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Invariant Sets for Assume-Guarantee Contracts
Antoine Girard, Senior Member, IEEE, Alessio Iovine, Member, IEEE, Sofiane Benberkane

Abstract—Contract theory is a powerful tool to reason on
systems that are interacting with an external environment,
possibly made of other systems. Formally, a contract is usually
given by assumptions and guarantees, which specify the expected
behavior of the system (the guarantees) in a certain context (the
assumptions). In this work, we present a verification framework
for discrete-time dynamical systems with assume-guarantee con-
tracts. We first introduce a class of assume-guarantee contracts
with their satisfaction semantics parameterized by a time-horizon
over which assumptions are evaluated. We then show that the
problem of verifying whether such contracts are satisfied is
equivalent to show the existence of a positive invariant set for
an auxiliary system. This allows us to leverage the extensive
literature on invariant set computation. A simple illustrative
example is provided to show the effectiveness of our approach.

Index Terms—Invariant sets, Assume-guarantee contracts, Ver-
ification.

I. INTRODUCTION

Modern applications require engineering systems to be com-
posed of several subsystems (agents) describing both physical
behaviours and information technology components. There-
fore, they are usually modeled as Cyber-Physical Systems
(CPSs) [1], and this strongly complexify both system’s design
and performance. Indeed, there is an explosion of requirements
and specifications, as the several agents need to be designed
to operate in predictable ways with the deployed system.

Contract theory is a powerful tool that allows to formally
define and verify the specifications that modern systems and
CPSs have to satisfy [2], [3]. In fact, contracts provide a
compositional approach based on modularity, granting the
possibility to obtain a verification framework. Developed in
computer science [4], in the last decades contracts have been
considered for engineering applications. The main one has
been the design of electronics components for correct-by-
construction system-level composition [5]. In circuits, no dy-
namics was taken into account, and the definition of contracts
aimed at guaranteeing circuit performance. However, recently
several contributions appeared in the control community on
assume-guarantee contracts, with the goal to better deal with
large-scale systems via leveraging the assume-guarantee prop-
erties of contracts for dynamical systems to describe the
interaction among the several agents, and with respect to the
environment. In a control-oriented perspective, contracts are
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regarded as formal characterizations of control specifications
[6], and their utilisation is expected to allow considering
Plug&Play situations and a dynamic change of the system’s
structure and/or of its components.

In the recent literature, contracts for continuous-time [7] and
discrete-time [8], [9] systems have been developed, targeting
particularly linear systems [6], [8], [10] but also nonlinear ones
[7], [9]. Several kind of specifications, as contract refinement
for comparing contracts (see [8], [10]) or weak and strong
satisfaction for dealing with agents’ interconnection (see [7],
[11]), are suggested. The contribution of the present paper
relies in the discrete-time domain, and no linearity conditions
are requested for the considered dynamics. Diversely from ex-
isting approaches, the satisfaction semantics is parameterized
by a time-horizon over which assumptions are evaluated.

The great challenge in dealing with assume-guarantee con-
tracts relies in obtaining numerical tools whose computational
complexity does not explode with respect to the size of the
system, and that adapt to small changes on the variables
without re-running the whole calculation. Current approaches
based on symbolic controllers and/or finite transition systems
[11], [12] suffer of poor performance in case of high dimension
systems. In the present paper, we focus on the utilisation
of invariant sets (see [13], [14]) for verification of assume-
guarantee contracts. Set invariance offers the possibility to use
powerful algorithms (see [15], [16], [17], [18]) for providing
feasible solutions in reasonable time. Therefore, we first
describe a verification approach for discrete-time dynamical
system based on assume-guarantee contracts, and then inves-
tigate the existence of invariant sets for verification. Three
different types of satisfactions a system can verify for a given
contracts are listed, together with the necessary and sufficient
conditions for satisfaction. Differently from [9] and [19], we
generalise the assume-guarantee reasoning via invariant sets
without the restriction to consider Signal Temporal Logic to
describe contracts, and we do not address a specific method for
feasibility verification. Indeed, the suggested tests are general
with respect to the computation methods for the required
maximal invariant sets. Contrarily to [20], the specifications
considered in the present paper can involve system dynamics.

