of Arum concinnatum 

identified more diverse transcript expression in male floret tissue on the day of anthesis rather 

than in the appendix (Onda et al. 2015), even though A. concinnatum also emits dung-like 

VOCs from its appendix (Urru et al. 2010). Consequently, many questions remain regarding 

the specific biosynthetic pathways underlying A. maculatum VOCs, the localization of their 

expression, and whether mRNA expression related to VOC production varies with geographic 

distance or pollinator community composition.  

Here, we aim to address each of the aforementioned gaps in our knowledge. Our specific 

objectives were to: i) investigate variation in A. maculatum transcript expression between 

appendix and male floret tissue during anthesis, ii) use these results to identify differentially 

expressed transcripts putatively related to VOC biosynthesis, and iii) to characterize and 

compare differential expression in these transcripts across Europe, with a focus on populations 

with divergent pollinator attraction patterns. We predicted that during anthesis, aromatic amino 

acid (AAA) metabolism would be highly expressed in appendix tissue, while sesquiterpene 

synthases would be highly expressed in male floret tissue. We further expected to observe 

differential expression of transcripts associated with AAA metabolism and terpene synthases 

in inflorescences with dung-like (i.e. indole, 2-heptanone, and p-cresol) versus sesquiterpene-

dominated floral bouquets, respectively. Finally, given that the A. maculatum population in 

Forêt du Gâvre, France appears to attract almost exclusively P. grisescens (Espíndola et al. 

2011; Szenteczki et al. 2021), we predicted that putative locally adapted transcripts associated 

with particular VOCs may exist within this population. To test these predictions, we surveyed 
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VOC variation, pollinator attraction, and mRNA expression in both appendix and male floret 

tissue, across most of the A. maculatum species distribution range. 

3. MATERIALS AND METHODS 

3.1 – Sampling design 

We sampled ten natural populations of Arum maculatum between April and May 2019 (Figure 

1): three in France (Forêt du Gâvre, Conteville, and Chaumont), one in Switzerland 

(Neuchâtel), two in Italy (Montese and Rifreddo), one in Croatia (Visuć), two in Serbia 

(Gostilje and Sokobanja), and one in Bulgaria (Chiflik). Full details on sample data and 

population coordinates are given in Appendix S1, Table S1.  

Before collecting tissue samples, we non-invasively sampled the dynamic headspace VOCs 

emitted by each A. maculatum inflorescence, following the methods detailed in (Szenteczki et 

al. 2021). Briefly, this involved placing polydimethylsiloxane (PDMS) coated Twister® stir 

bars (Gerstel) in glass tubes near the appendices of A. maculatum inflorescences on the evening 

of the day of anthesis (18:00 – 19:00), and pumping air over them for 30 minutes at an air flow 

rate of 200 mL min−1. These samples were then kept on ice in individual sealed glass containers 

until GC-MS analyses, where VOCs were thermally desorbed and separated on a HP-5MS 

column. Major ions were recorded for each integrated peak using Agilent Chemstation, and 

compound identifications were derived from NIST 2.3 (library v.17) and published Kovats 

retention indices; all names used in our analyses should therefore be considered hypotheses. 

Appendix temperatures were recorded at the time of VOC sampling using FLIR® 

thermographic imaging, and ambient air temperature was recorded using a thermistor. 

Immediately following VOC sampling (i.e. during anthesis), we used sterile scalpel blades to 

collect 1 mm thick slices of appendix and/or male floret tissue. As a control, male floret tissue 

samples were also collected from inflorescences the following morning, after pollinator 

attraction had ended. All samples were individually preserved in RNAlater® (Thermo Fischer 



 

8 

Scientific), and stored at −80°C until extraction. After collecting each during-anthesis male 

floret tissue sample, we closed and sealed the small window we cut in floral chamber, so that 

pollinator trapping was not affected. During the morning following anthesis, we collected all 

insects trapped within inflorescences, preserved them in 70% ethanol, and identified them to 

at least the suborder level. Psychodidae were further identified to species level (including sex) 

following taxonomic descriptions and illustrations (Ježek 1990). 

