
HAL Id: hal-03767075
https://hal.science/hal-03767075v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A fully three-dimensional model of interpenetrating
collagen fibrillar networks for intervertebral disc

mechanics
Abderrahman Tamoud, Fahmi Zaïri, Amar Mesbah, Fahed Zaïri

To cite this version:
Abderrahman Tamoud, Fahmi Zaïri, Amar Mesbah, Fahed Zaïri. A fully three-dimensional model of
interpenetrating collagen fibrillar networks for intervertebral disc mechanics. International Journal of
Mechanical Sciences, 2022, 223, pp.107310. �10.1016/j.ijmecsci.2022.107310�. �hal-03767075�

https://hal.science/hal-03767075v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


 

1 

A fully three-dimensional model of interpenetrating collagen fibrillar networks for 

intervertebral disc mechanics 

 

Abderrahman Tamouda,b, Fahmi Zaïria*, Amar Mesbahb, Fahed Zaïric 
 

aLille University, Civil Engineering and geo-Environmental Laboratory (ULR 4515 LGCgE), 

59000 Lille, France 
bUniversity of Sciences and Technology Houari Boumediene, Laboratory of Advanced 

Mechanics, 16111 Algiers, Algeria 
cRamsay Générale de Santé, Hôpital privé Le Bois, 59000 Lille, France 

 

*Corresponding author. 

E-mail address: fahmi.zairi@polytech-lille.fr 

 

Abstract  

In this work, a fully three-dimensional model of the human intervertebral disc is proposed 

within a purely analytical framework in the final goal to create time and cost-efficient patient-

specific models. The constitutive representation considers the deformation-induced damage 

along with the hydration effects on the regional disc mechanics. Special functions are 

introduced to generate versatile and anatomically accurate disc geometries taking into account 

morphology regional variation. The complex interpenetrating collagen fibrillar networks are 

explicitly introduced in the three-dimensional model considering the regional variation 

throughout the disc. A quantitative evaluation of the predictive capabilities of a human lumbar 

disc model shows a good agreement with compression and torsion experiments from the 

literature both for the overall disc stiffness and for the direct MRI kinematic fields. Model 

predictions are then performed and critically discussed on axially/torsionally loaded human 

lumbar discs. 

Keywords: Full disc model; Multiscale structure; Regional variation; Nucleus-annulus 

interaction. 

 

1. Introduction 

At the start of the new millennium, the creation of digital twins of human organs has become 

a priority for the completion of predictive medicine [1-5]. The intervertebral disc of the 

human spine is probably one of the most extraordinary heterogeneous material system that the 

nature produces. Its complex structural organization of interpenetrating collagen fibrillar 

networks has been only revealed and appreciated recently [6-7]. The disc presents a 

hierarchical lamellar structure in which nano-sized elastic fibers (NEF) connect both two 

micro-sized type-I oriented collagen fibers (OCF) of the concentric lamellae (LM) and two 
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adjacent LM between them by crossing the inter-lamellar (ILM) ground matrix. Besides, the 

regional variation in organization of collagen fibrillar networks throughout the disc leads to a 

heterogeneous mechanics of the disc [8-9]. These recent discoveries about relationship 

between interpenetrating collagen fibrillar networks and disc mechanics are still not taken into 

consideration in the current quantitative predictions. The physically realistic constitutive 

representation of the disc soft tissues remains the prerequisite of any relevant predictive tool. 

It allows to offer a quantitative prediction but also a deeper understanding of the separate and 

synergistic effects of the hierarchical structural features, from nano-sized fibers to micro-sized 

concentric lamellae, that govern the disc macro-response. Such a predictive tool would 

provide a deeper understanding of the origin of the deformation-induced damage mechanisms 

affecting the disc functionality. 

A short overview of the literature shows that a lot of disc models have been proposed over the 

years, to name a few [10-23]. Beyond the fact that all existing disc models are most naturally 

modeled using the finite element method, their main distinction lies in the constitutive 

representation done for the structure-mechanical relationship of the disc soft tissues. While 

the OCF network is commonly introduced in the current disc models, the interpenetrating 

NEF network is still largely unappreciated and neglected. The consideration of the collagen 

fibrillar networks in disc modeling strategies is nonetheless essential for an accurate 

prediction of the local and overall disc responses. Besides, to reflect the real disc mechanics, 

any model should also consider variations of the disc shape and size with the spinal level and 

age [24-26], the disc hydration state [27-28], the disc volume change under applied loadings 

[22] and the disc health state [29-31]. All the latter aspects are very attractive in the aim to 

create patient-specific models taking into account realistic structure/macrostructure features of 

each patient. Moreover, in order to provide quantitive predictions of the disc health and the 

risk of injuries, the constitutive representation of the disc must integrate the damage-induced 

functionality loss leading to more vulnerability regarding to the external mechanical loadings. 

The main objective of this work is to formulate a fully three-dimensional model of the whole 

human disc while taking into account the most recent discoveries about interpenetrating 

collagen fibrillar networks along with relationship to mechanics. The constitutive model 

proposed in our previous contributions [9, 32] to capture the damage-hydration effects on the 

annulus fibrosus mechanics are here further developed in order to provide a new model of the 

whole human disc. The latter is developed within a purely analytical framework in the final 

goal to create time and cost-efficient patient-specific models of the human disc predicting the 

microstructure-shape-mechanics relationship. Contrary to the existing models in the current 
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state-of-the-art, the present model provides a fully three-dimensional realistic description of 

the multiscale structure in terms of lamellar-interlamellar connection and interpenetrating 

collagen fibrillar distribution while accounting combined damage-hydration effects. The 

proposed modeling approach is based on a new and direct analytical method for the creation 

of discs allowing versatile possibilities of regional-dependent geometry variations. This 

contribution provides the detailed mathematical developments of the disc model. Some 

predictive results are presented to illustrate the model capacities under axial/torsion loading 

modes, especially regarding the disc heterogeneous mechanics.  

The outline of the present paper is as follows. Section describes the theory considering 

general assessments of the tube-like solid mechanics along with specifities regarding disc 

structure and macrostructure. Predictions are presented and discussed in Section 3. Section 4 

closes the paper with concluding remarks.   

The following notation is used throughout the text. Tensors and vectors are respectively 

denoted by normal boldfaced letters and italicized boldfaced letters, while scalars and 

individual components of vectors and tensors are denoted by normal italicized letters. The 

superposed dot designates the time derivative.  

 

2. Model  

2.1. Tube-like kinematics 

This subsection provides the kinematics framework of the tube-like solid mechanics. The 

general theory was originally developed for elastomeric-like material cylinders [33-35] and 

arterial walls [36]. Some adaptations to discs are here brought in the kinematics especially 

considering regional variations in morphology and in structure-property relationships. 

Combined axial/torsion loadings at the external boundary of the disc will be considered in the 

present theoretical developments as illustrated in Figure 1. An internal pressure simulating the 

nucleus swelling may be activated when the compression is considered [37-38]. The nucleus 

is referred as the central portion i = 0 and the annulus is seen as a multi-layered tube divided 

into n rings i = 1, … n. The half-disc topology is provided in Figure 2 in superior and sagittal 

views. 

In the initial configuration, the solid is referenced in cylindrical polar coordinates (R, Θ , Z): 

 ,i i i

inner outerR R R ∈   , [ ]0,2Θ π∈  and 0,i i
Z H ∈    (1) 
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where 
i

innerR  and 
i

outerR  denote the initial inner and outer radii of each ring, respectively, and 

iH  is the initial height. These anatomical features vary from a region to another according to 

the circumferential axe Θ .  

The kinematics of an axially/torsionally loaded tube-like solid is given as follows [33-36]: 

 ( )1,i i i i
r f R r

−= , i

i
Z

H

ϕθ Θ= +  and 
i i i

zz Zλ=  (2) 

with 

 ,i i i

inner outerr r r ∈   , [ ]0, 2θ π∈ and 0,i i
z h ∈    (3) 

In the present work, 
i

innerr  and 
i

outerr  denote the current inner and outer radii of each ring, 

respectively, and 
ih  is the current height. The term ϕ  is the twist angle of the disc arising 

from the torsion and 
i

zλ  is the axial stretch applied in the z-axis. The quantity 
i

f  is a function 

dependent on the initial radius iR  of the ring i  and the current radius 1ir −  of the adjacent ring 

1i − .  