The sequel of the paper is organised as follows. Section
II describes the modeling of the systems and contracts we
consider. Section III introduces the different satisfactions,
while in Section IV an example is produced. Section V
provides conclusive remarks. Some results are stated without
proofs, which can be found in the appendix.

Notations: We denote with R, R+, and N the set of reals,
non negative reals and natural numbers. We define the norm of
X ⊆ Rn as ||X||∞ = supx∈X ‖x‖. Given a set Z, we denote



the set of subsets of Z by 2Z , which includes Z itself and
the empty set ∅. Given a transition relation F : Z → 2Z , and
Z ′ ⊆ Z, F (Z ′) =

⋃
z∈Z′ F (z). For z ∈ Z, F 0(z) = {z} and

for δ ∈ N \ {0}, F δ(z) = F (F δ−1(z)). We define the robust
predecessors of Z ′ by preF (Z ′) = {z ∈ Z| F (z) ⊆ Z ′}. We
denote by max-invF (Z ′) the maximal invariant subset of Z ′

for F , i.e. the largest subset Z ′′ ⊆ Z ′ such that F (Z ′′) ⊆ Z ′′.
II. MODELING AND FORMULATION

In this section, we introduce a general class of discrete-
time systems to be used in the paper. We then define a
class of contracts and several associated semantics for contract
satisfaction. Finally, we formulate the problem of contract
verification under consideration in this paper.

A. Systems
In this paper, we will work with the following class of

discrete-time systems:

Definition 1. A system is a tuple S = (Z,F, Z0), where
• Z is a set of states;
• F : Z → 2Z is a transition relation;
• Z0 ⊆ Z is a set of initial states.

A trajectory of S is a sequence (zt)
T
t=0 where T ∈ N ∪ {∞}

such that

z0 ∈ Z0 and zt+1 ∈ F (zt),∀t ∈ N<T . (1)

The trajectory is maximal if T = ∞ or if F (xT ) = ∅. It
is complete if T = ∞. The set of maximal trajectories of
S is denoted Tmax(S). S is forward-complete if all maximal
trajectories are complete.

To show the generality of Definition 1, let us consider a
typical discrete-time dynamical system with external input
wt ∈ W , state xt ∈ X , and output yt ∈ Y , written in the
classical form:{

xt+1 = f(xt, wt), x0 ∈ X0

yt = g(xt, wt)
, t ∈ N.

The system above can be written under the form of Defini-
tion 1 by considering the extended state zt = (wt, xt, yt).
Then, the dynamics of zt is described by system S =
(Z,F, Z0) where Z = W × X × Y , the transition relation
is given for all z = (w, x, y) ∈ Z by

F (z) =

{
(w+, x+, y+) ∈ Z

∣∣∣∣ w+ ∈W, x+ = f(x,w),
y+ = g(x+, w+)

}
and the set of initial states is

Z0 =

{
(w0, x0, y0) ∈ Z

∣∣∣∣ w0 ∈W, x0 ∈ X0,
y0 = g(x0, w0)

}
.

Of course, Definition 1 allows us to also consider other types
of systems, such as systems with state constraints. Let us
remark that in our formalism, we do not make an explicit
distinction between input, state, and output variables. Also,
we do not make any assumption on the set of states Z, which
can be finite or infinite; discrete, continuous or hybrid.

In the following, we will make the standing assumption that
the system S under consideration is forward-complete.

B. Assume-Guarantee Contracts

In this paper, we consider a class of assume-guarantee
contracts defined as follows.

Definition 2. Let S = (Z,F, Z0) be a system. An assume-
guarantee contract (AG-contract) for S is a pair C = (FA, FG)
where FA : Z → 2Z and FG : Z → 2Z are transition relations
representing assumptions and guarantees respectively.

An AG-contract is a specification which states guarantees
that should be fulfilled whenever the assumptions hold. We
use the notation S |= C to notify that a system S satisfies
a contract C. However, in this paper we will consider several
semantics for contract satisfaction, which are formalized in the
following definition:

Definition 3. Consider a system S = (Z,F, Z0) and an AG-
contract C = (FA, FG) for S. For δ ∈ N, we define the δ-
satisfaction of C by S as follows:
• For δ ∈ N, S |=δ C if for all (zt)

∞
t=0 ∈ Tmax(S), it holds

for all t ∈ N:(
∀s ∈ N ∩ {t− δ, . . . , t}, zs+1 ∈ FA(zs)

)
=⇒ zt+1 ∈ FG(zt).