3.2 – RNA-seq library preparation 

All samples and tissue types were extracted using identical methods; approximately 100 mg of 

tissue was rinsed in sterile RNase-free water, flash frozen in liquid nitrogen, powdered in a 

QIAGEN TissueLyser II, and immediately extracted using a QIAGEN RNeasy Plant Mini Kit, 

following the manufacturer’s protocol. Extraction quality and concentration were verified 

using an Agilent Fragment Analyzer. Three Illumina TruSeq® Stranded mRNA polyA libraries 

were prepared from these samples, following the manufacturer’s recommended protocol. The 

first library contained the appendix RNA samples, and the second and third each contained a 

mix of during- and post-anthesis male floret tissue samples from all populations. Each library 

was then sequenced on its own lane (i.e. 3 lanes in total) using an Illumina HiSeq 4000 (150bp 

paired-end sequencing) at the Lausanne Genomic Technologies Facility (Switzerland). 

3.3 – Preprocessing raw read data  

We performed an initial quality filtering of all raw read files using fastp (Chen et al. 2018) to 

remove adapter sequences and polyA tails, trim reads with phred quality values below 30, and 

remove reads with >1 ‘N’ bases. Then, we used rCorrector (Song and Florea 2015) to remove 

reads containing erroneous kmers (25-mers). Finally, we discarded unfixable read pairs 

following quality filtering with FilterUncorrectablePEfastq.py 

(https://github.com/harvardinformatics/TranscriptomeAssemblyTools). 

3.4 – De novo transcriptome assembly, annotation, and expression quantification 

https://github.com/harvardinformatics/TranscriptomeAssemblyTools
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We merged all of the quality filtered reads, and assembled a single de novo reference A. 

maculatum transcriptome (i.e. from all samples, tissue types, and populations) using Trinity 

v2.11.0 (Grabherr et al. 2011) with in-silico normalization, a k-mer size of 25, minimum contig 

size of 200bp, and strand-specific assembly enabled. Then, we tested two methods to filter out 

redundant transcripts with poor coding potential (i.e. minor isoforms resulting from incomplete 

assembly, sequencing errors, and/or heterozygosity introduced by our wide geographic 

sampling range): i) CD-HIT (Li and Godzik 2006; Fu et al. 2012) clustering at 95 percent 

identity with a word size of 5, and ii) the tr2aacds v4 pipeline from EvidentialGene (Gilbert 

2019). We calculated assembly scores and assessed transcriptome completeness of both 

methods with BUSCO v5.0.0, using the Embryophyta_odb10 dataset (Seppey et al. 2019).  

Next, we used dammit v1.2 (Scott et al. 2019) to annotate our deduplicated assembly. This 

pipeline uses Transdecoder (https://github.com/TransDecoder/TransDecoder) to identify 

candidate coding regions, and searches the OrthoDB, Pfam-A, Rfam, and uniref90 protein 

databases for transcript annotations, with an E-value threshold of 1 × 10−5. Unannotated 

transcripts were not removed from the final A. maculatum reference transcriptome. We also 

uploaded the EvidentialGene output to the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) Automatic Annotation Server (Moriya et al. 2007) to generate KEGG Orthology (KO) 

annotations and pathway maps. Finally, we mapped the cleaned raw reads of each sample to 

our annotated reference transcriptome using Bowtie2 v2.3.5.1 (Langmead and Salzberg 2012), 

and quantified transcript expression using RSEM v1.3.2 (Li and Dewey 2011). 

3.5 – Differential expression analyses   

RSEM outputs were imported into R v.4.1.0 (R Core Team 2021) using tximport 1.20 (Soneson 

et al. 2015). Transcripts expressed below 0.75 counts per million (CPM) in at least seven 

samples (i.e. the smallest sample size for a group in our analyses) were then filtered out prior 

to subsequent analyses in in DESeq2 1.3.2 (Love et al. 2014), using the apeglm log2 fold 

https://github.com/TransDecoder/TransDecoder
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change shrinkage estimation algorithm (Zhu et al. 2019). Transcripts with FDR-corrected p-

values < 0.05 and log2 fold changes greater than 1.0 or less than -1.0 were considered as 

significantly differentially expressed among groups. We further identified significantly 

enriched gene sets in each tissue type using Gene Ontology (GO) term analysis with the R 

package TopGO (Alexa and Rahnenfuhrer 2010), and visualized the result using the R package 

rrvgo 1.4 (Sayols 2020), an implementation of the semantic similarity-based GO summary tool 

REViGO (Supek et al. 2011).  

We performed three sets of differential expression analyses, each addressing one of the main 

aims of our study. Our first comparison was between appendix (n = 7) and male floret (n = 16) 

tissue collected during anthesis (i.e. at the same phenological time point). Second, we compared 

male floret tissue collected during anthesis (n = 14) against their paired control samples from 

the morning following anthesis (n = 14). Paired control samples were not collected for two 

inflorescences from Sokobanja, Serbia; these individuals were excluded from this analysis. 