The deformation gradient tensor iF  of each ring may be thus written as [33, 36]: 

 
i i i i

i i

r r z z zi i i i i

r r z z
r

R R Z z Z
θ θ θ

θ θ
Θ

∂ ∂ ∂ ∂ ∂= ⊗ + ⊗ + ⊗ + ⊗
∂ ∂ ∂ ∂ ∂

F e E e E e E e E  (4) 

where { rE , θE , zE } and { re , θe , ze } are the unit vectors in the initial and current 

configurations, respectively. 

The chemical-induced volumetric effects are also introduced via a chemo-mechanical 

coupling considering the multiplicative decomposition concept and the introduction of an 

intermediate configuration. The total deformation 
i i i

chem mech= ⋅F F F  is decomposed into 

chemical-induced volumetric and mechanical parts 
i

chemF  and 
i

mechF . 

The chemical deformation gradient tensor 
i

chemF  is expressed in each ring as follows: 

 
_ _ _

i i i i

chem chem r r r chem chem z z zθ θ θλ λ λ= ⊗ + ⊗ + ⊗F e E e E e E  (5) 

where 
_

i

chem rλ , 
_

i

chem θλ  and 
_

i

chem zλ  are the chemical stretches along the three polar directions r, 

θ  and z, respectively. 

Using Eqs. (3) to (4), the mechanical deformation gradient tensor i

mechF  may be expressed as: 

 
_ _ _ _

1 1 1
i i i

i z
mech r r z z zi i i i i i

chem r chem chem chem z

r r r

R R H
θ θ θ

θ θ

λϕ
λ λ λ λ

∂= ⊗ + ⊗ + ⊗ + ⊗
∂

F e E e E e E e E  (6) 
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The overall deformation gradient tensor 
annulus

F  in the annulus may be calculated using a 

volume-weighted average of the LM deformations 
_ _ _LM i LM i LM i

chem mech=F F .F  and the ILM 

deformations 
_ _ _ILM i ILM i ILM i

chem mech=F F .F  [39]: 

 
1

_ _

_ 0 _ 0

1,3... 2,4...

n n
i LM i i ILM i

annulus ring ring

i i

φ φ
−

= =

= +∑ ∑F F F  (7) 

in which 
_ 0

i

ringφ  is the initial volume fraction of a ring i . 

 

2.2. Annulus-nucleus interaction 

2.2.1. Nucleus swelling 

When the disc is subjected to a compression, the nucleus swells (Figure 1). The latter may be 

introduced thanks to the chemical deformation gradient 
0

chemF  in the nucleus: 

 ( )0 1chem ξχ= +F I  (8) 

where ξ  is the chemical expansion at the equilibrium state and χ  is a function of time 

( )1 exp tχ τ= − −  in which τ  is the chemical expansion rate.  

After a series of straightforward derivations, the nucleus actual radius 0r  is given by: 

 ( )
0

2
0 0

0

1
chem

z

r R
ε

λ
+=  (9) 

in which ( )0 0det 1chem chemε = −F  is the chemical-induced volumetric strain in the nucleus with 

( )0det 0chem >F  the Jacobian of the deformation gradient tensor 
0

chemF . 

 

2.2.2. Annulus swelling  

The annulus volumetric change due to the internal fluid variation is expressed by the chemical 

deformation gradient 
i

chemF . Considering fluid diffusivity anisotropy in annulus, the latter is 

given by [39]: 

 ( )2
cos diag , ,

3

i i i i i i i i

chem r r z zθ θα ξ χ ξ χ ξ χ= +F I  (10) 

where 
i

rξ , 
i

θξ  and 
i

zξ  are again chemical expansions at the equilibrium state and, 
i

rχ , 
i

θχ  and 

i

zχ  are again functions of time ( ), , , ,1 expi i

r z r ztθ θχ τ= − −  in which 
i

rτ , 
i

θτ  and 
i

zτ  are the 

chemical expansion rates. The term iα  denotes the OCF angle with respect to the 

circumferential direction of the disc. 
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After a series of straightforward derivations, the following expression is obtained for the 

function 
i

f  using the continuity condition between the adjacent rings (
1i i

inner outerr r
−= ) and the 

mechanical incompressibility: 

 ( ) ( )( ) ( )2 2 2
1

,

1i
i i i ichem

inner outer inner outeri

z

f R R r
ε

λ
−+= − +  (11) 

where ( )det 1i i

chem chemε = −F  is the chemical-induced volumetric strain in the ring i .  

The annulus is assembled by considering the effective interactions between adjacent layers 

via the compatibility conditions on the deformations iF  and on the Cauchy stresses i
σ :  

 _ _ 1

0 0

LM i i ILM i i+=F . F .n n  and _ _ 1LM i i ILM i i+=σ . σ .n n  (12) 

where 
0

i
n   and i

n  are arbitrary unit vectors at the LM/ILM interfaces in the initial and current 

configurations, respectively. 

In the absence of body loads, the equilibrium equations write as the spatial divergence of the 

overall Cauchy stress tensor σ : 

 ( )div = 0σ  (13) 

Considering the symmetry of the stress tensor T
σ = σ , Eq. (13) can be re-written using the 

stress components in the cylindrical coordinate system as follows: 

 
d1

0
d

r rr rrrr rz rr

r r z r r r

θ θθ θθσ σ σ σ σσ σ σ
θ

∂ − −∂ ∂+ + + ≡ + =
∂ ∂ ∂

 (14) 

From this equation and the boundary condition of the radial Cauchy stress 0i n
outer

i

rr r r
σ

=
=  on 

the outer wall of the last ring of the annulus, the internal pressure of the nucleus 

1i
inner

i

nucleus rr r r
σ σ

=
= − on the inner wall of the first ring of the annulus can be expressed 

dependent on θ  direction in the form [36]: 

 
10

2 d d

n
outer

inner

r i i
irr

nucleus i

r

r
r

π
θθσ σσ θ−= ∫ ∫  (15) 

 

2.3. Disc macrostructure  

2.3.1. Disc geometry  

As shown in the half-disc topology provided in Figure 2, we consider radial and 

circumferential variations of the geometry in order to propose anatomically accurate patient-

specific models. For reasons of symmetry with respect to the sagittal plane of the disc, the 
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nucleus initial radius 0R  was defined by the following special mathematical function by an 

angle Θ  between the anterior region ( 0Θ = ) and the posterior region (Θ π= ) following the 

direction Θ  as illustrated in Figure 2: 

 ( )( ) ( )
4

0 0 1
1 1 1

1
frontal R R R

f
R R f f f H f H

f

Θ
Θ Θ Θ

Θ π
   −= + − − + +     −    

 (16) 

in which HΘ  is the Heaviside function: 

 
2

1
3

HΘ
πΘ= >  and 

2
0

3
HΘ

πΘ= ≤  (17) 

The function fΘ  is expressed as: 

 

2
2

exp
3

fΘ
πΘ

  = − −     
 (18) 

The term Rf  is a shape factor of the nucleus given by the ratio between the sagittal and frontal 

initial radii 0

sagittalR  and 0

frontalR : 

 

0

0
1

sagittal

R

frontal

R
f

R
= −  (19) 

In the limit case 0 0

sagittal frontalR R= , Eq. (16) becomes 0 0

frontalR R=  and the disc has a circular 

basis.  

The initial radius iR  in each ring is calculated as follows: 

 
0

1 2

i
i k
outer

k

t
R R

=

= +∑  (20) 

in which kt  is the ring thickness. The continuity condition between the adjacent rings writtes 

1i i

inner outerR R
−=  (see Figure 2).  

