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Project-Team Athena
Project period: 01/03/2022 - 30/08/2022

Internship report
MSc 2 - Modeling for Neural and Cognitive Systems
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1 Introduction

Being able to infer the function of a brain given the knowledge of its structure is valuable in order to understand the
impact of structural alterations caused by injuries and/or diseases on the function of the brain. Indeed, devising a
mapping from brain structural connectivity (SC) to brain functional connectivity (FC) is motivated by the thought
that structure is the physical support on which function operates.

Consequently, using supervised learning, we attempt to predict a subject’s FC matrix from their SC matrix.
This work extends [12]’s, in which an auto-encoder architecture is used to perform the aforementioned task. The
SC matrix is used inside the encoder to encode an initial activation state of the brain into a latent space, and the
decoder outputs the FC matrix, that we assume to be a function of the SC matrix.
More particularly, its encoder is a Graph Convolutional Network (GCN). Its architecture is chosen due to the fact
that these connectivity matrices can be interpreted as the adjacency matrices of graphs, with each node being a brain
region, and an entry in the matrix holding the weight of the edge between the two brain regions corresponding to the
indexes of the entry. Therefore, if the brain is initialized with an initial state, and the graph convolution operation
is performed, exchange of information between regions occurs following the weight of their connections, as described
by the SC matrix.

The convolution operation has filters applied to the SC matrix’s Laplacian following a Chebyshev polynomial, as
defined by [14], and applied by [12]. In tbis work, we revisit approximations made on this polynomial in order to
explore the influence of individual weight sets per polynomial members, and higher polynomial orders.
Additionally, we investigate the usage of different distance metric in order to drive the network’s learning. Currently,
the distance metric used is the Mean Squared Error (MSE) which merely considers each matrix as a set of scalar
values. FC matrices are symmetric positive definite matrices, leading us to use the Affine-Invariant Riemannian
distance metric on SPD matrices as the network loss function.

Consequently, the question we attempt to answer is:
Can we improve the prediction of FC of brain cortical areas from an estimation of brain SC by 1.
removing assumptions found in Yang. Ji’s GCN model [12] and 2. considering a different distance
metric between FC matrices?

Performances are compared to a reference estimator, the Fréchet Mean of FC matrices. The comparison criteria
is the metric used as the network loss function and the Pearson Correlation.

The dataset is provided by the Human Connectome Project (HCP) and holds 1050 healthy subjects’ diffusion
Magnetic Resonance Imaging (dMRI) scans, their rest-state functional Magnetic Resonance Imaging (fMRI) scans,
and their structural Magnetic Resonance Imaging scans. Standard processing pipelines are used to generate SC
matrices and FC matrices. The brain is divided according to two different atlases (N = 68 regions following the
Desikan-Killiany cortical atlas, N = 200 following the Schaefer cortical atlas), leading to squares matrices with the
value at cell (i, j) corresponding to a measure of connectivity between the area indexed by i and the area indexed by
j.

This report will start off with a review of related works in structural connectivity, functional connectivity, Graph
Convolutional Networks and Structure Function Mapping. Then, the details of the processing steps that led to
the two datasets being used will be developed. Following that, the autoencoder architecture performing the FC
estimation will be described. Afterwards, the results of the estimations will be described. Finally, we will reflect on
our results and point out limitations of the design choices that were made and possible future improvements.
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2 Related work

The neuron is the elementary processing unit of the brain. A neuron receives information from other neurons through
its dendritic projections. Aggregation and computation is made from this information in the neuron’s cell body, and
the result is then propagated to other neurons through a long fiber, called an axon. Observing a structural MRI
of the brain, two tissue types can be visually told apart: ”White Matter” (WM) and ”Grey Matter” (GM). GM is
found at the external surface of the brain (cortical grey matter), as well as deep structures (sub-cortical grey matter).
This tissue type has a high density in cell bodies. WM is made of densely packed myelinated axons or fiber bundles,
as well as glial cells and blood vessels. The majority of WM is made up of commissural fibers and association fibers:
they transfer information between intra and inter-hemispheric brain regions [13].

Structural connectivity corresponds to a quantification of these WM fibers that link brain cortical regions. Structural
information can be inferred from diffusion-weighted MRI data: dMRI holds information on the diffusion of water
molecules in the brain.

• Grey Matter (GM) tissue can often be seen as generally unorganized and hinders diffusion equally in all
directions, so diffusion is modeled and measured as equal in all directions.

• In Cerebro-spinal fluid (CSF), water molecules also diffuse equally in all directions.

• In White Matter (WM), and more precisely, within axon fibers, water molecule diffusion direction tends to
follow the orientation of the axons they are in: dMRI is therefore particularly interesting in order to study
WM tracts.

Inferring structural connectivity from dMRI is in itself a field of research, often based on tractography methods
that attempts to reconstruct WM tracts [19, 32]. In this work, structural connectivity is represented by a square
matrix. At the cell in position i, j, there will be a quantification of the connectivity between cortical regions indexed
by i and the region indexed by j. The brain cortex is modeled as a network of cortical regions: this network can be
seen as a graph, with the structural connectivity matrix as its adjacency matrix. Information held in cortical regions
is modeled as node states, and this information propagates following the strength of the connections to other brain
regions, properties of the edges of the graph.