Finally, we compared transcript expression in during-anthesis male floret tissue sampled in the 

Forêt du Gâvre population against all other populations, to identify transcripts putatively linked 

to this population’s exclusive attraction of P. grisescens. In order to account for some of the 

effects of isolation by distance, we further split this analysis along the two main neutral genetic 

clusters (Espíndola and Alvarez 2011): specifically, we compared during-anthesis male floret 

tissue from Forêt du Gâvre (n=5) against during-anthesis male floret tissue from i) France, 

Switzerland, and Italy (n= 7) and ii) Serbia (n = 4). 

3.6 – Identifying transcripts underlying VOC biosynthesis 

Building on the results of our differential expression analyses, we characterized and compared 

the expression of metabolic pathways underlying key A. maculatum VOCs known to be 

involved in the attraction of Psychodidae pollinators (Kite et al. 1998): indole, p-cresol, 2-

heptanone, and sesquiterpenes. First, we reconstructed entire metabolic pathways using 
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automated annotations, GO terms, and KEGG pathway maps generated from i) our complete 

reference transcriptome and ii) sets of significantly differentially expressed genes. Since the 

genes responsible for the production of 2-heptanone and p-cresol in A. maculatum are unclear 

and unknown respectively, we also used homology searches to identify additional candidate 

genes. Here, we performed BLASTp searches of genes known involved in the biosynthesis of 

the aforementioned VOCs in other plants and bacteria, against a database of all of our 

Transdecoder predicted peptide sequences using, with an e-value cut-off of 1×10−5. After all 

candidate transcripts were identified, we visualized variation in their average expression across 

all tissue types and populations using the R package pheatmap (Kolde 2019) 

3.7 – Coinertia analysis – terpene synthases correlated with VOCs and pollinator attraction 

We extracted the coding sequences and DESeq2 normalized expression of all terpene synthases 

in our transcriptome (i.e. using uniref annotations, GO/KO terms, and PFAM domains), 

performed a multiple sequence alignment of these sequences using Clustal Omega (Sievers et 

al. 2011), created a Maximum Likelihood phylogeny using automatic substitution model 

selection and default parameters in IQ-TREE (Nguyen et al. 2015), and visualized the result 

using iTOL v5 (Letunic and Bork 2021). Then, we investigated whether terpene synthase 

expression was correlated with a) total terpene emissions during anthesis, or b) the composition 

(i.e. sex and/or species) of trapped pollinators within inflorescences. Specifically, we 

performed coinertia analysis using the R packages vegan (Oksanen et al. 2020), 

RVAideMemoire (Hervé 2021), and ade4 (Thioulouse et al. 2018), comparing the TPS 

expression matrix produced above to corresponding matrices of i) proportional emissions of 

terpene VOCs ii) proportions of Psychodidae species trapped by the same A. maculatum 

inflorescences. Prior to this analysis, the gene-level TPS expression matrix was log-

transformed and scaled, while the VOC and pollinator matrices were centred log ratio (CLR) 

transformed and scaled. 
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4. RESULTS 

4.1 – Assembly and annotation quality 

Between 27’933’352 and 66’825’898 (median: 40’354’964) paired-end reads from individual 

tissue samples passed all quality filtering steps (Appendix S1, Table S1). These were 

subsequently assembled into 273’346 Trinity genes, comprising 593’392 transcript isoforms. 

Trinity quality statistics (e.g. N50 of 1699 bp) are given in Appendix S1, Table S2. 

EvidentialGene filtered out a larger number of transcripts from this raw assembly (Appendix 

S1, Table S3) while maintaining a higher BUSCO scores than CD-HIT clustering (e.g. 95.6% 

complete versus 92.2% complete; full result in Appendix S1, Table S4). The EvidentialGene 

output was therefore annotated and used for all subsequent analyses. A total of 18’411 unique 

annotations were generated. 17’435 annotations mapped to Eukaryota (94.7%); 12’676 of these 

annotations further mapped to Mesangiospermae (68.9%); a relatively small number of 

annotations mapped to bacterial genes (692 results; 3.8%). 