• For δ = ∞, S |=∞ C if for all (zt)
∞
t=0 ∈ Tmax(S), it

holds for all t ∈ N:(
∀s ∈ N≤t, zs+1 ∈ FA(zs)

)
=⇒ zt+1 ∈ FG(zt).

Intuitively, δ-satisfaction states that if the assumptions are
satisfied on the time window N ∩ {t − δ, . . . , t}, then the
guarantee needs to be fulfilled at time t. The parameter δ
can be thought about as a time-horizon defining the size of
the sliding window on which the contract assumptions are
evaluated.

It is worthwhile to point out the following major difference
between δ-satisfaction (for δ ∈ N) and ∞-satisfaction (for
δ = ∞). In ∞-satisfaction, if the assumption happens to
be violated at some time instant (i.e. if there exists t ∈ N
such that zt+1 /∈ FA(zt)), then there is no obligation of
ensuring the guarantee anytime after that instant. In contrast,
with the δ-satisfaction, if the assumption becomes true again
over a period of δ + 1 time steps, then the guarantees
needs to be fulfilled again. Hence, δ-satisfaction, for δ ∈ N,
makes it possible to specify behaviors that are more resilient
to assumption violations than ∞-satisfaction. Actually the
following result shows that Definition 3 defines a hierarchy
of contract satisfaction semantics parameterized by δ: 0-
satisfaction being the strongest semantics (corresponding to
the weakest assumption) and∞-satisfaction being the weakest
semantics (corresponding to the strongest assumption).

Proposition 1. The following properties hold:
• For all δ1, δ2 ∈ N with δ1 ≤ δ2, if S |=δ1 C then S |=δ2 C.
• For all δ ∈ N, if S |=δ C then S |=∞ C.

Remark 1. In this paper, we will pay a specific attention to
the particular case δ = 0. Note that for δ = 0, Definition 3



boils down to S |=0 C if for all (zt)
∞
t=0 ∈ Tmax(S), it holds

for all time t ∈ N:

zt+1 ∈ FA(zt) =⇒ zt+1 ∈ FG(zt).

Remark 2. For δ = +∞, our framework can be seen as a
generalization of invariance AG-contracts introduced in [20],
by considering, for a subset ZA ⊆ Z, FA of the form:

FA(z) =

{
Z if z ∈ ZA
∅ if z /∈ ZA

and for a subset ZG ⊆ Z, FG of the form:

FG(z) = ZG, or FG(z) =

{
Z if z ∈ ZG
∅ if z /∈ ZG

for strong and weak satisfaction semantics (as defined in [20]),
respectively.

We now formulate the problem of contract verification that
we consider in this paper:

Problem 1. Given a system S = (Z,F, Z0), an AG-contract
C = (FA, FG) for S, and δ ∈ N ∪ {∞}, verify if S |=δ C.

We end this section with a technical result that will be
instrumental for further developments:

Proposition 2. Consider a set Z, transition relation F and
an AG-contract C = (FA, FG). For δ ∈ N∪{∞}, there exists
a (possibly empty) maximal set of initial states Z∗0 ⊆ Z such
that:
• S∗ |=δ C where S∗ = (Z,F, Z∗0 ), and
• for all system S = (Z,F, Z0) such that S |=δ C it holds
Z0 ⊆ Z∗0 .

C. Illustrative Example

In this section, we present a simple example to illus-
trate the main features of our framework. We consider a
car-following situation between two vehicles, we model the
distance between the follower vehicle and its leader as the
state variable xt ∈ X ⊆ R, and consider the external input
wt ∈ W ⊆ R describing the desired reference deriving from
the closed loop. Therefore, according to Definition 1 we define
the extended state zt = (wt, xt) and the corresponding system
S = (Z,F, Z0), where Z = W×X , Z0 ⊆ Z and the transition
relation is

F : xt+1 = xt + λ(wt − xt), (2)

with λ ∈ (0, 1). We assume that W ⊆ X and that X is convex,
so that the system S is forward-complete. For the described
system, we suggest the following AG-contracts of interest.

Fig. 1. The reference framework of the considered car-following situation in
the example.