Functional MRI (fMRI) is a brain imaging method that indirectly captures activity in the brain through time.
This imaging method measures a signal dependent on variations of blood oxygenation levels in the brain, that is
referred to as the BOLD signal (Blood Oxygenation Level-Dependent). Resting state functional connectivity is de-
fined by the similarity between temporal activation patterns of cortical brain regions, while a subject is at rest. This
information can be computed from resting-state fMRI data following different methodology [29]. In this work, it is
also held in a square matrix, with each cell indexed by i, j containing the similarity of the activation patterns of
brain regions indexed by i and j.

Structure-function mapping has been studied a variety of ways. [6] groups under a general formulation multiples
structure-function mappings based on the eigenmodes of the SC or its Laplacian. Later on, they extend this work in
order to use Riemannian metrics to the problem [5]. Both of these consider analytical models of structure-function
mapping. [12] approaches the problem by using artificial intelligence to perform this mapping, more particularly
Graph Convolutional Networks (GCN) and Graph Transformer Networks.

As this work uses the GCN architecture of [12] as a starting point and investigates improvements in their model,
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it makes sense to look at the work leading to this GCN formulation. In [2], a GCN architecture based on spectral
filtering theory was developed, with the added properties of being fast, with a reduced number of parameters to
estimate and a recursive form, as well as localized. The details of this will be developed in Section 4.6.2. Similarly,
[14] used GCNs in the context of semi-supervised classification. Their GCN fits into the general formula proposed
in [2], under some parameter choices and approximations. It is this GCN that has been used in [12], the work at the
basis on this current project.

3 Data and preprocessing

3.1 HCP database

Data was obtained from the WU-Minn Human Connectome Project’s database [30]. It contains different imaging
modalities for 1206 healthy young adult participants, including:

• 3T Diffusion MRI data, pre-processed with the HCP diffusion pipeline [18, 7, 21, 31, 23]. 1065 out of 1206
subjects have such a package.

• 3T Resting State Functional MRI data pre-processed with the HCP functional pipeline [18, 7, 21, 31], from
the REST1 session. 1096 out of 1206 have such a package.

• 3T Structural MRI, pre-processed with the HCP structural pipeline [15]. 1113 out of 1200 have such a package.

The number of subjects that have all packages available as well as all necessary files within each package is 1050
for N = 68 and 1042 for N = 200.

3.2 Processing pipelines to connectivity matrices

3.2.1 Atlases

An atlas is a brain volume that attributes to each voxel a label that indicates the brain structure this voxel belongs
to. They are usually registered to a known template space, enabling its user to perform the appropriate registration
steps to use it. Atlases usually have different focuses (cortex, thalamus, STN, white matter, etc.), making them more
or less relevant depending on the intended usage. We are looking for an atlas that describes the division of the brain
cortex into sub-regions, so cortical atlases will be used. The cortex can be divided into sub-regions following different
criteria. This division is itself a field of research. The two atlases used are examples of this varying methodology:

Desikan-Kiliany [4] This atlas was devised by considering anatomical properties of the brain, particularly the
brain curvature. Inflated versions of brain structural MRI scans (in which the brain is visualized with its folds
flattened, but curvature information is preserved). These inflated brains are manually labeled with 34 regions of
interests (ROIs) per hemisphere. Then, the atlas is generated using a registration procedure that aligns the cortical
folding patterns (from the curvature information) [10] and a probabilistic labeling algorithm assigns a region to every
point on the non-flattened cortical surface. In total, 68 cortical regions are described by this atlas.

Schaefer [20] This atlas uses rest-state fMRI to compute cortical regions: its model combines two approaches: a
local gradient that detects differences in functional connectivity patterns, relevant to identify cortical area boundaries,
and a global similarity approach that clusters functional connectivity patterns, without considering matters of spatial
proximity. Multiple resolutions of this atlas are available (from 100 parcels to 1000 parcels). Here, we chose the
parcellation scheme with 200 cortical regions.
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3.2.2 fMRI to FC matrix

In this work, functional connectivity is defined as the correlation of the time series of activity between brain cortical
regions.
Four files are used:

• rfMRI REST1 LR hp2000 clean.nii.gz - from the HCP database

• Movement Regressors.txt - from the HCP database

• Movement Regressors dt.txt - from the HCP database

• The cortical atlas parcellation registered to the fMRI data

REST1 refers to the acquisition session name, Left to Right (LR) phase encoding was performed during the
acquisition, and highpass filtering is applied with a “cutoff” of 2000s (hp2000).

An fMRI acquisition corresponds to a time series of 3D brain volumes. Each volume is made up of voxels, which
are its elementary units. A voxel is a small cube defined by its size (determining the spatial resolution of the fMRI)
and its value (representing the intensity of the signal, which is a quantification of brain activity). As an example,
Subject 100307’s fMRI volume has the following dimensions:

(X,Y, Z, T ) = (91, 109, 91, 1200)

Subject head movement during the scan leads to motion artefacts. These have been corrected with FLIRT, an FSL-
based tool performing an 12-parameter affine-body registration onto a reference image (the ”Single-Band Reference”
image) acquired in a moment closely preceding the fMRI volume sequence acquisition. The transformations have
already been applied to the fMRI volumes, but their output is available in the two last files mentioned.
An affine transformation has the following format:

m00 m01 m02 t0
m10 m11 m12 t1
m20 m21 m22 t2
0 0 0 1


It contains 12 parameters, describing operations of rotation, scaling, translation and shearing. There are as many

of these matrices as time points. The nature of the transformation picked (affine) means that the transformation
for all voxels of the volume is the same. Each movement regressor (component of the regression matrix) has a time
evolution, explaining this regressor’s contribution in the movement that occurred. To each voxel can be associated a
timeseries. This timeseries can be partly described by the movement that occurred, and whichever way the movement
influenced the voxel’s activation time series needs to be removed.