 

2.3.2. Thickness regional variation 

The thicknesses of the LM and ILM layers are given by the following linear equations: 

 LM

i t t
t a i b= + for 1,3,5...i n=  (21) 

 ILM LM

i ILM LM it r t= for 2,4,6... 1i n= −  (22) 

where ILM LMr  represents the thickness ratio of the ILM and LM zones and, ta  and tb  are 

functions expressed as: 
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( ) ( )

( )1

PO PI AI AO AO AI

t

t t t t t t
a

n

Θ π
π

− + − + −
=

−
 (23) 

 
( )PI AI AI

t

t t t
b a

Θ π
π

− +
= −  (24) 

in which 
PO

t , 
PI

t , 
AO

t  and 
AI

t  are the regional ring thicknesses. The terms 
AO

t  and 
PO

t  denote 

the thicknesses for the outer side of the ring i n= , respectively, in the anterior region ( 0Θ = ) 

and the posterior region (Θ π= ) whereas the terms 
AI

t  and 
PI

t are their counterparts for the 

inner side of the ring 1i = . The linear interpolation is performed with an angular increment 

δθ  of 1°. The same increment is fixed for all the other spatial discretizations in the 

circumferential direction. Note that the radial disctretization is fixed by the total number of 

layers n . 

 

2.3.3. Height regional variation 

The regional variation of the disc height is taken into account using the following linear 

equation: 

 
i

H HH a i b= +  (25) 

with  

 
( ) ( )

( )1

PO AI AO PI AO AI

H

H H H H H H
a

n

Θ π
π

+ − − + −
=

−
 (26) 

 
( )PI AI AI

H H

H H H
b a

Θ π
π

− +
= −  (27) 

in which 
PO

H , 
PI

H , 
AO

H  and 
AI

H  are the regional disc heights.  

The final model takes into account the non-symmetry both in thickness and in height in order 

to propose anatomically accurate representations.  

 

2.4. Disc structure 

2.4.1. Constituents  

As illustrated in Figure 3, the disc collagen fibrillar networks are decomposed into OCF and 

(inter-fibrillar and inter-lamellar) NEF both superimposed into the extracellular matrix 

(ECM). The volume fractions of these different solid constituents are calculated as follows: 

 _ 0

1

ECM

ECM

chem

φ
φ

ε
=

+
, 

_ 0

1

OCF

OCF

chem

φ
φ

ε
=

+
 and 

_ 0

1

NEF

NEF

chem

φ
φ

ε
=

+
 (28) 
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in which 
_ 0ECMφ , 

_ 0OCFφ  and
 _ 0NEFφ  are the volume fractions at the chemical equilibrium state 

and, ( )det 1chem chemε = −F  is the chemical-induced volumetric strain. The volume fraction of 

the fluid phase fluid
φ  corresponds to 1fluid ECM OCF FCNφ φ φ φ= − − − . 

The regional variation in quantities was taken into account using linear interpolations similar 

to those introduced above for the macrostructure features. Figure 3 provides the regional 

dependent quantities in the form of contour plots in the superior view of the disc. 

 

2.4.2. Hierarchical fibrillar structure 

The interpenetrating collagen fibrillar networks are spatially disposed in the model using two 

representative angles with respect to the global benchmark of the disc. The angles iα  are 

introduced to dispose the micro-sized OCF with respect to the circumferential direction of the 

disc with alternate orientations between successive lamellae. The angles iψ  is introduced to 

dispose the nano-sized NEF network with respect to the radial direction in the OCF parallel 

plane. 

The OCF in each LM ring is described geometrically by the unit vector i
a  expressed, in the 

current configuration, with respect to the global benchmark of the disc: 

 cos sin
i i iα α= +a zθ  (29) 

In order to introduce the change in the OCF angle induced by the circumferential stretch θλ , a 

measure of the reorientation may be considered geometrically using the following relation: 

 
0

arctan tan
i

i i

i

z

θλα α
λ

 
=  

 
 (30) 

in which 0

iα  is the OCF angle with respect to the circumferential direction of the disc in the 

initial configuration and 
i

zλ  is the axial stretch. 

The unit vector i
b  of each fibril

 
is expressed, in the current configuration, with respect to the 

global benchmark of the disc as follows: 

 sin cos cos sin cos
i i i i iψ α ψ α ψb = r + + zθ  (31) 

Again, the stretch-induced reorientation of the fibrils array is geometrically considered in each 

ring using the following expression: 

 ( )( ) ( )0 0 0 0
arctan 1 90 tan 90 180 tan

i i
i i i i ir r

i i

f f

H H
λ λψ ψ ψ ψ ψ
λ λ

  
= − − ° + − ° ° +    

  
 (32) 
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in which 0

iψ  is the fibrils angle in the initial configuration, 
i

rλ  is the radial stretch and 
i

fλ  is 

the stretch in the OCF  direction. The term ( )H •
 
is the Heaviside function. 

The regional variation in network orientation was considered using linear interpolations with 

radial and circumferential variations as detailed in Appendix A. The collagen fibrillar 

organization is provided in Figure 4 in the form of contour plots in the superior view of the 

disc for the OCF network and in the form of contour plots in the sagittal view of the disc for 

the NEF network. 

 

2.5. Constitutive equations 

The local structure-mechanics relations are described using a recently developed fully three-

dimensional constitutive model [9, 32]. In our previous works [9, 32], the model efficiencies 

to reproduce regional dependent multiaxial mechanics till failure of the human lumbar disc 

annulus were shown. In what follows, we present a summary of the constitutive equations of 

both healthy and damaged components. 

 

2.5.1. Healthy components 

In virtue of the chemo-mechanical coupling, the total free energy W is additively split into a 

mechanical part mechW  and a chemical part chemW :  

 
mech chem

W W W= +  (33) 

The mechanical free energy 
mechW  is obtained using as ensemble-volume averaged 

homogenization procedure a volume-weighted average of the different solid components: 

 mech OCF ECM ECM
W W W Wα ψ ψ

ψ
φ φ φ= + +∑  (34) 

in which Wα  is the OCF free energy, Wψ  is the fibrils network free energy and ECMW  is the 

ECM free energy. The quantity 
NEFψ ηφ φ φ=  is the fibrils volume fraction calculated using the 

NEF volume fraction NEFφ  in a layer and the volume fraction of fibril bundles ηφ   in a layer 

dependent on η  with 1η
η

φ =∑ . 

The different free energies in Eq. (34) are expressed by considering both collagen fibrillar 

networks and ECM as hyperelastic bodies with isotropic, homogeneous and incompressible 

features. The free energies Wα  and Wψ  
may be expressed as a function of the fourth stretch 
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invariants 2

4 mech
I α αλ= =.C .a a  and 2

4 mechI ψ ψλ= =.C .b b  of the right Cauchy-Green 

deformation 
T

mech mech mech=C F .F . To describe the ‘toe’-to-‘linear’ transition of the collagen 

response, two distinct relations are retained below and above *

,α ψλ : 

 ( ) ( )( )( )2
*1

, 4 , 2 4 , , ,

2

1
1 exp 1 1

2

C
W H I C I

C
α ψ α ψ α ψ α ψ α ψλ λ

 
= − − − < 

 
 (35) 

below *

,α ψλ  and, 

 ( ) ( ) ( )2
* *3

, 4 , 4 , 4 , , 4 , , , ,
1

2

C
W H I I I Iα ψ α ψ α ψ α ψ α ψ α ψ α ψ α ψ α ψζ ν λ λ = − − + − ≥  

 (36) 

above *

,α ψλ . 

The terms 
1C , 

2C  and 
3C  are material constants, *

4 ,I α ψ  is the fourth stretch invariant for 

*

, ,α ψ α ψλ λ= , ( )H •
 
is the Heaviside function that ensures only stretching of the collagen and, 

,α ψζ  and ,α ψν  are functions that ensure continuity between ‘toe’ and ‘linear’ regions: 

 ( ) ( )( )2
* *

, 1 4 , 2 4 ,
1 exp 1C I C Iα ψ α ψ α ψζ = − −  (37) 

 ( )( )( )2
* *1

, 4 , 2 4 ,

2 ,

exp 1 1
2

C
I C I

C
α ψ α ψ α ψ

α ψ

ν
ζ

= − − −  (38) 

The ECM free energy 
ECM

W  is given by as a function of the first stretch invariant 

( )1 tr mechI = C of the right Cauchy-Green deformation 
T

mech mech mech=C F .F : 

 ( )1

1
3

2
ECM ECM

W G I= −  (39)  

in which 
ECMG  is the ECM shear modulus. 

The chemical free energy chemW  is expressed as follows: 

 ( )( )21
2

2

1
exp 1

2
chem fluid chem

K
W K

K
φ ε= −  (40) 

where 
1K  and 

2K  are material constants, 
1K  and 

1 2K K  being the initial and maximal 

volumetric stiffness values. 