Contract 1. An AG-contract C = (FA, FG) for S is defined
as composed by:
• the assumption of bounded variation of the distance

reference over time, i.e.

FA : |wt+1 − wt| ≤ D0, (3)

where D0 ∈ R+;
• the guarantee to have a bounded variation of the distance

over time while having a bounded difference between the
distance and the reference, i.e.

FG : |xt+1 − xt| ≤ D1 ∧ |xt+1 − wt+1| ≤ D2, (4)

where D1 ∈ R+, D2 ∈ R+.

III. CHARACTERISATION USING INVARIANT SETS

In this section, we provide theoretical results for verifying
contracts based on the notion of invariant sets. We first
consider the simpler cases δ = 0 and δ = +∞. Then, we
present an approach for the case δ ∈ N, with δ 6= 0.

A. 0-satisfaction and ∞-satisfaction

To characterize the initial states for which the contract is
satisfied, let us define the set Z0

C given by

Z0
C = {z ∈ Z| FS∩A(z) ⊆ FG(z)} , (5)

where the transition relation FS∩A : Z → 2Z is defined by

∀z ∈ Z, FS∩A(z) = F (z) ∩ FA(z).

We first deal with 0-satisfaction:

Theorem 1. Consider a system S = (Z,F, Z0) and a contract
C = (FA, FG) for S. Then, S |=0 C if and only if there exists
ZC ⊆ Z such that the following hold

Z0 ⊆ ZC ⊆ Z0
C , (6)

F (ZC) ⊆ ZC . (7)

Proof. We start by proving the “if” part. Consider (zt)
∞
t=0 ∈

Tmax(S). Since z0 ∈ Z0 ⊆ ZC by (6), we obtain by (1) and
(7), that zt ∈ ZC for all t ∈ N. Then, let us assume that for
some t ∈ N, zt+1 ∈ FA(zt), then from (1) it holds zt+1 ∈
F (zt) ∩ FA(zt) = FS∩A(zt). Since zt ∈ ZC ⊆ Z0

C by (6), we
get from (5) that zt+1 ∈ FG(zt). Therefore, S |=0 C.

We now prove the “only if” part. For that purpose, let us
assume that S |=0 C. From Proposition 2, we know that there
exists Z∗0 ⊆ Z, a maximal set of initial states such that S∗ |=0

C where S∗ = (Z,F, Z∗0 ). Let us prove that the conditions of
Theorem 1 hold for ZC = Z∗0 .

By maximality we get Z0 ⊆ Z∗0 . Then, let us consider z0 ∈
Z∗0 . If FS∩A(z0) = ∅, then from (5), z0 ∈ Z0

C . If FS∩A(z0) 6=
∅, let z1 ∈ FS∩A(z0). Then, since S∗ |=0 C, we get that
z1 ∈ FG(z0). Therefore, FS∩A(z0) ⊆ FG(z0) and from (5),
z0 ∈ Z0

C . Hence, Z∗0 ⊆ Z0
C and (6) holds for ZC = Z∗0 .

Let S ′ = (Z,F, Z ′0) where Z ′0 = F (Z∗0 ) and let us show
that we have S ′ |=0 C. Let (zt)

∞
t=0 ∈ Tmax(S ′), since z0 ∈

Z ′0 = F (Z∗0 ) there exists z−1 ∈ Z∗0 such that z0 ∈ F (z−1).



Then (zt−1)∞t=0 ∈ Tmax(S∗). Let t ∈ N, and let us assume
that zt+1 ∈ FA(zt). Since S∗ |=0 C, we get zt+1 ∈ FG(zt).
Hence, S ′ |=0 C. By maximality, this implies that Z ′0 ⊆ Z∗0 .
Hence, F (Z∗0 ) ⊆ Z∗0 and (7) holds for ZC = Z∗0 .