Movement regressors and their derivatives over time are available in two text files.
Removing movement can be described as a minimisation problem: we would like to minimize ȳ, the amount of

data that cannot be explained by movement:

argmin
α

∥ȳ∥2 = ∥y − ymov∥2 = ∥y −Rα∥2

The solution to this minimisation is:
α = R−1

L y = (RTR)−1RT y

At each voxel:

• y is a (1200× 1) matrix
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• R is a (1200× 24) matrix

• α is a (24× 1) matrix of estimated coefficients.

Then, a band-pass filter of frequency range [0.01, 0.08] Hz is applied onto the signal, following findings that the
major frequency contributions to resting-state functional connectivity come from fluctuations less than 0.1 Hz [1].

Following that, using the information found in the atlas volume, for each brain region, all voxels belonging to
this region have their timeseries of activation averaged together, resulting in the timeseries of activation of the brain
region. Finally, the Pearson Correlation between pairs of regions is computed and organized into a square matrix.
The Pearson correlation can be written the following way:

f(xi) =
xi − x̄√∑
xi
(xi − x̄)2

r = f(Xi,j)f(Xi,j)
T (1)

With X the matrix of dimensions (N,T ), which holds the fMRI signal associated to N cortical regions in a time
window of size T .
r is a symmetric positive semi-definite matrix, with each of the entries of the matrix in [-1, 1]. It also has a diagonal
of 1s, as signals are fully correlated with themselves.

While it is ensured to be symmetric positive semi-definite by its construction, in practice, this FC matrix has
no zero eigenvalues and is treated as symmetric positive definite. A zero eigenvalue is an indicator that there is
colinearity between timeseries. With T >> N , there are much fewer timeseries than number of values in each
timeseries: as a consequence, it is very unlikely that a cortical region would have its timeseries colinear to another
cortical region’s. This leads the matrix of timeseries’ Pearson Correlation to have no 0 eigenvalue.

It is worth noting that unlike the data in [12], the FC matrix’s negative correlations are not systematically clipped
to 0 in order to preserve the SPD properties of the FC matrices.

(a) N = 68 (b) N = 200

Figure 1: Subject 100307’s FC matrices, with the cortex divided into N regions

3.2.3 dMRI to SC matrix

Theory behind dMRI processing In order to trigger the displacement of water molecules in the brain, magnetic
gradients are applied by the dMRI machine. These gradients can be described by two values: the b-value and the
b-vector. The b-value holds information on the strength and timing of the gradients used to generate the dMRI
image, expressed in s ·mm−2. The b-vector describes the diffusion direction.
Additionally, some brain volumes are acquired for the b-value b0 = 0 s ·mm−2, where no diffusion-inducing gradient
is applied on the brain. These volumes are used as references.
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The number of shells associated to an acquisition refer to how many different b-values different from 0 were used. A
single-shell acquisition uses a single b-value, while a multi-shell acquisition uses multiple.

A dMRI image is 4-dimensional. The first 3 dimensions are spatial dimensions describing a 3D brain, and the
4th dimension indicates which (b-values, b-vectors) pair describes the magnetic gradient applied.

A single voxel often contains multiple fiber orientations. Diffusion Tensor Imaging (DTI) methods are lacking in
order to capture this anatomical fact, as they only estimate a single fiber orientation per voxel. Rather, it makes more
sense to model these orientations as a distribution. Constrained Spherical Deconvolution (CSD) [25] is a method that
was created in order to address the aforementioned limitations of DTI. Its principles will be explained superficially,
in order to understand the processing pipeline.

Figure 2: An illustration of the principles behind spherical deconvolution: the goal is to estimate the fODF .
Deconvoluting the signal stot by the fiber response function R results in the fODF . s1 and s2 can be seen as the
decomposition of the signal by the individual contributions of coherently oriented fibers going in 2 different directions.
Image source: [3]

CSD performs a task that is referred to as the estimation of a fiber Orientation Distribution Function (fODF). At
each voxel, this signal (stot on Figure 2) is said to live on a sphere, because the b-vectors that describe the acquisition
of the signal are sampled in order to cover a sphere.

If the signal is seen as the summation of the signals resulting from coherently-oriented fibers going in different
direction, the signal resulting from a single bundle of axons with a coherent orientation can be used as a deconvolution
kernel. This deconvolution of the signal by the response function can be seen as the division of the Fourier transform
of the signal by the Fourier transform of the estimated response function.

Projecting the signal in Fourier domain, it is expressed according to a basis of spherical harmonics. Some
properties of the signal and the estimated response function limit the spherical harmonics that will be used in
Fourier space:

• The dMRI signal is antipodally symmetric (the signals associated to two colinear b-vectors are equal), which
allows for the signal to be described according to spherical harmonics of even degree l (those of odd degrees
are not antipodally symmetric) [24]

• The response function is axially symmetric (it represents the signal for a coherently aligned bundle of fibres
aligned with the z axis), meaning only spherical harmonics with order m = 0 are used. These can be referred
to as zonal spherical harmonics [24]

dMRI processing Relevant files retrieved for future processing of dMRI data are:
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• From HCP Diffusion data:

– data.nii.gz, a compressed NIfTI file holding the dMRI data

– bvals, a file containing the b-values

– bvecs, a text containing the b-vectors

• From HCP Structural data:

– atlas name.nii.gz, a compressed NIfTI file, attributing to each voxel of the brain volume a label describing
the structure it belongs to (for the whole brain, including cortical GM, subcortical GM, WM and CSF).
This is a parcellation image generated by Freesurfer [9].