The overall Cauchy stress tensor annulusσ  in the annulus may be calculated as: 

 ( ) ( )
1

_ _ _ _

1,3,.. 2,4,..

n n
i LM i LM i i ILM i ILM i

annulus ring mech chem ring mech chem

i i

φ φ
−

= =

= +∑ ∑σ σ + σ σ + σ  (41) 

in which i

ringφ  is the current volume fraction of a ring i : 
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( )

( )
1

1

1

i

chem ii

ring n
j

chem j

j

t

t

ε
φ

ε
=

+
=

+∑
 (42) 

The stress in the nucleus is given by Eq. (15). 

 

2.5.2. Damaged components 

The above free energies may be modified to consider the internal stiffness degradation due to 

the development of mechanical-induced damage [32]: 

 ( ) ( ) ( )1 1 1mech OCF ECM ECM ECMW d W d W d Wα α ψ ψ ψ
ψ

φ φ φ= − + − + −∑  (43) 

in which dα  and dψ  are variables representing the damage events occurring within the 

interpenetrating collagen fibrillar networks and 
ECMd  is the variable representing the ECM 

damage.  

A continuous damage evolution is assumed over the entire loading history without healing 

possibilities. The progressive damage of each individual solid component (OCF, NEF and 

ECM) follows a two-parameter Weibull statistical distribution governed by their respective 

internal stress: 

 1 exp

OCF

OCF

OCF

d

γ

α β

  
 = − −    

P
 0 1dα≤ ≤  (44) 

 1 exp

NEF

NEF

d

γ

ψ
ψ β

  
 = − − 
  
  

P
 0 1dψ≤ ≤  (45) 

 1 exp

ECM

ECM

ECM

ECM

d

γ

β

  
 = − −    

P
 0 1ECMd≤ ≤  (46) 

in which OCFγ , OCFβ , NEFγ , NEFβ , ECMγ  and ECMβ  are damage parameters. The term 

( )tr
T=P P P⋅  denotes the Frobenius norm of the effective first Piola-Kirchhoff stress P .  

A strong coupling exists between hydration and mechanical-induced damage [32]. In ordert to 

consider the latter coupling, the chemical-induced volumetric strain chemε  in the free energy 

(40) is affected by the local damage events using the following expression [32]: 

 ( )( )( ) ( )1
det 1 1 1 1

n

chem chem ECMd d d
n

α ψ
ψ

ε
 

= − − − − 
 

∑F  (47) 
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2.6. Overall disc response 

For a known deformation state, the torsional couple 
t

M  of the whole disc may be expressed 

as the additional contribution of the annulus and the nucleus _ _t t annulus t nucleus
M M M= + : 

 ( )
1

2

_

0

2 d d

n
outer

inner

r

i i i

t annulus z

r

M r r

π

θσ θ= ∫ ∫  and ( )
0

2
0 0 0

_

0 0

2 d d

r

t nucleus zM r r

π

θσ θ= ∫ ∫  (48) 

in which 
i

zθσ  is the local shear stress component. 

For a known deformation state, the axial load 
annulus

F  of the annulus may be expressed by: 

 
10

2 d d

n
outer

inner

r

i i i

annulus zz

r

F r r

π

σ θ= ∫ ∫  (49) 

The axial load F  of the disc is obtained from the following formula:  

 ( )
10

2 2 d d

n
outer

inner

r

i i i i i

zz rr

r

F r r

π

θθσ − σ σ θ= −∫ ∫  (50) 

in which 
i

zzσ , 
i

θθσ  and 
i

rrσ  are the axial, circumferential and radial stress components. 

 

3. Results and discussion 

The model was entirely coded in MATLAB software. At this step of the model development, 

predictions on axially/torsionally loaded discs can be analyzed. The simulations were 

performed at a displacement rate of 0.01 mm/s and a twist rate of 0.1 °/s in order to maintain 

quasi-static loading conditions. The maximum ranges are changed according to the observed 

local fields in the disc core either to compare with existing data or to cause damage of the 

internal components. 

 

3.1. Model inputs 

Table 1 provides the anatomical data used as direct inputs for a lumbar disc model geometry 

taken from cadaver disc images at the L1-L2 level of the Holzapfel et al. [40] work. The 

annulus size is considered to be approximately 50% of the disc volume [41] and is subdivided 

into 15 different lamellae that are intercalated with 14 ILM. The base radius 0R  is calibrated 

from the cadaver disc images of Holzapfel et al. [40] resulting in a ratio between the sagittal 

and frontal radii of 0 0

sagittal frontalR R = 0.68 with a frontal radius of 0

frontalR = 15 mm. The values 

of the OCF orientation (with alternating signs between successive lamellae), the collagen 
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volume fraction and the fluid volume fraction are extracted from previous documented 

experimental findings [42-44] and are listed in Table 1. The intrinsic material parameters, 

identified in a previous work [9], are listed in Tables 2 and 3. A linear interpolation is here 

achieved for the regional dependent fibers parameters using the formulation provided in 

Appendix B. 

 

3.2. Overall disc response 

The overall disc response predicted by our modeling approach is plotted in Figure 5 for 

lumbar discs loaded in compression and in torsion. The simulated load curve obtained on a 

healthy disc upon compression are compared in Figure 5a with available load-displacement 

experimental data taken from the literature [45-47]. As far as we know, these papers are the 

only ones that provide data on lumbar discs loaded till failure upon a displacement-controlled 

compression. Note that the exact level in the lumbar spine is not specified in these 

experimental works and important variabilities may exist regarding the disc health state of 

donor (age, degeneration…) and the testing protocol (loading conditions, environment…). In 

this regard, the predicted curve may be considered as acceptable since it falls through the 

experimental points. Figure 5b presents the comparison of the predicted torsional response to 

available moment-rotation experimental data taken from the literature [48-49]. As far as we 

know, the paper of Farfan et al. [48] is the only one that provides data on lumbar discs twisted 

till failure. It can be observed that the experimental data of Farfan et al. [48] exhibit a wide 

range of torsional stiffness. Indeed, the authors performed their experiments on both healthy 

discs (the two data curves with the greatest torsional stiffness) and degraded discs (the two 

other data curves with the lowest torsional stiffness). Interestingly, the predicted curve is 

found very close to the experiments reported for the twisted healthy discs.  

Whereas the fibrils in LM (inter-fibrillar fibrils) seems to play a minor role on the disc 

resistance in compression (Figure 5a), they have an influential and decisive role in the disc 

torsional stiffness (Figure 5b) in reason of the interpenetrating across the torsion load bearing 

OCF network. Figure 5a emphasizes a more important role of the NEF network in ILM (inter-

lamellar fibrils) on the disc compresision stiffness especially at low applied displacements. By 

contrast, the NEF network in ILM has a weak influence on the torsional stiffness (Figure 5b). 

When the damage process is introduced in the model, the prediction underestimates the 

experimental points in compression as observed in Figure 5c and matches closely to the 

experimental points in torsion as observed in Figure 5d. When the OCF damage is excluded 

from the analysis, the overall torsion response corresponds to the healthy disc one whereas the 



 

15 

 

overall compression response first follows the damaged disc response path and then 

converges progressively towards the healthy disc response path at higher applied 

displacements. When the NEF network damage is not taken into consideration (but the OCF 

damage still present), the overall torsion response is that of the twisted damaged disc (Figure 

5d). The overall response in compression is first that of a healthy disc and then it diverges 

more and more as the applied displacement increases (Figure 5c). The ECM damage has a 

minor effect on the overall disc resistance; the main role of the ECM is relegated to the 

regulation of cellular development [50] and osmotic swelling [51]. 

Figure 5c shows that the model predictions with and without damage bound the experimental 

data after 1 mm displacement compression. Our modeling approach is based on the 

identification of the intrinsic properties of individual solid constituents (ECM, NEF and OCF) 

while considering their mechanical-induced degradation [9]. It is worth noticing that the 

constitutive model has been identified at the scale of a unit lamella (stretched along the OCF 

direction) for the four main disc regions (PO, PI, AO and AI) [9]. The deformation-induced 

damage in structural units seems different to that involved in whole discs, a least in intensity. 