A similar result can be established for ∞-satisfaction:

Theorem 2. Consider a system S = (Z,F, Z0) and a contract
C = (FA, FG) for S. Then, S |=∞ C if and only if there exists
ZC ⊆ Z such that the following hold

Z0 ⊆ ZC ⊆ Z0
C , (8)

FS∩A(ZC) ⊆ ZC . (9)

Proof. We start by proving the “if” part. Consider (zt)
∞
t=0 ∈

Tmax(S) and let t ∈ N such that for all s ∈ N≤t, zs+1 ∈
FA(zs). Then, from (1) it holds for all s ∈ N≤t, zs+1 ∈
F (zs) ∩ FA(zs) = FS∩A(zs). Since z0 ∈ Z0 ⊆ ZC by (8),
we obtain by (9), that zt ∈ ZC . Moreover, we already showed
that zt+1 ∈ FS∩A(zt). Since zt ∈ ZC ⊆ Z0

C by (8), we get
from (5) that zt+1 ∈ FG(zt). Therefore, S |=∞ C.

We now prove the “only if” part. For that purpose, let us
assume that S |=∞ C. From Proposition 2, we know that
there exists Z∗0 ⊆ Z, a maximal set of initial states such that
S∗ |=∞ C where S∗ = (Z,F, Z∗0 ). Let us prove that the
conditions of Theorem 2 hold for ZC = Z∗0 . The proof that
(8) holds is identical to the proof that (6) holds in Theorem 1.

Let S ′ = (Z,F, Z ′0) where Z ′0 = FS∩A(Z∗0 ) and let us
show that we have S ′ |=0 C. Let (zt)

∞
t=0 ∈ Tmax(S ′), since

z0 ∈ Z ′0 = FS∩A(Z∗0 ) there exists z−1 ∈ Z∗0 such that z0 ∈
FS∩A(z−1). Then, since FS∩A(z−1) ⊆ F (z−1), we get that
(zt−1)∞t=0 ∈ Tmax(S∗). Let t ∈ N, and let us assume that for
all s ∈ N≤t, zs+1 ∈ FA(zs). Since FS∩A(z−1) ⊆ FA(z−1),
we get, for all s ∈ N≤t+1, zs ∈ FA(zs−1). Since S∗ |=∞ C,
we get zt+1 ∈ FG(zt). Hence, S ′ |=∞ C. By maximality, this
implies that Z ′0 ⊆ Z∗0 . Hence, FS∩A(Z∗0 ) ⊆ Z∗0 and (9) holds
for ZC = Z∗0 .

Hence we can see that for δ = 0 and δ = ∞, Problem 1
can be solved by computing subsets of Z0

C that are invariant
for the maps F and FS∩A, respectively. If the initial set Z0

is included in the computed invariant subset then we can
certify that the contract is satisfied. Moreover, this inclusion
test is necessary and sufficient if one is able to compute
the maximal invariant subsets of Z0

C , max-invF
(
Z0
C
)

and
max-invFS∩A

(
Z0
C
)
, respectively.

The computation of (maximal) invariant sets for dynamical
systems is a problem that has been extensively considered in
the literature [13]. For example, the existence of positively
invariant sets for ensuring stability of linear delay-difference
equations is investigated in [21]. In [22], a methodology for
constructing inner approximations of the maximal positively
invariant set for a polynomial dynamical system with semi-
algebraic constraints is suggested. An interval approach to
compute invariant sets is suggested in [23], to estimate the
largest invariant of a subset of the state space of a nonlin-
ear continuous-time dynamical system. Rather than classical
control approaches, also modern data-driven ones consider

invariant sets, e.g. as described in [24], where a data-driven
method for computing an approximation of a robust control
invariant set from experimental data is proposed, or in [25],
where the problem of invariant set computation for black-
box switched linear systems using merely a finite set of
observations of system trajectories is investigated. Due to the
necessity to deal with large-scale systems, scalable approaches
for computing invariant sets are targeted too [26].

B. δ-satisfaction

We now consider the case δ ∈ N, with δ 6= 0. In this case,
the δ-satisfaction of a contract can be verified by computing
two invariant sets, one for the map F and another one for the
map FS∩A as shown in the following result:

Theorem 3. Consider a system S = (Z,F, Z0), a contract
C = (FA, FG) for S and δ ∈ N \ {0}. Then, S |=δ C if and
only if there exist ZC ⊆ Z and Z ′C ⊆ Z such that the following
hold

Z0 ⊆ ZC ⊆ Z0
C , (10)

FS∩A(ZC) ⊆ ZC , (11)
ZC ⊆ Z ′C , (12)

F (Z ′C) ⊆ Z ′C , (13)

F δS∩A(Z ′C) ⊆ ZC . (14)

Proof. We start by proving the “if” part. Consider (zt)
∞
t=0 ∈

Tmax(S) and let t ∈ N such that for all s ∈ N∩{t−δ, . . . , t},
zs+1 ∈ FA(zs). Let us first show that zt ∈ ZC . We consider
two different cases.
• t ≤ δ: Then, from (1) it holds for all s ∈ N≤t, zs+1 ∈
F (zs) ∩ FA(zs) = FS∩A(zs). Since z0 ∈ Z0 ⊆ ZC by
(10), we obtain by (11), that zt ∈ ZC .