– 100307.L.white MSMAll.32k fs LR.surf.gii, a GiFti file created with Freesurfer tools, holding a list of
vertices on the surface of the left hemisphere.

– 100307.R.white MSMAll.32k fs LR.surf.gii, a GiFti file created with Freesurfer tools, holding a list of
vertices on the surface the right hemisphere.

– atlas name.label.gii, a GiFti file attributing for each vertex of the two previous files, a label according to
a parcellation scheme of the cortex.

Subject 100307’s dMRI acquisiton has the following dimensions:

(X,Y, Z,K) = (145, 174, 145, 288)

The scanner can apply gradients of different strengths and timing (b-value), and directions (b-vector), and a 3D
volume is produced for all (b-value, b-vector) pairs. The value of these pairs can be extracted from the associated
text files:

• b-values.txt described the b-values {0, 1000, 2000, 3000}. b0 = 0 is used as a reference.

• b-vectors.txt contains 288 b-vectors. 18 vectors are associated to b0, and for the three remaining b-values, there
are 90 vectors each, leading to K = 18 + (90× 3) = 288

Processing of dMRI data is done using MRTrix 3.0 tools [26].

Tissue segmentation Using the MRTrix’s 5ttgen tool, a 5 tissue-type (5tt) image is generated, by ”splitting
a voxel into 5”, leading to 5 3D volumes, describing the individual contribution of 5 tissues types: cortical GM,
Subcortical GM, WM, CSF, Pathological tissue. The option defining the algorithm to choose is freesurfer due to
the fact that we provide as input the Freesurfer parcellation image: atlas name.nii.gz. A default parcellation scheme
is considered for this algorithm, described in a table that can be found on Freesurfer’s website, under the name
FreeSurferColorLUT.txt. Should the input parcellation file be done according to a different parcellation scheme, a
look up table would need to be provided. The output file is named under 5tt.mif.

WM-GM interface extraction The voxels at the interface between WM-GM are extracted into a file called
gmwmi.mif. This is done using 5tt2gmwmi.

Converting the data into MRTrix’s format The data is packaged into MRTrix’s .mif format, which includes
the diffusion data, the b-values and the b-vectors. This is done using mrconvert. The bvalues and bvectors are
specified using the –fslgrad option.
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Response function estimation Only zonal spherical harmonics of even degree are used to project the signal
in Fourier domain. Additionally, the maximum order of these zonal spherical harmonics is a function of the number of
b-vectors per b-value. The total number of spherical harmonics (including non-zonal) of all considered orders should
be inferior to the number of b-vectors associated to non-zero b-values. Moreover, there are 2× (l+1) harmonics per
order l.

For a maximum order lmax = 8, the orders considered are S = {0, 2, 4, 6, 8}.∑
l∈S

2× (l + 1) = 46
∑

l∈S∪{10}

2× (l + 1) = 67
∑

l∈S∪{10,12}

2× (l + 1) = 95

While there are enough b-vectors to consider spherical harmonics up to order lmax = 10, in [27], it has been found
that in practice, spherical harmonics terms above l = 8 are negligible and noisy. The final maximum order chosen is
lmax = 8.

The MRTrix’s command to perform this estimation is dwi2response. The msmt tt [11] algorithm is chosen.
This algorithm is appropriate for multi-shell (multiple b-values) and multiple tissue response function estimation. It
takes as input both the data in .mif format, and the division of the parcellation in 5 tissue types. The maximum
harmonics degree is also specified for each b-value.

As a result, the estimation of the response function outputs files of 6 values each, corresponding to the coefficients
of the 6 spherical harmonics of the estimated response functions in Fourier space. There are 3 files output: the
estimated response function for WM, GM and CSF.

Fiber orientation distribution function estimation MRTrix’s dwi2fod is used for fODF estimation, with
the algorithm msmt csd, based on the same paper as the one describing the estimation of the response function [11].
It takes as input the data packaged in .mif format, and the 3 estimated response functions. It outputs the fODF, as
well as volume fractions of CSF and GM.

Generation of streamlines with tractography Anatomically-Constrainted Tractography (ACT) is per-
formed using MRTrix’s tckgen command with the iFOD2 algorithm [28]. This anatomical constraint is possible by
providing the 5tt segmentation as parameter. Aditionally, the GM-WM seeding constraint is applied, which reduces
the start of streamlines at the interface between the GM and WM, following known anatomical priors. 5 millions
streamlines are generated, with constraints on their minimal and maximal size (sizes are included in [30, 400]). The
backtrack option is specified, allowing tracks to be truncated and re-tracked if the streamline termination is not sat-
isfactory (for example, the streamline ends in WM when the anatomical priors indicate it should end at the WM-GM
interface). Additionally, the crop at gmwmi option is used, to crop streamline endpoints more precisely when they
cross the GM-WM interface.