A total of 49’779 transcripts remained in our expression matrix following pre-filtering in 

DESeq2 (i.e. >0.75CPM in at least seven samples). Principal components analysis of filtered 

transcript expression (Appendix S1, Figure S1) revealed highly divergent transcript expression 

among male floret and appendix tissue during anthesis along the first PCA axis. Along the 

second PCA axis, samples were further divided between two main geographic regions – 

namely, northern populations (i.e. France, Switzerland, and northern Italy) and Balkan 

populations (i.e. Croatia, Serbia, and Bulgaria). This regional split is consistent with the two 

main genetic clusters identified using neutral (AFLP) markers (Espíndola and Alvarez 2011). 

4.2 – Differential transcript expression between appendix and male floret tissue 

Differential expression analysis comparing appendix and male floret tissue (both collected 

during anthesis) revealed 8683 transcripts with significantly greater expression in appendix 

tissue, and 6581 transcripts with significantly greater expression in male floret tissue (FDR 
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corrected p-values <0.05; log2fold change ±1), after controlling for population effects. 

Furthermore, we found that VOC biosynthetic activity is significantly elevated in A. maculatum 

appendix tissue during anthesis. Many major biosynthetic pathways (e.g. tryptophan/indole 

synthesis, terpene synthesis, and phenylpropanoid synthesis) were significantly enriched in the 

appendix tissue during anthesis, whereas transcripts related to pollen production were 

significantly enriched in male floret tissue (Figure 2).  

4.3 – Differential transcript expression in male florets during- versus post-anthesis 

When comparing during- and post-anthesis male floret tissue samples in a differential 

expression analysis that incorporated the paired nature of these samples, we identified 3847 

transcripts with significantly greater expression during anthesis, and 2920 transcripts with 

significantly greater expression post-anthesis (FDR corrected p-values <0.05; log2fold change 

±1). While tryptophan (i.e. indole) biosynthesis was elevated in male florets during anthesis, 

we did not identify increased expression of other putative VOC biosynthetic pathways (Figure 

3). The full list of significantly enriched GO terms from both our first and second set of 

differential expression analyses are available in Appendix S2. 

4.4 – Differential transcript expression associated with exclusive attraction of P. grisescens 

Our third and final set of differential expression analyses, comparing male floret tissue during 

anthesis among populations, revealed that i) 84 and 9 transcripts were respectively 

differentially expressed in Forêt du Gâvre versus all other French, Swiss, and northern Italian 

populations (FDR corrected p-value <0.05; log2fold change ±1) and ii) 327 and 175 transcripts 

were respectively differentially expressed in Forêt du Gâvre versus Serbian populations (FDR 

corrected p-value <0.05; log2fold change ±1). However, no transcripts putatively linked to 

VOC biosynthesis were identified among these transcripts. 

4.5 – Candidate genes underlying A. maculatum floral VOCs 
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Consistent with recent large-scale surveys of A. maculatum floral scent (Szenteczki et al. 2021; 

Gfrerer et al. 2021) we observed considerable within-population variation in VOC bouquet 

composition among our samples (Appendix S1, Figure S2 and Table S5). We further identified 

candidate genes putatively linked to the biosynthesis of several dung-mimicking A. maculatum 

VOCs. First, we identified transcripts in both appendix and male floret tissue homologous with 

tryptophan synthase alpha subunit (TSA), which catalyses the conversion of indole-3-

glycerolphosphate to indole.  

Second, we identified homologs of two proteins which catalyse the degradation of tyrosine to 

4-hydroxyphenyllactate: aromatic aminotransferase (ISS1) and hydroxyphenylpyruvate 

reductase (HPPR). Pearson correlation tests further identified several transcripts correlated 

with HPPR expression in appendix tissue during anthesis (Appendix S1, Table S6); notably, 

this included a putative dehydratase/shikimate dehydrogenase (Pearson r = 0.988, p < 0.001). 

This enzyme may further catalyse the conversion of 4-hydroxyphenyllactate to p-coumaric 

acid. However, we did not identify any homologs of bacterial proteins linked to the production 

of 4-hydroxyphenylacetate and/or p-cresol (Saito et al. 2018), such as hydroxyphenylacetate 

decarboxylase (4-Hpd).  

Third, while phenylalanine-derived precursor molecules for several common floral 

benzenoid/phenylpropanoid (FBP) compounds – particularly p-coumaric acid – appear to be 

produced by A. maculatum, transcripts responsible for the production of benzenoid and 

phenylpropanoid VOCs generally appeared to be absent or weakly expressed in A. maculatum. 

Finally, we identified putative homologs of methylketone synthases (MKS1 and MKS2), which 

are known to be involved in 2-heptanone biosynthesis (Ben-Israel et al. 2009; Khuat et al. 