• t > δ: Since z0 ∈ Z0 ⊆ ZC ⊆ Z ′C by (10) and (12), we
obtain by (1) and (13), that zt−δ ∈ Z ′C . From (1), we get
for all s ∈ N ∩ {t− δ, . . . , t}, zs+1 ∈ F (zs) ∩ FA(zs) =
FS∩A(zs). Therefore, we get from (14) that zt ∈ ZC .

In both cases, we already showed that zt+1 ∈ FS∩A(zt). Since
zt ∈ ZC ⊆ Z0

C by (10), we get from (5) that zt+1 ∈ FG(zt).
Therefore, S |=δ C.

We now prove the “only if” part. For that purpose, let us
assume that S |=δ C. From Proposition 2, we know that there
exists Z∗0 ⊆ Z, a maximal set of initial states such that S∗ |=δ

C where S∗ = (Z,F, Z∗0 ). Let us prove that the conditions of
Theorem 2 hold for ZC = Z∗0 and Z ′C = reach(S∗), where

reach(S∗) =
{
z ∈ Z

∣∣ ∃τ ∈ N, (zt)∞t=0 ∈ Tmax(S∗), z = zτ
}
.

(15)
The proof that (10) holds is identical to the proof that (6) holds
in Theorem 1. Similarly, (11) can be proved along the same
lines as (9) in Theorem 2.

Then, it is clear from (15) that Z∗0 ⊆ reach(S∗). Therefore,
(12) holds for ZC = Z∗0 and Z ′C = reach(S∗). It is also easy
to prove from (15), that F (reach(S∗)) ⊆ reach(S∗). Hence,
(13) holds for Z ′C = reach(S∗).

It remains to show that (14) holds. For that purpose, let
S ′ = (Z,F, Z ′0) where Z ′0 = F δS∩A(reach(S∗)) and let us



show that we have S ′ |=δ C. Let (zt)
∞
t=0 ∈ Tmax(S ′), since

z0 ∈ Z ′0 = F δS∩A(reach(S∗)), there exist (z′t)
∞
t=0 ∈ Tmax(S∗)

and τ ≥ δ, such that z′τ = z0 and for all s ∈ {τ−δ, . . . , τ−1},
z′s+1 ∈ FA(z′s). Let t ∈ N, and let us assume that for all
s ∈ N ∩ {t− δ, . . . , t}, zs+1 ∈ FA(zs). Then, for s ∈ N, let

z∗s =

{
z′s if 0 ≤ s < τ,

zs−τ if τ ≤ s.

Then, since z′τ = z0, we get that (z∗s )∞s=0 ∈ Tmax(S∗).
Moreover, for all s ∈ N∩{t+τ−δ, . . . , t+τ}, z∗s+1 ∈ FA(z∗s ).
Since S∗ |=δ C, we get that z∗t+τ+1 ∈ FG(z∗t+τ ). This gives
us zt+1 ∈ FG(zt). Hence, S ′ |=δ C. Then, by maximality,
this gives Z ′0 ⊆ Z∗0 . Therefore (14) holds for ZC = Z∗0 and
Z ′C = reach(S∗).

Remark 3. It is interesting to note that conditions (10) and
(11) in Theorem 3 are the same as conditions (8) and (9)
in Theorem 2. This shows that for any δ ∈ N \ {0}, S |=δ

C implies S |=∞ C, which is consistent with Proposition 1.
Also, if conditions (6) and (7) in Theorem 1 are satisfied for
some ZC ⊆ Z then it can be shown that the conditions in
Theorem 3 are satisfied with ZC = Z ′C . This shows that for
any δ ∈ N \ {0}, S |=0 C implies S |=δ C, which is also
consistent with Proposition 1.