Compiling the connectivity matrix A brain hemisphere can be describes by vertices: 3D points belonging
to the hemisphere surface. In the files 100307.L.white MSMAll.32k fs LR.surf.gii and
100307.R.white MSMAll.32k fs LR.surf.gii, the coordinates of these vertices are available, for the left and the right
hemisphere respectively. In the file atlas name.label.gii, the label attributed to that point according to a parcellation
scheme is available.

As a first step, the vertices of the brain are organized in a k-dimensional tree, in order to perform nearest-neighbors
search efficiently.

A streamline resulting from tractography is a list of vertices on the path of the constructed fiber it represents.
For each streamline, the starting point (first in the list of points on its path) is used as a parameter is the search for
a nearest neighbor in the k-dimensional tree: this looks for the vertex of the brain that is closest to the streamline
seed. Matches of nearest neighbors are pruned in order to be within a maximal distance of 2.0 mm. The same search
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is done with the streamline final points. The result of this search is the index of the vertex in the brain that is the
closest to the streamline start, and the index of the vertex in the brain that is closest to the streamline end.

Then, for these two identified points, the label of the brain region they belong to is retrieved. This nearest-
neighbor information is then reorganized into a mapping that registers each streamline to the right pair (starting
region label, ending region label).

Finally, for each pair of labels, the list of streamlines that have been registered to them is retrieved, and a function
is applied to that list, depending on what information is relevant. In our case, the only information extracted is the
number of streamlines. Another example of information that could be extracted is the average streamline length, as
investigated in [12].

(a) N = 68 (b) N = 200

Figure 3: Subject 100307’s SC matrices, with the cortex divided into N regions (after applying x : log(x+ 1) due to
big differences in streamlines count values between region pairs.)

4 Methods

4.1 Tools and Libraries

The neural network was implemented in Python 3.9, with the Pytorch 1.11.0 library. Riemannian geometry tools
are included in the geomstats 2.5.0 library [16, 17]. Data processing and neural network training are ran on the NEF
Cluster of INRIA, using GPU resources for the neural network training.

4.2 Structure Function Mapping

The goal of structure-function mapping is find a function f of a subject’s SC matrix that computes an approximation
of their corresponding FC matrix.

argmin
f

N∑
n=0

d2(FC, f(SC)) (2)

4.3 Metrics

Metrics have been chosen in order to describe the distance between real FC matrices and predicted FC matrices.
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4.3.1 Mean Squared Error

A simple distance function between two matrices is the mean of any chosen distance between two scalars, applied on
all of their cells. Here, the distance separating two cells is their squared distance.

The mean squared error (MSE) is defined as:

MSE(A,B) =
1

N⋆

N∑
i=1

N∑
j=1

(ai,j − bi,j)
2 (3)

The matrix to predict is symmetric and its diagonal is full of ones, as it holds cortical regions signals’ correlation
with themselves. The prediction of the FC matrix is reduced to the prediction of its lower triangular half.

Since the matrix is symmetric, computationally, this is done setting to zero all values on the diagonal or above,

and dividing the sum of squared differences by N⋆ = N×(N−1)
2 . When using the MSE as the loss function of a

neural network, the network optimizes its weights only in order to reduce the difference on the cells of the lower
diagonal only, because the loss between the cells on the diagonal and upper diagonal triangle is always 0. Even if
the network outputs a square matrix, the values on the diagonal and above are never taken in consideration and are
fully ignored, as they are cleared.

4.3.2 Affine-Invariant Riemannian metric on Symmetric Positive Definite Matrices

The FC matrices being SPD matrices, more appropriate distance metrics may be applied to it, that take into account
the matrix and its properties as a whole.

Granted we can ensure the network also outputs a SPD matrix, the Affine-Invariant Riemannian metric (AIRM)
on SPD matrix is used as a loss function. It is implemented with geomstats with a pytorch backend, enabling
automatic differentation and allowing it to be integrated in the network seamlessly. This metric is defined below:

d2(A,B) =

√
Tr(log2(A−1/2BA−1/2)) (4)

4.3.3 Pearson Correlation

The Pearson Correlation is used as a neutral metric. The network does not aim to optimize this metric, and it is
interesting to see how correlated matrices are when the goal is to optimize the loss function. Again, this metric is
applied on the lower triangular part of the matrices. Computationally, it is done according to the following formula:

rAB =
N⋆

∑
ai,jbi,j −

∑
ai

∑
bi,j√

N⋆
∑

a2i,j − (
∑

ai,j)
2
√
N⋆

∑
b2i,j − (

∑
bi,j)

2
(5)

With N⋆ = N×(N−1)
2 .

4.4 Reference estimator

The performances of the network need to be compared to a reference. Following [12, 5], given a dataset of healthy
subjects, a sensible estimation of one subject’s FC is chosen to be the mean of all existing subjects’.

The definition of a mean is dependent on the distance metric that separates two FC matrices. The Frechet Mean
captures this fact: given a set of values y1, . . . , yN ∈ Y, the Frechet mean is the point in the set that minimizes the
sum of its squared distance with all points [8].

µ = argmin
y∈Y

1

N

N∑
n=1

d2(y, yn) (6)
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With d, a distance function in the space Y. While there may be multiple solutions to this minimisation problem, we
assume that the computed solution is unique.

4.4.1 Frechet Mean - Riemannian distance

The need for a general definition of the mean is guided by the usage of the AIRM on SPDs. When training the
network with the AIRM on SPDs as a loss function, the computation of the Frechet Mean is done by specifying
this very distance function into geomstats’ Frechet Mean estimator, which uses gradient descent to perform such an
estimation.