Indeed, the transition from the macroscale towards the whole disc does not consider the 

complex interaction between the solid constituents in the different regions. That leads to an 

overestimation of the damage and to underestimate the overall load-displacement response as 

shown in Figure 5c. In their stereo-radiographic experimental study in whole discs, Costi et al. 

[52] reached the same conclusions when they compared their results to the stretchability of 

the structural units reported by Skaggs et al. [42]. The experimental failure strain values of the 

structural units were found by Costi et al. [52] lower than those obtained locally inside a 

whole disc loaded under the extremes of physiological motion. The interactions between the 

different regions of the disc should play a role for the passage from the structural unit to the 

whole macrostructure. It is clear that the passage from a scale to another needs some 

adjustement to consider effective interactions between the different lamellae and even 

between the different networks by adjusting the damage severity to correct its effect on the 

overall disc stiffness. The latter statement holds true for the interpenetrating network of fibrils 

for which identification has been carried out at the scale of multi-layered annulus stretched 

along the radial direction [32]. The hydration state of the tissue may also affect the failure 

[53] and the local damage events. A difference in damage-hydration coupling may be thus 

also another factor to consider. 

Figure 6 highlights the influence of the LM/ILM collagen networks on the overall disc 

response for combined axial/torsion loadings. As far as we know, no experimental data exists 
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for comparison with our predictions. The disc stiffness is always more important when a 

compression is applied in reason of the amplification of the nucleus hydrostatic pressure on 

the annulus and the OCF stretching. When the disc is subjected to a tension with twisting, the 

NEF network has no influence on the overall load-displacement curve (Figure 6a). 

Nonetheless, the NEF network in the LM zone has a preponderant influence on the overall 

moment-rotation response (Figure 6b). When the disc is subjected to a compression with 

twisting, the NEF network contributes to the overall load-displacement response but plays an 

even more significant role on the overall moment-rotation response both in the LM and ILM 

zones (Figure 6b). Figure 7 shows the influence of the different local damage events on the 

overall disc response for combined axial/torsion loadings. The local response of the NEF 

network in tension and in compression leads to two distinct damage behaviors both in the 

overall load-displacement and moment-rotation curves. It can be observed that the 

compression-twist combination leads to the premature appearance of damage as compared to 

the separate loading results shown in Figure 5. 

The disc horizontal section change is reported in Figure 8 under different loading conditions. 

The figure points out the important role of the annulus inter-layer fluid transfer. In a 

compressed disc, the absence of fluid transfer attenuates significantly the bulge in the annulus 

and increases it in the nucleus. The tension has an inverse effect for the two disc parts. Indeed, 

the compression state generates a nucleus bulge in turns restrained by the annulus auxetic 

response induced by the inter-layer fluid transfer. 

 

3.3. Local stress and strain 

In this subsection, the Green-Lagrange strain components are firstly analyzed. The predicted 

radial strains in the core of compressed and twisted healthy discs are compared in Figure 9 

with the stereo-radiographic experimental data of Costi et al. [52]. The model results were 

averaged in different zones and then normalized by the applied displacement or rotation. Note 

that the Costi et al. [52] data are typical results averaged for the asymmetric values in the right 

and left sides of the sagittal plane. A weak regional variation is predicted whereas the twist 

model results are more regional-dependent. Generally, the model provides acceptable 

predictions for the different annulus regions under both compression and torsion. 

For different loading cases of combined axial/torsion loadings, the local strain components 

can be analyzed in Figures 10 and 11. The strain fields analysis under different mechanical 

paths allow to identify how the load is transmitted from the nucleus to the different annulus 

regions. Figure 10 shows the low strain components that appeared under torsion are extremely 
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amplified when the nucleus is activated by the combined effect of a compression [38]. 

Anterior-posterior height difference induces an axial strain gradient in the compressed disc 

with the lowest values in the anterior outer region and the highest values in the posterior inner 

region. The circumferential behavior of the compressed disc is mainly governed by the 

nucleus hydrostatic pressure on the annulus and the annulus collagen fibers tensions; the 

lowest circumferential strain values are observed in the inner regions and the highest ones in 

the anterior outer and posterior outer regions. The shear strain component, often related to 

damage and tears especially in ILM [10, 52, 54], show higher values when the disc is twisted. 

The locations of the highest shear strains are identified in the outer posterolateral regions. 

Figure 11 highlights the very low radial strains upon pure torsion and important values when 

the compression is applied. In the latter case, which reflects the real loading condition applied 

to the human disc quasi-permanently compressed by body load, the ILM is found to severly 

swell whereas the LM shrinks. This phenomenon is different from a disc region to another 

and leads to an auxetic behavior in the radial direction [39, 55-56]. This volumetric feature of 

the lamellar structure is fundamental for the disc functionality for maintaining nucleus 

swelling and absorbing applied loads. It may lead also to an increasing risk of disc 

delamination and failure propagation in the radial direction of the disc [32]. Interestingly, the 

auxetic response is also influenced by the disc morphology as evidenced in Figure 12 in 

which the contour plots of a simplified disc version are presented. The symmetric fields affect 

the validity and the reality of the local response. Actually, the heterogeneity of the strain 

fields is determined by the local structure-mechanics relations but also by the morphology in 

terms of macrostructure and non-symmetric dimensions.  

The local stress variation is provided in Figure 13 in the form of the effective stress averaged 

in the different disc regions. The stresses in the LM zones are strongly regional dependent. 

The ILM stresses are more or less uniform when a compression state is applied whereas they 

become strongly heterogeneous in tension. Whatever the loading condition considered, the 

absence of volumetric effect in the ILM zones generates no bulge along with negligible 

stresses. The LM zones in the different regions do not behave in the same way vis-à-vis their 

dependence on the fluid transfer. Indeed, without the fluid transfer process, the anterior, 

anterior-lateral and lateral regions have a significant increase of the stresses whereas they 

decrease in the posterior-lateral and posterior regions.  

 

3.4. Damage fields 
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In this subsection, the deformation-induced damage fields are analyzed for the different solid 

components (ECM, NEF and OCF) in order to identify their respective role in the starting 

areas of failure modes under combined axial/torsion loadings. Recall that the damage intensity 

is somewhat magnified in regards to the comparison to the overall response and to the issue of 

the passage from the structural unit to the whole macrostructure. Nonetheless, the location of 

damage maxima remains valid and may be related to existing disc damage mechanisms 

experimentally reported for whole discs in [29-31]. 

The ECM and NEF damage are presented both in LM and in ILM in Figures 14 and 15, 

respectively. The ECM and the network of inter-lamellar fibrils (in LM) of the anterior side 

are more likely damaged when the disc is compressed. The latter can be the sign of the 

starting areas of the annulus delamination failure mode. The nucleus-annulus interface is also 

the site of a damage zone (Figures 14b and 15b) due to the pressure difference between the 

two portions, suggesting increasing the possibility of tear creation in the interface. When the 

disc is stretched, the highest damage zones are shifted from the anterior side to the posterior 

side. Compared to the NEF network in ILM, the damage of inter-fibrillar fibrils (in LM) 

exhibits a very low intensity with an important effect of the loading mode both for the 

intensity and the extent. Whatever the loading mode, the highest ECM damage zones in LM 

are located in the posterior side. 

Figure 16 shows the loading mode has a profound effect on the OCF damage. When the disc 

is compressed the highest OCF damage zones are mainly observed in mid-anterior/lateral 

anterior ring. The latter can be the sign of the starting areas of annulus circumferential tears. 

Combined to a compression, the twisted disc presents the highest OCF damage zones for the 

fibers oriented in the twist direction with a progression from the AO side to the PO side. The 

alternate fibers are only damaged in a small area of the AO side. When the twisted disc is 

combined to a tension, the damage progression is reversed from the posterior side to the 

anterior side and, the damage of the alternate fibers is located in the PO region. The NEF 

network in ILM follows the same reverse compression/tension effect as shown in Figure 16. 

The latter may be due to the nucleus swelling effect but also to the anterior-posterior height 

difference.  