We end the section by presenting an approach to compute
the sets ZC and Z ′C satisfying the conditions of Theorem 3.
Consider the sequences of sets {ZkC}∞k=0 and {Z ′kC }∞k=0 where
Z0
C is given by (5) and for k ∈ N :

Z ′kC = max-invF
(

preF δS∩A
(ZkC )

)
, (16)

Zk+1
C = max-invFS∩A

(
ZkC ∩ Z ′kC

)
. (17)

Proposition 3. Let Z∗0 ⊆ Z, the maximal set of initial states
such that S∗ |=δ C where S∗ = (Z,F, Z∗0 ). The following
proposition holds:
• For all k ∈ N, Z∗0 ⊆ ZkC ,
• If for some k ∈ N, Zk+1

C = ZkC , then Z∗0 = ZkC .

From (17), it is clear that Zk+1
C ⊆ ZkC so we know that

the sequence of sets {ZkC}∞k=0 converges to a fixed point.
However, in general, there is no guarantee that this fixed point
can be reached in a finite number of steps. Hence Proposition 3
provides a semi-algorithm to verify the δ-satisfaction of a
contract. Numerical aspects of this approach will be explored
in future research.

IV. EXAMPLE

In this section, we illustrate how to verify the∞-satisfaction
and δ-satisfaction for Contract 1 in the example of Sec-
tion II-C.

A. Example for the ∞-satisfaction

To prove S |=∞ C, the main goal is to compute a set of
states ZC satisfying the conditions of Theorem 2. We shall
search for such a set under the form

ZC = {(x,w) ∈ Z | |x− w| ≤ D} , (18)

where D is a constant to be determined.
Let us first compute a subset of Z0

C , the set of pairs (wt, xt)
such that if (2), (3) hold then (4) holds. Let us remark that
from (2),

|xt+1 − xt| = |xt + λ(wt − xt)− xt| = λ|wt − xt|. (19)

Then, for |xt+1 − xt| ≤ D1 to hold in (4), it is sufficient that

|wt − xt| ≤
D1

λ
. (20)

Then, let us remark that from (2) and (3) we have

|xt+1 − wt+1| ≤ |xt+1 − wt+1 − wt + wt|
≤ |xt+1 − wt|+ |wt − wt+1|
≤ |xt + λ(wt − xt)− wt|+D0

≤ (1− λ)|xt − wt|+D0. (21)

Therefore, for |xt+1−wt+1| ≤ D2 to hold in (4), it is sufficient
that

|xt − wt| ≤
D2 −D0

1− λ
. (22)

As a consequence, a subset of Z0
C is computed as{

(x,w) ∈ Z
∣∣∣∣ |x− w| ≤ D1

λ
∧ |x− w| ≤ D2 −D0

1− λ

}
⊆ Z0

C .

(23)
Then, for ZC ⊆ Z0

C to hold in (8), it is sufficient to consider
a value for D such that

D ≤ min

{
D1

λ
,
D2 −D0

1− λ

}
. (24)

Furthermore, for verifying (9), let us assume (2), (3) and

|xt − wt| ≤ D. (25)

Then, from (2) and (3), we obtain again (21), which gives
with (25)

|xt+1 − wt+1| ≤ (1− λ)D +D0. (26)

To satisfy (9), we need to have

|xt+1 − wt+1| ≤ D. (27)

It is therefore sufficient that

D ≥ D0

λ
. (28)

Then, for any value D satisfying (24) and (28), the set ZC
satisfies the conditions of Theorem 2. We remark that to find
such a value D, it is required that D0 ≤ D1 and D0 ≤ λD2.
In such a case, we get S |=∞ C, for any set of initial states
Z0 ⊆ ZC .



B. Example for the δ-satisfaction

To prove S |=δ C, we first need the additional hypotheses
that the sets X and W are bounded, i.e. ||X||∞ ≤ B and
||W ||∞ ≤ B, with B ∈ R+.