4.4.2 Frechet Mean - Euclidean distance

It is worth noting that the arithmetic mean is a special case of Frechet Mean, with the squared distance metric taken
as the element-wise Euclidean distance dE(A,B) = Ai,j −Bi,j .

µ = argmin
y∈Rn×n

1

K

K∑
k=1

d2E(y, F
k) = argmin

y∈Rn×n

1

K

K∑
k=1

(yi,j − F k
i,j)

2 =
1

K

K∑
k=1

F k
i,j (7)

This mean is taken as the reference estimator to compare to the network trained with the MSE as a loss function.

4.5 Autoencoder

An autoencoder is a neural network architecture that attempts to represent its input in a lower dimensional space,
and eventually reconstruct it back from that ”compressed” space, minimizing the error between the reconstruction
and the original input. This lower dimensional space, called latent space, is intended to be an extraction of essential
features (latent variables) of the input, that can describe it as completely as possible.

An alternative usage of such an architecture is to extract meaningful features of the input as intended by the
encoder, but to produce a network output that is a function of the input, rather that the input itself.

Figure 4: An illustration of the autoencoder architecture

4.6 Encoder: Graph Convolutional Network

The choice of architecture is motivated by the following macroscopic view of brain function: when a task is being
performed by the brain, cortical areas exchange information. Following this, the resulting state of the brain cortical
areas depends on:
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• the initial state of cortical areas, before propagation

• the links between cortical areas

• the length in time of information propagation

Initially, the information we are working with is structural connectivity information: as described in Section 3.2.3,
it is a quantification of the physical pathways that link brain areas. In an attempt to model the brain as a graph,
this matrix can be interpreted as the adjacency matrix of a graph.

Depending on the atlas being used, this graph has N = 68 or N = 200 nodes, each corresponding to a cortical
area. A value in the SC matrix at index (i, j) corresponds to the weight of the edge between the cortical area indexed
by i and the one indexed by j.

4.6.1 Input

The input to the network is interpreted as the initial state of brain cortical areas, before this state propagates through
the fibers that link them. There is no clear way to determine which input is most appropriate. Following [12], the
input to the network is chosen to be the identity matrix IN . We interpret it to represent N graph states, each a
vector of size N . For each graph state, a single node has a non-zero state, and therefore, the influence of a single
node on the whole graph is being observed. In reality, the network can accept any matrix of size (⋆,N) as input.
Finding a sensible input matrix may be worth investigating in the future.

4.6.2 Why convolutional?

The most common convolutional networks perform a discrete convolution operation between two elements in 2D
Euclidean space. The convolution filter is being convoluted to the input of the network, often an image. This
convolution operation is often illustrated with a sliding filter traveling on the input image, which is dependent on a
translation operation. On a 2D grid, a translation is a straight-forward operation: the space is defined by two axes,
and translating according to either is equivalent to an addition or substraction along one of these two axes. On a
graph, there is no such clear translation operation as there is no notion of spatial proximity.

A property of the convolution operation is that is its equivalence to a product in Fourier space.

y = x ⋆ f = F−1{X · F} (8)

Therefore, the input signal on the graph X can be convoluted to the filter F if it can be projected into Fourier
space: the Fourier transform of a function living on a graph is its expansion in terms of the eigenfunctions of the
Laplacian of the graph [22].

Given an undirected weighted graph of N nodes, and an adjacency matrix A, we define the normalized Laplacian
of this graph to be:

L = I −D−1/2AD−1/2 (9)

With D is diagonal matrix holding the degree of each node, that is, the sum of the weights of all edges connected
to it: Dii =

∑
j Aij

The Laplacian is a real symmetric matrix, with a set of orthonormal eigenvectors U = {χl}l=0,1,...,N−1 and
non-negative eigenvalues Λ = {0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN1

= λmax}.
A one-dimensional signal x on a graph is a set of values, each of them associated to a node of the graph. This

signal refers to the function that lives on the graph that can be projected onto Fourier space. The following formula
describes the lth frequency of the Fourier transform of the signal x:

x̂(λl) = χT
l x F{X} = χTX (10)
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In frequency space, the signal is a function of the eigenvalues: the signal goes from having N values each attributed
to a node, to having N values, each attributed to an eigenmode. Each of these values is expressed as a function of
the eigenvalues of the graph.

The inverse Fourier transform is defined as:

x =

N−1∑
l=0

χlx̂(λl) F−1{X} = χX̂ (11)

Convolution, being a product in Fourier space is:

F{(x ∗ f)} =

N−1∑
l−1

x̂(λl)f̂(λl) F{X ⋆ F} = X̂ × F̂ (12)

Going back into vertex space, this leads to the following:

(x ∗ f) =
N−1∑
l−1

χlx̂(λl)f̂(λl) =

N−1∑
l−1

(χlf̂(λl)χ
T
l )x X ⋆ F = χ(X̂ × F̂ ) (13)

In a convolutional network, the optimal choice of filters being convoluted to the signal is what enables the
estimation of the output. The learning that the convolutional network performs is the learning of appropriate filters
in order for their convolution to the signal to lead to the desired output. Additionally, when working with graph
convolutions, in frequency space, the filter is a function of the eigenvalues. Therefore, a graph convolutional network
has the goal to learn an appropriate function of the graph eigenvalues, in order to produce the desired output after
convolution with the signal.