 

4. Conclusion 

In this work, we have presented a new and direct analytical method for the creation of human 

discs considering accurate morphology, multiscale structure (ECM proteoglycan 

macromolecules, interpenetrating collagen fibrillar networks and LM/ILM/nucleus 
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interaction) and coupled damage-hydration effects. A first quantitative evaluation of the disc 

model was presented using available experimental observations of the literature. The model 

was favorably compared with compression/torsion experiments both for the overall disc 

stiffness and for the direct MRI kinematic fields. The model was then used to assess the local 

fields under combined axial/torsion loadings and especially the damage areas where the risk 

of failure is the highest. Our new approach provides an accurate microstructure-mechanics 

relationship of the human disc while providing versatile possibilities of regional-dependent 

geometry variations, the final goal being to create time and cost-efficient patient-specific 

models. 

In the future, the patient-specific models using our new approach need verifications with in 

vivo clinical MRI images. In the meantime, although quite sophisticated, the present model 

needs improvements. The model can be improved by acting on the constitutive representation 

to take into consideration the biological coupling in order to assess the long-term 

biomechanical damage effects inside the disc induced by physiological activity and age. In 

this regards, other physiological movements (e.g. flexion/extension) could be introduced in 

further developments of the disc kinematics in order propose quantitative predictions of the 

disc health and functionality under more complex loading modes. 
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Appendix A. Structure regional variation 

A.1. OCF regional variation 

The regional variation in OCF angle is taken into account using the following linear equation: 

 0

i
a i bα − −= + for 3,7,11...i n=  (A1) 

 0

i
a i bα + += + for 1,5,9... 2i n= −  (A2) 

with 

 
( ) ( )

( )
/ / / / / /

/

1

PO AI AO PI AO AI
a

n

α α α α Θ α α π
π

+ − + − + − + − + − + −
+ − + − − + −

=
−

 (A3) 
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π
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+ − + −− +

= −  (A4) 
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in which 
/

POα + −
, 

/

PIα + −
, 

/

AOα + −
 and 

/

AIα + −
 are the regional OCF angles. 

 

A.2. NEF regional variation 

The volume fraction of a fibril in each ring i is given by: 
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 (A5) 

where 
_LM i

q  and 
_ILM i

q  are the respective total number of NEF in each ring i: 

 
_ _ _

0 ,180

LM i LM i ILM i
q q qη η

η ψ η ψ= ° °

= +∑∑ ∑ ∑  and 
_ _

45 ,90 ,135

ILM i ILM i
q qη

η ψ= ° ° °

= ∑ ∑  (A6) 

The quantities _LM i
qη  and  _ILM i

qη  are descibed using Gaussian probability density functions: 

 ( )( )2_ _ _expLM i LM i LM i
qη η ηχ ς ψ η= − −  and ( )( )2_ _ _expILM i ILM i ILM i

qη η ηχ ς ψ η= − −  (A7) 

where _LM i

ηχ  and _ILM i

ηχ  denote the respective peak values of each fibrils bundle η  = {0°, 

45°, 90°, 135°, 180°} (Figure 4): 

 _

_ _

LM i LM LM
a i bη χ η χ ηχ = +  and _

_ _

ILM i ILM ILM
a i bη χ η χ ηχ = +  (A8) 

and, _LM i

ης  and _ILM i

ης  are unitless scale factors: 

 _

_ _

LM i LM LM
a i bη ς η ς ης = +  and _

_ _

ILM i ILM ILM
a i bη ς η ς ης = +  (A9) 

The terms ,

_

LM ILM
aχ η  and ,

_

LM ILM
bχ η  are expressed as a function of the posterior peak values 

,

_

LM ILM

POηχ  and ,

_

LM ILM

PIηχ  (Θ π= ) of the outer ring i n=  and the anterior peak values ,

_

LM ILM

AOηχ  and 

,

_

LM ILM

AIηχ  ( 0Θ = ) of the inner ring 1i = : 
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The terms ,

_

LM ILM
aς η  and ,

_

LM ILM
bς η  are expressed as a function of the posterior and anterior scale 

factors ,
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Appendix B. Material properties regional variation 

The OCF parameters were identified in our previous work [9] on the different annulus 

regions. The regional variation is taken into account using a simple linear interpolation 

according to the following equation: 

 
i

C CC a i b= +  (B1) 

with  
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PO AI AO PI AO AI
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C C C C C C
a

n

Θ π
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 (B2) 
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Θ π
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in which 
PO

C , 
PI

C , 
AO

C  and 
AI

C  are the regional material properties given in Table 3.  

 

References 

[1] Asner, L., Hadjicharalambous, M., Chabiniok, R., Peressutti, D., Sammut, E., Wong, J., 

Carr-White, G., Razavi, R., King, A., Smith, N., Lee, J., Nordsletten, D., 2017. Patient-

specific modeling for left ventricular mechanics using data-driven boundary energies. 

Computer Methods in Applied Mechanics and Engineering 314, 269-295. 

[2] Rama, R.R., Skatulla, S., 2018. Towards real-time cardiac mechanics modelling with 

patient-specific heart anatomies. Computer Methods in Applied Mechanics and Engineering 

328, 47-74. 

[3] Lauzeral, N., Borzacchiello, D., Kugler, M., George, D., Rémond, Y., Hostettler, A., 

Chinesta, F., 2019. A model order reduction approach to create patient-specific mechanical 

models of human liver in computational medicine applications. Computer Methods and 

Programs in Biomedicine 170, 95-106. 

[4] Razaghi, R., Biglari, H., Karimi, A., 2019. Risk of rupture of the cerebral aneurysm in 

relation to traumatic brain injury using a patient-specific fluid-structure interaction model. 

Computer Methods and Programs in Biomedicine 176, 9-16. 

[5] Grytz, R., Krishnan, K., Whitley, R., Libertiaux, V., Sigal, I.A., Girkin, C.A., Downs J.C., 

2020. A mesh-free approach to incorporate complex anisotropic heterogeneous material 

properties into eye-specific finite element models. Computer Methods in Applied 

Mechanics and Engineering 358, 112654.  

[6] Tavakoli, J., Diwan, A.D., Tipper, J.L., 2020. The ultrastructural organization of elastic 

fibers at the interface of the nucleus and annulus of the intervertebral disk. Acta 

Biomaterialia 114, 323-332. 

[7] Tavakoli, J., Diwan, A.D., Tipper, J.L., 2020. Elastic fibers: the missing key to improve 

engineering concepts for reconstruction of the nucleus pulposus in the intervertebral disc. 

Acta Biomaterialia 113, 407-416. 

[8] Kandil, K., Zaïri, F., Messager, T., Zaïri, F., 2020. Interlamellar matrix governs human 

annulus fibrosus multiaxial behavior. Scientific Reports 10, 19292. 



 

22 

 

[9] Tamoud, A., Zaïri, F., Mesbah, A., Zaïri, F., 2021. Modeling multiaxial damage regional 

variation in human annulus fibrosus. Acta Biomaterialia 136, 375-388. 

[10] Goel, V.K., Monroe, B.T., Gilbertson, L.G., Brinckmann, P., 1995. Interlaminar shear 

stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion 

segment subjected to axial compressive loads. Spine 20, 689-698. 

[11] Qasim, M., Natarajan, R.N., An, H.S., Andersson, G.B.J., 2012. Initiation and 

progression of mechanical damage in the intervertebral disc under cyclic loading using 

continuum damage mechanics methodology: a finite element study. Journal of 

Biomechanics 45, 1934-1940. 

[12] Qasim, M., Natarajan, R.N., An, H.S., Andersson, G.B.J., 2014. Damage accumulation 

location under cyclic loading in the lumbar disc shifts from inner annulus lamellae to 

peripheral annulus with increasing disc degeneration. Journal of Biomechanics 47, 24-31. 

[13] Shahraki, N.M., Fatemi, A., Agarwal, A., Goel, V.K., 2015. Failure criteria for prediction 

of clinically relevant damage of annulus fibrosus. Spine Research 1, 7. 

[14] Masni, A., Tanaka, M., 2018. Biomechanical investigation on the influence of the 

regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: a 

finite element study. Computers in Biology and Medicine 98, 26-38. 

[15] Stadelmann, M.A., Maquer, G., Voumard, B., Grant, A., Hackney, D.B., Vermathen, P., 

Alkalay, R.V., Zysset, P. K., 2018. Integrating MRI-based geometry, composition and fiber 

architecture in a finite element model of the human intervertebral disc. Journal of the 

Mechanical Behavior of Biomedical Materials 85, 37-42. 