2019). Heatmaps of the expression patterns for all of the aforementioned candidate transcripts 

are shown in Figure 4. 
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We identified A. maculatum transcripts putatively encoding all proteins in both the mevalonate 

and methyl-D-erythritol 4-phosphate (MEP) pathways. During anthesis, the MEP pathway 

appears to be more highly expressed than the mevalonate pathway, particularly in appendix 

tissue (Appendix S1, Figure S3). The first enzyme of the MEP pathway, 1-deoxy-D-xylulose-

5-phosphate synthase (DXS), which was highly expressed in appendix tissue, also featured the 

greatest isoform diversity among all terpene backbone synthesis genes. Furthermore, we 

identified 108 putative TPS transcripts expressed in appendix and male floret tissue during 

anthesis. A phylogeny of all putative A. maculatum terpene synthases is given in Appendix S1, 

Figure S4, and expression patterns of TPS transcripts which passed our initial CPM filtering 

threshold are visualized in Figure 5.  

Some of the putative terpene synthases we identified are homologs of proteins known to 

produce common A. maculatum VOCs (e.g. humulenes and germacrenes); others, such as 2-

methylisoborneol (2-MIB) synthase, catalyse the production of terpenes not previously 

described in A. maculatum. However, in the case of the latter, the transcript we identified likely 

encodes a novel TPS, given that we identified an uncharacterized Colocasia esculenta 

(Araceae) gene which shares 92.5% identity with our transcript, as opposed to approximately 

22.8% identity with the bacterial 2-MIB synthase (Appendix S1, Figure S5). Transcripts 

annotated as trimethyltridecatetraene synthase (Cyt P450 92C6) may represent another such 

novel TPS. This gene was the only putative VOC synthase we identified that was significantly 

overexpressed (FDR corrected p-values <0.05; log2fold change >1) in appendix tissue samples 

emitting high quantities of an unnamed sesquiterpene with a non-polar Kovats Retention Index 

of 1681, which is known to be a strong predictor of P. grisescens attraction (Szenteczki et al. 

2021). 

4.6 – Male floret terpene synthase transcript expression is correlated with pollinator attraction 
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Coinertia analyses did not identify covariation between putative TPS expression in male floret 

tissue, and proportional emissions of terpenes in VOC bouquets (p = 0.964, Monte-Carlo test, 

999 replicates). However, we did identify significant concordance between putative TPS 

expression in male floret tissue and Psychodidae pollinator composition trapped within 

inflorescences (p = 0.047, Monte-Carlo test, 999 replicates); the first coinertia axis split TPS 

expression based on species (i.e. P. grisescens vs P. phalaenoides), while the second coinertia 

axis split TPS expression based on sex (Appendix S1, Figure S6). Consequently, while our 

coinertia analyses could not disentangle covariation in TPS expression and specific terpene 

VOC emissions, it appears that TPS expression in male florets is correlated with sex- and/or 

species-specific attraction of Psychodidae.  

5. DISCUSSION 

High-throughput transcriptome sequencing is rapidly advancing our understanding of the 

biosynthesis of floral volatile compounds. In this study, we were able to overcome some of the 

challenges associated with studying the genes underlying VOC biosynthesis in non-model 

systems (Wong et al. 2017b), by surveying transcript expression variation in multiple VOC-

emitting floral tissues, across the Europe-wide distribution range of A. maculatum (Figure 1). 

This allowed us to identify i) elevated VOC biosynthetic activity in the appendix of A. 

maculatum during anthesis (Figure 2), ii) candidate transcripts for the production of several 

VOCs such as p-cresol, 2-heptanone, and sesquiterpenes (Figures 4 and 5), and iii) covariation 

between male floret terpene synthase expression and the relative proportions of Psychoda 

phalaenoides and P. grisescens trapped within inflorescences (Appendix S1, Figure S6).  

5.1 – Differential expression analyses 

During anthesis, diverse VOC metabolic processes were significantly enriched in A. maculatum 

appendix tissue when compared against male floret tissue. This result is consistent with 

previous research, suggesting that the thermogenic appendix plays a central role in diffusing 
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the potent VOC bouquets of Araceae (Meeuse 1975; Angioy et al. 2004; Barthlott et al. 2009).  