We want to prove that the conditions of Theorem 3 are
satisfied by the sets ZC given by (18) and Z ′C given by

Z ′C = W ×X = Z. (29)

It follows from the previous section that (10) and (11) are
satisfied if (24) and (28) hold. Moreover, (12) and (13) are
clearly satisfied since Z ′C = Z. It thus remains to find
conditions that ensure (14). Let us consider (w0, x0) ∈ Z ′C
and assume (2), (3) hold for t = 0, . . . , δ − 1. Then

|xt+1 − wt+1| ≤ (1− λ)|xt − wt|+D0, (30)

which by induction gives

|xδ − wδ| ≤(1− λ)δ|x0 − w0|
+
(
(1− λ)δ−1 + ...+ (1− λ) + 1

)︸ ︷︷ ︸
geometric series

D0

≤(1− λ)δ|x0 − w0|+
1

λ
D0

≤(1− λ)δ2B +
1

λ
D0. (31)

For (14) to hold, we need to have |xδ−wδ| ≤ D and therefore
it is sufficient that

D ≥ (1− λ)δ2B +
1

λ
D0. (32)

Then, for any value D satisfying (24) and (32), the sets ZC
and Z ′C satisfy the conditions of Theorem 3. In such a case,
we get S |=δ C, for any set of initial states Z0 ⊆ ZC .

V. CONCLUSIONS

The present paper suggests the certification of the existence
of positive invariance sets as verification framework for the
satisfaction of assume-guarantee contracts for discrete-time
dynamical systems. A hierarchy of contract satisfaction se-
mantics, that is parameterized by a time-horizon over which
assumptions are evaluated, is defined and proved. Finally, the
theoretical results are applied to a simple example.

Future research shall focus on numerical aspects of the
approach, in particular for δ-satisfaction. Applications of our
framework to challenging problems from power systems or
multi-agent robotics will also be considered. Finally, we plan
to extend our verification framework to develop techniques for
synthesizing controllers from contracts.
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APPENDIX

Proof of Proposition 1: If δ1 ≤ δ2, then we get for all
(zt)

∞
t=0 ∈ Tmax(S) and for all t ∈ N:(
∀s ∈ N ∩ {t− δ2, . . . , t}, zs+1 ∈ FA(zs)

)
=⇒

(
∀s ∈ N ∩ {t− δ1, . . . , t}, zs+1 ∈ FA(zs)

)
.

It follows from above and from Definition 3 that S |=δ1 C
implies S |=δ2 C. Similarly, for any δ ∈ N , we have for all
(zt)

∞
t=0 ∈ Tmax(S) and for all t ∈ N:(
∀s ∈ N≤t, zs+1 ∈ FA(zs)

)
=⇒

(
∀s ∈ N ∩ {t− δ, . . . , t}, zs+1 ∈ FA(zs)

)
.

It follows from above and from Definition 3 that S |=δ C
implies S |=∞ C.

Proof of Proposition 2: Consider Ω0 ⊆ 2Z the set
consisting of all sets of initial states Z0 ⊆ Z such that S |=δ C
where S = (Z,F, Z0). Then, let Z∗0 =

⋃
Z0∈Ω0

Z0. Clearly,
for all Z0 ∈ Ω0, Z0 ⊆ Z∗0 , which proves the second item of
the proposition. Moreover, it is easy to check that Z∗0 ∈ Ω0,
which proves the first item of the proposition.

Proof of Proposition 3: From the proof of Theorem 3,
we know that the conditions (10)-(14) hold for ZC = Z∗0 and
Z ′C = reach(S∗). Then from (10), we get that Z∗0 ⊆ Z0

C . We
now proceed by induction. Let us assume that for some k ∈ N,
Z∗0 ⊆ ZkC . Then, from (13), (14) and (16), we get that

reach(S∗) ⊆ max-invF
(

preF δS∩A
(Z∗0 )

)
⊆ Z ′kC .

Then, from (11), (12) and (17), we get that

Z∗0 ⊆ max-invFS∩A (Z∗0 )

⊆ max-invFS∩A (Z∗0 ∩ reach(S∗)) ⊆ Zk+1
C .

Hence, the first item of the proposition holds.
If for some k ∈ N, Zk+1

C = ZkC , then it follows from (16)
and (17) that the conditions of Theorem 3 hold for ZC =
ZkC and Z ′C = Z ′kC . Hence, from Theorem 3, the contract is
satisfied for the set of initial states Z0 = ZkC . It then follows
from the maximality of Z∗0 that ZkC ⊆ Z∗0 . Together, with
the first item of the proposition, we can deduce the second
item.