[16] Disney, C.M., Eckersley, A., McConnell, J.C., Geng, H., Bodey, A.J., Hoyland, J.A., 

Lee, P.D., Sherratt, M.J., Bay, B.K., 2019. Synchrotron tomography of intervertebral disc 

deformation quantified by digital volume correlation reveals microstructural influence on 

strain patterns. Acta Biomaterialia 92, 290-304. 

[17] Castro, A.P.G., Alves, J.L., 2020. Numerical implementation of an osmo-poro-visco-

hyperelastic finite element solver: application to the intervertebral disc. Computer Methods 

in Biomechanics and Biomedical Engineering 5, 538-550. 

[18] Subramani, A.V., Whitley, P.E., Garimella, H.T., Kraft, R.H., 2020. Fatigue damage 

prediction in the annulus of cervical spine intervertebral discs using finite element analysis. 

Computer Methods in Biomechanics and Biomedical Engineering 23, 773-784. 

[19] Yoon, D.H.E., Weber, C.I., Easson, G.W., Broz, K.S., Tang, S.Y., 2020. Rapid 

determination of internal strains in soft tissues using an experimentally calibrated finite 

element model derived from magnetic resonance imaging. Quantitative Imaging in Medicine 

and Surgery 10, 57-65. 

[20] Du, Y., Tavana, S., Rahman, T., Baxan, N., Hansen, U.N., Newell, N., 2021. Sensitivity 

of intervertebral disc finite element models to internal geometric and non-geometric 

parameters. Frontiers in Bioengineering and Biotechnology 9, 509. 

[21] Mengoni, M., Zapata-Cornelio, F.Y., Wijayathunga, V.N., Wilcox, R.K., 2021. 

Experimental and computational comparison of intervertebral disc bulge for specimen-

specific model evaluation based on imaging. Frontiers in Bioengineering and Biotechnology 

9, 661469. 

[22] Kandil, K., Zaïri, F., Messager, T., Zaïri, F., 2021. A microstructure-based model for a 

full lamellar-interlamellar displacement and shear strain mapping inside human 

intervertebral disc core. Computers in Biology and Medicine 135, 104629. 

[23] Komeili, A., Rasoulian, A., Moghaddam, F., El-Rich, M., 2021. The importance of 

intervertebral disc material model on the prediction of mechanical function of the cervical 

spine. BMC Musculoskeletal Disorders 22, 1-12. 

[24] Amonoo-Kuofi, H.S., 1991. Morphometric changes in the heights and anteroposterior 

diameters of the lumbar intervertebral discs with age. Journal of Anatomy 175, 159-168. 



 

23 

 

[25] Kim, K.H., Park, J.Y., Kuh, S.U., Chin, D.K., Kim, K.S., Cho, Y.E., 2013. Changes in 

spinal canal diameter and vertebral body height with age. Yonsei Medical Journal 54, 1498-

1504. 

[26] Kandil, K., Zaïri, F., Messager, T., Zaïri, F., 2021. A microstructure-based mechanistic 

modeling approach to assess aging-sensitive response of human intervertebral disc. 

Computer Methods and Programs in Biomedicine, 105890. 

[27] Urban, J.P., Maroudas, A., 1981. Swelling of the intervertebral disc in vitro. Connective 

Tissue Research 9, 1-10. 

[28] Derrouiche, A., Zaouali, A., Zaïri, F., Ismail, J., Chaabane, M., Qu, Z., Zaïri, F., 2019. 

Osmo-inelastic response of the intervertebral disc. Proceedings of the Institution of 

Mechanical Engineers. Part H: Journal of Engineering in Medicine 233, 332-341.  

[29] Osti, O.L., Vernon-Roberts, B., Moore, R., Fraser, R.D., 1992. Annular tears and disc 

degeneration in the lumbar spine: a post-mortem study of 135 discs. The Journal of Bone 

and Joint Surgery 74, 678-682. 

[30] Schollum, M.L., Robertson, P.A., Broom, N.D., 2008. ISSLS prize winner: 

microstructure and mechanical disruption of the lumbar disc annulus: part I: a microscopic 

investigation of the translamellar bridging network. Spine 33, 2702-2710. 

[31] Sapiee, N.H., Thambyah, A., Robertson, P.A., Broom, N.D., 2019. Sagittal alignment 

with downward slope of the lower lumbar motion segment influences its modes of failure in 

direct compression: A mechanical and microstructural investigation. Spine 44, 1118-1128. 

[32] Tamoud, A., Zaïri, F., Mesbah, A., Zaïri, F., 2021. A multiscale and multiaxial model for 

anisotropic damage and failure of human annulus fibrosus. International Journal of 

Mechanical Sciences 205, 106558. 

[33] Ogden, R.W., 1997. Non-linear elastic deformations. Dover Publication, New York. 

[34] Kanner, L.M., Horgan, C.O., 2008. On extension and torsion of strain-stiffening rubber-

like elastic circular cylinders. Journal of Elasticity 93, 39-61. 

[35] Horgan, C.O., Murphy, J.G., 2011. Extension and torsion of incompressible non-linearly 

elastic solid circular cylinders. Mathematics and Mechanics of Solids. 16, 482-491. 

[36] Holzapfel, G.A., Gasser, T.C., Ogden, R.W., 2000. A new constitutive framework for 

arterial wall mechanics and a comparative study of material models. Journal of Elasticity 

and the Physical Science of Solids 61, 1-48. 

[37] Shah, J.S., Hampson, W.G., Jayson, M.I., 1978. The distribution of surface strain in the 

cadaveric lumbar spine. Journal of Bone and Joint Surgery 60, 246-251. 

[38] Derrouiche, A., Feki, F., Zaïri, F., Taktak, R., Moulart, M., Qu, Z., Ismail, J., Charfi, S., 

Haddar, N., Zaïri, F., 2020. How pre-strain affects the chemo-torsional response of the 

intervertebral disc. Clinical Biomechanics 76, 105020. 

[39] Tamoud, A., Zaïri, F., Mesbah, A., Zaïri, F., 2021. A microstructure-based model for 

time-dependent mechanics of multi-layered soft tissues and its application to intervertebral 

disc annulus. Meccanica 56, 585-606. 

[40] Holzapfel, G.A., Schulze-Bauer, C.A., Feigl, G., Regitnig, P., 2005. Single lamellar 

mechanics of the human lumbar anulus fibrosus. Biomechanics and Modeling in 

Mechanobiology 3, 125-140. 

[41] Violas, P., Estivalezes, E., Briot, J., Sales de Gauzy, J., Swider P., 2007. Objective 

quantification of intervertebral disc volume properties using MRI in idiopathic scoliosis 

surgery. Magnetic Resonance Imaging 25, 386-391. 

[42] Skaggs, D.L., Weidenbaum, M., Iatridis, J.C., Ratcliffe, A., Mow, V.C., 1994. Regional 

variation in tensile properties and biochemical composition of the human lumbar anulus 

fibrosus. Spine 19, 1310-1319. 



 

24 

 

[43] Acaroglu, E.R., Iatridis, J.C., Setton, L.A., Foster, R.J., Mow, V.C., Weidenbaum, M., 

1995. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. 

Spine 20, 2690-2701. 

[44] Ebara, S., Iatridis, J.C., Setton, L.A., Foster, R.J., Mow, V.C., Weidenbaum, M., 1996. 

Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine 21, 452-461. 

[45] Virgin, W.J., 1951. Experimental investigations into the physical properties of the 

intervertebral disc. The Journal of Bone and Joint Surgery 33, 607-611. 

[46] Markolf, K.L., Morris, J.M., 1974. The structural components of the intervertebral disc: a 

study of their contributions to the ability of the disc to withstand compressive forces. The 

Journal of Bone and Joint Surgery 56, 675-687. 

[47] Adams, M.A., McNally, D.S., Wagstaff, J., Goodship, A.E., 1993. Abnormal stress 

concentrations in lumbar intervertebral discs following damage to the vertebral bodies: a 

cause of disc failure? European Spine Journal 1, 214-221. 