Although we expected to observe elevated TPS activity in male florets during anthesis 

compared to the morning following anthesis, it appears that many terpene synthases continued 

to be expressed at approximately equal levels in paired control samples collected the following 

morning; several factors may explain this pattern. First, given that sesquiterpenes are known to 

be synthesized and stored in A. italicum male floret tissue during the days leading up to anthesis 

(Leguet et al. 2014), TPS expression may have peaked prior to our during-anthesis tissue 

sampling. However, Araceae are known to emit particularly concentrated VOC blends during 

anthesis (Skubatz et al. 1995, 1996), which should require continuous biosynthesis and 

emission (Widhalm et al. 2015). It is therefore likely that the large number of terpene synthases 

we identified in the A. maculatum transcriptome include those which are most relevant to 

pollinator attraction.  

The timing of our post-anthesis tissue sampling may have also influenced the above result. 

Post-anthesis sampling occurred within one hour after we collected and preserved all 

pollinators within the floral chamber; it is therefore likely that most pollinators normally would 

have still been trapped at this time. Both early (Dormer 1960; Prime 1960; Lack and Diaz 1991) 

and more recent studies (Bröderbauer et al. 2013) of A. maculatum have highlighted 

morphological features related to pollinator retention, namely the sterile flowers partially 

blocking the exit of the trap, and downward-pointing papillate cells on the inner wall of the 

spathe. However, continued expression of some TPS transcripts during the morning following 

anthesis may also highlight sesquiterpenes putatively involved in pollinator retention within 

the trap chamber. Consequently, our paired ‘post-anthesis’ samples may not have acted as a 

negative control for comparison to during-anthesis samples, as we initially intended. Further 

research is needed to confirm whether the end of male floret VOC emissions may also serve as 
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a cue for pollinator release, which occurs during the afternoon on the second day of the 

pollination cycle (Prime 1960; Lack and Diaz 1991; Chartier et al. 2013). 

After comparing male floret transcript expression among populations during anthesis, we did 

not identify any putative VOC  synthases which were unique to Forêt du Gâvre, France. High 

inter-individual variation in VOC emissions has been widely observed in A. maculatum 

(Szenteczki et al. 2021; Gfrerer et al. 2021) and this variability is also evident in our 

transcriptomic dataset. Although our differential expression analyses were unable to identify 

unique VOC synthases in the Forêt du Gâvre population, targeted investigations into candidate 

genes underlying key compound classes did provide further insights into species-specific 

pollinator attraction in A maculatum. 

5.2 – Candidate transcripts linked to A. maculatum VOCs 

Most inter-individual variation in A. maculatum floral scent centres around variation in the 

ratio of aromatic amino acid-derived VOCs to sesquiterpenes (Szenteczki et al. 2021). 

Correspondingly, we identified abundant expression of transcripts putatively involved in the 

biosynthesis of these two compound classes. As predicted, indole synthesis via the tryptophan 

synthase alpha subunit (TSA) was highly expressed in appendix tissue in all studied 

populations. Some of the TSA transcripts we identified also appear to be homologs of BX1, 

which more efficiently cleaves indole-3-glycerol phosphate without any interaction with the 

beta subunit (Frey et al. 1997; Kriechbaumer et al. 2008). Conversely, TSB was more 

abundantly expressed in male floret tissue, which would limit indole emissions within the floral 

chamber.  

Skatole (3-methylindole) has also been reported in A. maculatum VOC emissions (Szenteczki 

et al. 2021; Gfrerer et al. 2021), but we did not identify any homologs of indoleacetate 

decarboxylase in the A. maculatum transcriptome, which would produce this compound (R. et 

al. 2008). This may be due to low emissions of skatole by inflorescences sampled in this study; 
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ultimately, the mechanism by which A. maculatum produces skatole remains unclear. Prior to 

this study, it was also unclear whether A. maculatum produced p-cresol (4-methylphenol) via 

a pathway homologous to tyrosine degradation in bacteria (Selmer and Andrei 2001; Saito et 

al. 2018), or using one or more novel proteins. We were able to identify candidate transcripts 

(i.e. ISS1 and HPPR homologs) which may catalyse the conversion of tyrosine to p-coumaric 

acid, but were ultimately unable to identify transcripts which could further produce p-cresol 

from p-coumaric acid. 