In matrix format:

y = (x ∗ f) = (Uf(diag(Λ))UT )x (14)

A function applied on the Laplacian’s eigenvalues can be expressed as a function applied on the Laplacian itself.
Consequently, graph filtering is also possible in vertex space, without the need for eigendecomposition.

y = (x ∗ f) = f(U diag(Λ) UT ) x = f(L) x (15)

In conclusion, the convolution of a signal with filters on the graph can be expressed as the product of the signal
with a function of the graph’s Laplacian. The filters are defined by the function applied on the graph Laplacian and
it is the Graph Convolutional Network’s goal to approximate that function as well as possible in order to produce
the intended outputs.

4.6.3 A toy example

The usage of the graph’s adjacency information in the propagation of node states throughout the graph is a matter
of design. The following example uses a toy graph and character states to illustrate the propagation of node states:
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Figure 5: The toy graph considered

The Laplacian of a graph’s adjacency matrix applied on a graph state propagates the information held in each
node to its neighbors following the weights of the edges linking them (due to the adjacency matrix), while keeping a
weighted version of its previous state (due to the degree matrix). The un-normalized Laplacian is defined as:

L = D −A with Dii =
∑
j

Aij (16)

In this example, the un-normalized version of the Laplacian is used for simplicity. We define X0 as the initial
graph state, and xi as the state of node i.

Applied to the toy graph:

A =



0 1 0 0 0 0 0
1 0 5 0 0 0 0
0 5 0 2 0 6 4
0 0 2 0 3 0 0
0 0 0 3 0 0 0
0 0 6 0 0 0 0
0 0 4 0 0 0 0


L =



1 −1 0 0 0 0 0
−1 12 −5 0 0 0 0
0 −5 11 −2 0 −6 −4
0 0 −2 5 −3 0 0
0 0 0 −3 3 0 0
0 0 −6 0 0 6 0
0 0 −4 0 0 0 4



X0 =



A
B
C
D
E
F
G


X1 = LX0 =



A−B
12B −A− 5C − 6F
11C − 5B − 2D − 4G

5D − 2C − 3E
3E − 3D
6F − 6B
4G− 4C


X2 = LX1

X2 =



(A−B)− (12B −A− 5C − 6F )
12(12B −A− 5C − 6F )− (A−B)− 5(11C − 5B − 2D − 4G)− 6(6F − 6B)

11(11C − 5B − 2D − 4G)− 5(12B −A− 5C − 6F )− 2(5D − 2C − 3E)− 4(4G− 4C)
5(5D − 2C − 3E)− 2(12B −A− 5C − 6F )− 3(3E − 3D)

3(3E − 3D)− 3(5D − 2C − 3E)
6(6F − 6B)− 6(12B −A− 5C − 6F )
4(4G− 4C)− 4(11C − 5B − 2D − 4G)


When applying the Laplacian to the power 1 on the initial state X0, each node’s state becomes a function of
its old state and its direct neighbor’s old states.
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When applying the Laplacian to the power 2 on the initial state X0, each node’s state becomes a function of their
state and their neighbors’, after its own state has been altered by its neighbors and their neighbors by their own.
For example, v1 has no direct link to v6, nor v7. Yet after applying the Laplacian to the power 2, the characters
characteristic of node v6 and v7 (respectively C and F) have propagated to v1’s state. They are both 2 hops away
from v1, after going over its direct neighbor v2.

Additionally, it can also be seen that a node itself is two hops away from itself. When v1 gets influenced by v2,
a step after v2 has been influenced by its own neighbors, v1’s influence on v2 travels back to v1.

Should it be decided that the graph Convolutional network is a polynomial of the Laplacian, its output state
would be a linear combination of the impact of the direct neighbors, neighbors of distance 2, neighbors of distance
3, up until the distance lmax.

Y =

lmax∑
l=1

LlX0 (17)

Finally, the information in the Laplacian can be modulated by the usage of the filters defined in Section 4.6.2,
that can not only perform structural alterations in each Laplacian to the power l, but influence the magnitude of the
influence of each polynomial member, and as a result, give variable importance to neighbors l hops away.

4.6.4 Related work in learning graph convolution filters

After having explained the concepts of graph convolution and filtering mathematically and through a practical
example, the chosen Graph Convolution formulation will be explained with respect to previous work in this field. As
this work is an extension of the GCN architecture of [12], we remind the form of their architecture.

In [12], the encoder performs the following graph convolution operation:

X(l) ≈ θD̃− 1
2 ÃD̃− 1

2X(l−1) (18)

This formulation is based on [14]. In this work, they note their GCN architecture fits into [2]’s formulation of
localized spectral filters on graphs, under some approximations.

Indeed, in [2], they start with the consideration of the spectral filtering Formula 14. They state that the filtering
of the Laplacian’s eigenvectors can be can be done through a non-parametric filter, a set of N weights organized in
a diagonal matrix: f(diag(Λ)) = diag(W ), with W ∈ RN . The disadvantages of such an approach is that there is no
notion of localization in space, and there are as many weights to learn as the dimensionality of the data.