[48] Farfan, H. F., Cossette, J. W., Robertson, G. H., Wells, R. V., Kraus, H.T., 1970. The 

effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of 

disc degeneration. The Journal of Bone & Joint Surgery 52, 468-497. 

[49] Markolf, K.L., 1972. Deformation of the thoracolumbar intervertebral joints in response 

to external loads: a biomechanical study using autopsy material. The Journal of Bone & 

Joint Surgery 54, 511-533. 

[50] Melrose, J., Ghosh, P., Taylor, T.K., 2001. A comparative analysis of the differential 

spatial and temporal distributions of the large (aggrecan, versican) and small (decorin, 

biglycan, fibromodulin) proteoglycans of the intervertebral disc. The Journal of Anatomy 

198, 3-15. 

[51] Feki, F., Taktak, R., Kandil, K., Derrouiche, A., Moulart, M., Haddar, N., Zaïri, F., Zaïri, 

F., 2020. How osmoviscoelastic coupling affects recovery of cyclically compressed 

intervertebral disc. Spine 45, E1376-E1385. 

[52] Costi, J.J., Stokes, I.A., Gardner-Morse, M., Laible, J.P., Scoffone, H.M., Iatridis, J.C., 

2007. Direct measurement of intervertebral disc maximum shear strain in six degrees of 

freedom: motions that place disc tissue at risk of injury. Journal of Biomechanics 40, 2457-

2466. 

[53] Werbner, B., Spack, K., O'Connell, G.D., 2019. Bovine annulus fibrosus hydration 

affects rate-dependent failure mechanics in tension. Journal of Biomechanics 89, 34-39. 

[54] Iatridis, J.C., ap Gwynn, I., 2004. Mechanisms for mechanical damage in the 

intervertebral disc annulus fibrosus. Journal of Biomechanics 37, 1165-1175. 

[55] Derrouiche, A., Zaïri, F., Zaïri, F., 2019. A chemo-mechanical model for osmo-inelastic 

effects in the annulus fibrosus. Biomechanics and Modeling in Mechanobiology 18, 1773- 

1790. 

[56] Kandil, K., Zaïri, F., Derrouiche, A., Messager, T., Zaïri, F., 2019. Interlamellar-induced 

time-dependent response of disc annulus: a microstructure-based chemo-viscoelastic model. 

Acta Biomaterialia 100, 75-91. 

 

 



 Regions References 

 AO AI PO PI  

Layer thickness [mm] 
AO

t  

0.69 

AI
t  

0.76 

PO
t  

0.38 

PI
t  

0.40 

[40] 

Disc height [mm] 
AO

H  

12.8 

AI
H  

8.40 

PO
H  

8.00 

PI
H  

7.20 

[40] 

OCF orientation [deg] /

AOα+ −
 

+25.7/-22.1 

/

AIα+ −
 

+29.9/-27.6 

/

POα+ −

+49.3/-50.1 

/

PIα+ −
 

+45.8/-46.1 

[40] 

Collagen volume fraction [-] 
_coll AOφ

0.127 

_coll AIφ
0.087 

_coll POφ
0.135 

_coll PIφ  

0.093 

[42] 

 

Fluid volume fraction [-] 
_fluid AOφ

0.710 

_fluid AIφ
0.790 

_fluid POφ
0.695 

_fluid PIφ  

0.800 

[43-44] 

Table 1. Disc macrostructure and structure features. 

 
Constituents Parameters  

ECM 
ECM

G  [MPa] 0.01 

ECM
γ  [-] 2 

ECM
β  [MPa] 5.5 

NEF 
1

C  [MPa] 12 

2
C  [-] 0.2 

3
C  [MPa] 1.5 

*

ψλ  [-] 1.7 

NEF
γ  [-] 6 

NEF
β  [MPa] 400 

Swelling 
1K  [MPa] 0.14 

2K  [-] 0.0075 

Table 2. ECM, NEF and swelling parameters [9].  

 
Parameters Regions 

AO PO AI PI 

1
C  [MPa]  40 26 26 3 

2
C  [-] 880 58 30 11 

3
C  [MPa] 500 300 400 80 

*

θλ  [-] 1.02 1.07 1.1 1.14 

OCF
γ   [-] 5 5 5 5 

OCF
β  [MPa]  215 125 120 70 

Table 3. OCF parameters [9]. 

 

 



 

 

 

 

 

 

 

 

 

Figure 1. Axially/torsionally loaded functional spine unit (i.e. an intervertebral disc and two adjacent vertebrae) 

and related boundary conditions on the disc. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 2. Disc macrostructure in the polar coordinates.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 3. Disc structure decomposition into ECM (along with fluid) and interpenetrating collagen fibrillar 

networks at the nanoscale (NEF) and at the microscale (OCF). Contour plots in the superior view of the disc 

show the regional dependent quantities in terms of fluid phase fraction 
fluidφ , collagen fraction 

coll NEF OCFφ φ φ= +  and ECM fraction 1ECM fluid collφ φ φ= − − . 
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(b)   

Figure 4. Organization of the interpenetrating collagen fibrillar networks: (a) OCF angle in the form of contour 

plots in the superior view of the disc, (b) fibrils angle in the form of contour plots in the sagittal view of the 

disc. The fibrils spatial distribution is obtained by the linear interpolation of approximated Gaussian-type 

distributions in the outer and inner boundaries of PO (Posterior-Outer), AO (Anterior-Outer), PI (Posterior-

Inner) and AI (Anterior-Inner) regions. The dashed lines in the Gaussian-type distributions are experimental 

data extracted from the work of Tavakoli et al. [6-7].  

 

 

 

 



 

 

 

  

 

 
                                                    (a)                                                                   (b) 

 
                                                    (c)                                                                   (d) 

Figure 5. Predicted load curves of the compressed disc and moment curves of the twisted disc in comparison to 

experiments (lines: model; symbols: experiments): (a) influence of the LM/ILM collagen networks in 

compression, (b) in torsion, (c) influence of the damage events in compression, (d) in torsion. 
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(a) 

 
(b) 

Figure 6. Influence of the LM/ILM collagen networks on the axially/torsionally disc response: (a) load curves 

and (b) moment curves. 
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(a)                                                                   (b) 

Figure 7. Influence of the damage events on the axially/torsionally disc response: (a) load curves and (b) 

moment curves. 
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Figure 8. Influence of the LM/ILM fluid exchange on the horizontal section change under different loading 

conditions (AF: Annulus fibrosus, NP: nucleus pulposus). The disc is axially loaded at 1.1 mm and twisted at 

7°. 
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(a) 

 
(b) 

Figure 9. Predicted normalized radial strains (%/mm) in a disc (a) compressed at 1.1 mm and (b) twisted at 

2.5°. The comparison to Costi et al. [52] data is performed for different regions in which the local strains are 

averaged (A: Anterior, P: Posterior, AL: Anterior-Lateral, L: Lateral, PL: Posterior-Lateral, NP: nucleus 

pulposus). 
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Figure 10. Contour plots of the local axial, circumferential and shear strains z
E , Eθ  and z

Eθ  in 

axially/torsionally loaded discs. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 11. Contour plots of the local radial strain r
E  in axially/torsionally loaded discs: (a) in ILM, (b) in LM. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

(a) 

 
(b) 

Figure 12. Morphology influence on the local strains local axial, circumferential and radial strains z
E , Eθ  and 

r
E  (in ILM and in LM) in compressed discs: (a) simplified disc morphology in circular basis with

0 0

sagittal frontalR R=  (all initial heights and OCF orientations in Table 1 are averaged), (b) actual disc morphology. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 
(a)                                                                     (b) 

Figure 13. Influence of the LM/ILM fluid exchange on the local effective stress averaged in the different disc 

regions under different loading conditions (A: Anterior, P: Posterior, AL: Anterior-Lateral, L: Lateral, PL: 

Posterior-Lateral, NP: nucleus pulposus). The disc is axially loaded at 1.1 mm and twisted at 7°. 
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(a) 

 

 
(b) 

Figure 14. Contour plots of the ECM damage 
ECMd  in axially/torsionally loaded discs: (a) in LM, (b) in ILM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 15. Contour plots of the NEF damage 
NEFd  in axially/torsionally loaded discs: (a) in LM, (b) in ILM. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Contour plots of the OCF damage dα  (in LM) in axially/torsionally loaded discs. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 