Homologs of phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H), which 

produce p-coumaric acid from phenylalanine, where also abundantly expressed in the appendix 

during anthesis. However, downstream proteins producing common floral 

benzenoid/phenylpropanoid (FBP) VOCs (e.g. eugenol, isoeugenol, benzyl benzoate, 

benzaldehyde, and phenylacetaldehyde (Muhlemann et al. 2014)) were largely absent or lowly 

expressed in both our VOC and transcriptomic datasets. Typically, p-coumarate-3-hydroxylase 

(C3H) would further modify p-coumaric acid into precursors for the aforementioned FBP 

VOCs, but this gene was expressed at relatively low levels in appendix tissue. Interestingly, 

experimental knock-outs of C3H in Petunia × hybrida have demonstrated that downregulation 

of this gene also leads to unexpected production of p-cresol (Kim et al. 2019). Given that we 

observed similar patterns in A. maculatum, it appears that flowering plants may have a novel 

mechanism for producing p-cresol involving p-coumaric acid, which is distinct from known 

bacterial proteins such as hydroxyphenylacetate decarboxylase.  

While not derived from amino acids, 2-heptanone is another abundant A. maculatum VOC with 

a ‘fermented’ scent. In this study, we were able to identify several methylketone synthase 

homologs (MKS1 and MKS2), which produce 2-heptanone and related compounds in tomato 

plants (Ben-Israel et al. 2009; Khuat et al. 2019). 2-heptanone is known to be attractive to fruit 

flies (Prokopy et al. 1998) and beetles (Torto et al. 2007); however, it has not yet been linked 
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with the attraction of specific pollinators of A. maculatum (Espíndola et al. 2011; Szenteczki 

et al. 2021). While this compound is infrequent in VOC bouquets, it can be a proportionally 

large component of VOC emissions when it is produced (Szenteczki et al. 2021); further 

research is therefore needed to determine whether this compound is also under selection (e.g. 

by Drosophilidae). 

Finally, we identified many putative terpene synthases in the A. maculatum transcriptome, the 

majority of which appear to produce sesquiterpene VOCs. These include cytochrome P450 

enzymes (P450s), which can further modify volatile terpenes through oxidation, methylation, 

or acylation (Hamberger and Bak 2013). P450s were the first proteins identified in Arum 

appendices (Yáhiel et al. 1974), and our transcriptomic data further confirm that a diverse suite 

of P450s are expressed in A. maculatum appendix and male floret tissue during anthesis. 

Notably, we found that a trimethyltridecatetraene synthase (Cyt P450 92C6) homolog appears 

to be correlated with the production of at least one unnamed A. maculatum sesquiterpene 

(Kovats RI 1681). This unnamed sesquiterpene was the single strongest predictor of P. 

grisescens attraction in a large-scale survey of A. maculatum pollinators (Szenteczki et al. 

2021). Until now, it has not been possible to experimentally test whether this compound alone 

is attractive to Psychodidae. However, the candidate gene we identified could be useful in 

future research aiming to produce this compound through heterologous expression in bacteria 

(Komatsu et al. 2010, 2013). 

Our results also confirm that bicyclogermacrene synthase (Crocoll et al. 2010) is consistently 

and almost exclusively expressed in male floret tissue during anthesis, in accordance with the 

dominance of this sesquiterpene in Arum maculatum floral chamber scent (Kite et al. 1998). 

Interestingly, previous studies have demonstrated that 9-methyl germacrene B is a sex 

pheromone produced by male Lutzomyia longipalpis (Psychodidae) to attract females 

(Hamilton et al. 1996; Gordon C. Hamilton et al. 1999). Consequently, A. maculatum may emit 
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bicyclogermacrene, or a closely related sesquiterpene compound as a as part of their deceptive 

pollination strategy (i.e. as a pheromone mimic). Terpene emissions in the floral chamber could 

also stimulate the movement of trapped Psychodidae over the male and female florets, which 

could aid in pollination and pollen dispersal; however, further experiments are needed to test 

these hypotheses. Gas chromatography–electroantennography (GC–EAD; (Schiestl and 

Marion-Poll 2002)) would allow for more precise identification of bioactive compounds that 

elicit sex- and species-specific reactions in the antennae of Psychodidae, and the candidate 

terpene synthases identified in this study may be useful in guiding such research.  

5.3 – Male floret-specific terpene synthases and their influence on pollinator attraction 

There is growing evidence to suggest that tissue-specific transcript expression of VOC 

synthases is a common characteristic of deceptive pollination systems ((Wong et al. 2017a), 

and references therein), and our results confirm similar patterns in A. maculatum. Specifically, 

our coinertia analyses identified significant covariation between male floret terpene synthase 

expression, and the communities of Psychodidae pollinators trapped by inflorescences. While 

the floral scent of A. maculatum is often described as dung-like due to abundant emissions of 

amino acid-derived VOCs, our results suggest that sesquiterpene VOCs may be subject to 

pollinator-mediated selection as well. Recent large-scale ecological studies also support this 

hypothesis, with sesquiterpene compounds, rather than so-called “dung-mimicking” 

compounds, being a better predictor of variation in pollinator attraction patterns (Szenteczki et 

al. 2021) and fruit set size (Gfrerer et al. 2021)  in A. maculatum. 

Some of the main compounds related to sex- and species-specific attraction in our coinertia 

analysis included humulene (covarying with female P. phalaenoides), and the aforementioned 

trimethyltridecatetraene synthase homolog, which may produce an unnamed sesquiterpene 

with a Kovats Retention Index of 1681 (covarying with P. grisescens). Notably, these same 

compounds were highlighted as key predictors of pollinator species trapped by A. maculatum 
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inflorescences in a random forest analysis with a larger sample size (Szenteczki et al. 2021). 

Further research is therefore needed in order to assess the importance of male floret VOCs for 

pollinator attraction in A. maculatum, and to confirm the true identities of the compounds 

produced by the candidate terpene synthases we identified.  

6. CONCLUSION 

It appears that A. maculatum inflorescences employ a combination of highly diverse appendix 

VOCs, including 2-heptanone, indole, and p-cresol to attract a broad range of coprophilous 

dipterans to their inflorescences, and specialized sesquiterpene emissions to further lure 

specific Psychodidae into the floral trap chamber. Male floret-specific VOCs, particularly 

bicyclogermacrene, may also play a role in retaining pollinators until the pollination cycle is 

complete. To our knowledge, no studies have specifically investigated trap chamber VOC 

profiles since Kite and colleagues (Kite 1995; Kite et al. 1998) first characterized A. maculatum 

floral scent using GC-MS. Taken together, our transcriptomic data indicate that volatile 

sesquiterpene terpene emissions in the floral trap chamber are an important aspect of this highly 

specialized lure-and-trap pollination system, which has been overlooked for decades. 
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Figure 1. Overview of the sampling design, bioinformatic pipeline, and differential expression 

analyses in this study. Inset photo: Arum maculatum inflorescence, with the lower spathe 

chamber dissected to reveal the male and female florets. Inset map: population codes, placed 

over their approximate locations. 
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Figure 2. Significantly enriched GO terms when comparing Arum maculatum appendix (n = 

7) and male floret (n = 16) transcript expression during anthesis. Non-redundant GO terms are 

visualized in semantic similarity space (allowed similarity = 0.8); the full list of GO terms 

represented above is available in Appendix S2. [*] indicates parent groups linked to the 

biosynthesis of volatile compounds. 
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Figure 3. Significantly enriched GO terms when comparing Arum maculatum transcript 

expression in male floret tissue during anthesis (n = 14), versus approximately 18 hours after 

anthesis (n = 14). Non-redundant GO terms are visualized in semantic similarity space (allowed 

similarity = 0.8); the full list of GO terms represented above is available in Appendix S2. [*] 

indicates parent groups linked to the biosynthesis of volatile compounds. 
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Figure 4. A simplified overview of key proteins involved in producing aromatic amino-acid 

derived Arum maculatum VOCs, and a heatmap of their vst-transformed expression during 

anthesis. Colour scale represents whether expression in a given group (i.e. tissue type and 

population) is above or below the transcript’s mean expression across all samples. Genes in 

grey are absent from the A. maculatum transcriptome. Gene names: BEBT = benzyl alcohol O-

benzoyltransferase; BSMT = benzoic acid/salicylic acid carboxyl methyltransferase; C4H = 

cinnamate 4-hydroxylase; DHQ = 3-dehydroquinate dehydratase / shikimate dehydrogenase; 

EGS = eugenol synthase; HPPR = hydroxyphenylpyruvate reductase; ISS1 = aromatic 

aminotransferase; MKS = methylketone synthase; PAAS = phenylacetaldehyde synthase; PAL 

= phenylalanine ammonialyase; TSA/B = tryptophan synthase alpha/beta subunit; ? = unknown 

gene(s).  
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Figure 5. Heatmap of vst-transformed expression of putative terpene synthases in Arum 

maculatum. Colour scale represents whether expression in a given group (i.e. tissue type, stage 

of anthesis, and population) is above or below the transcript’s mean expression across all 

samples. 
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