The polynomial formulation is introduced, which allows for localization in space. This localization refers to the
consideration of nodes k hops away at each polynomial member, as seen in the practical example. Additionally, there
is a reduction of the number of weights to learn: the number of weights to learn is now the order of the polynomial
K (W ∈ RK). This means all eigenvalues share the same weight. Moreover, the Chebyshev Polynomial is used, due
to its recursive formulation.

f(diag(Λ)) =

K∑
k=0

WkTk(diag(Λ)) (19)

With T0(x) = 1 T1(x) = x Tk(x) = 2xTk−1(x)− Tk−2(x).
Then, in order to avoid eigen-decomposition, the filtering is moved to vertex space similarly to Formula 15.

y = fW (L)x =

K−1∑
k=1

WkTk(L̃)x (20)
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Additionally, in order to scale the eigenvalues to be in [-1, 1], the following rescaling is applied:

L̃ =
2

λmax
L− IN (21)

Formula 18 fits into Formula 20 under the following design choices:

1. K = 2

2. θ = W0 = −W1

3. The scaling of the eigenvalues is done with the approximation λmax ≈ 2

4. The identity matrix is added to the adjacency matrix of the graph: Ã = A + IN , and D̃ is constructed from
this new adjacency matrix.

5. This formula is generalized for a C-dimensional signal at each node, and for the learning of F filters, leading
to θ ∈ RCxF , instead of R. The dimensions of the signals are in fact the number of nodes in the graph C = N .

In this work, the following design choices are made:

• We investigate the influence of the Chebyshev polynomial order on the encoder’s performances. Design choices
1 and 2 of [14] are therefore dropped.

• No scaling as done in Formula 21 is performed.

• The generalization for C dimensional signal at each node, and F filters to be learned is kept. However, since
we are still in the context of a polynomial, this results to having {Wk ∈ RNxF }k=0,1,...,K−1 weights to learn.

In conclusion, the final formulation of the encoding layer is:

X(l) = ReLU(

K∑
k=0

W
(l)
k Tk(L)X

(l−1)) (22)

A Rectified Linear Unit (ReLU) activation function is added following Graph Convolution. The encoder having
only a single layer, X(l−1) is the input to the network and X(l) is the latent space.

4.7 Decoder

The decoder decompressed the latent space in order to produce the estimation of the FC matrix. This latent space
is of size (N, 32), which can be interpreted as 32 graph states.

As a first step, a trainable (32, 32) layer is applied onto the latent space.

X(l+1) = X(l)W(l+1) (23)

Afterwards, we remind that, as described in Formula 1, the FC matrix is the result of the Pearson Correlation of a
(N, 1200) matrix of timeseries. In order to produce a square (N,N) matrix that is symmetric positive semi-definite,
the layer performs the multiplication of the latent space with its transpose.

Y = X(l+1)(X(l+1))T (24)
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Here, it is not expected to be SPD because (N, 32) matrices may have colinear columns. However, while we
expect it to be solely symmetric positive semi-definite, due to problems of computational precision, the output FC
matrix may have negative eigenvalues very close to 0, instead of 0. To address this issue, when using this loss (this
doesn’t apply to networks trained with the MSE as a loss), the identity matrix is added to the output, leading to
SPD matrices (with the minimal eigenvalue slightly smaller than 1), enabling the usage of the AIRM on SPDs.

Compared to the work of [12], a layer of learning in the decoder followed by a tanh activation function has been
removed. More importantly, the final ReLU has been removed in order to obtain a Symmetric Positive Semi-Definite
matrix.

5 Results

5.1 Values describing the dataset

As a first step in understanding the data being used, we wanted to investigate the distances that separate the
subjects from each other. In order to do so the average Pearson Correlation of SC matrices between pairs of subjects
is computed. The same is done with their FC matrices.

As a reminder, in order to be able to use the AIRM on SPD matrices, the FC matrices were not clipped when
using this loss. However, when using the MSE, both the clipped FC (cFC) and unclipped FC (uFC) matrix were
used.

For N = 68:

• Average inter-subject correlation of SC matrices is 0.913

• Average inter-subject correlation of uFC matrices is 0.517

• Average inter-subject correlation of cFC matrices is 0.528

For N = 200:

• Average inter-subject correlation of SC matrices is 0.803

• Average inter-subject correlation of uFC matrices is 0.375

• Average inter-subject correlation of cFC matrices is 0.388

Clipped FC matrices are only slightly more correlated than unclipped FC matrices. However, the importance
behind these values is understanding that we are starting from very correlated data, and trying to construct outputs
that are much less correlated. Small differences in structure should somehow amplify and create big functional
differences.

For N = 68:

• Average inter-subject MSE of cFC matrices is 0.0775

• Average inter-subject MSE of uFC matrices is 0.0931

• Average inter-subject AIRM on SPDs of uFC matrices is 16.0310

For N = 200:

• Average inter-subject MSE of cFC matrices is 0.0581

• Average inter-subject MSE of uFC matrices is 0.0694

• Average inter-subject AIRM on SPDs of uFC matrices is 31.6064
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5.2 Reference estimator

The results of the reference estimators are presented in the table below.

Metric
N = 68 N = 200

uFC cFC uFC cFC
Frechet Mean with
Euclidean distance

MSE 0.0465 0.0387 0.0347 0.029
Pearson Correlation 0.7194 0.7272 0.6125 0.623

Frechet Mean with
AIRM on SPDs

AIRM on SPDs 10.80 - 21.08 -
Pearson Correlation 0.7062 - 0.571 -

5.3 Riemannian distance, initial motivation

In [5], they investigated the possible relationship between the distance between two subjects’ SC, and the distance
between these subjects’ FC.

(a) For 100 subjects

(b) For 383 subjects

Figure 6: Figure (a) results from an analysis in [5] that aims to investigate whether there is a link between the
structural proximity of a pair of subjects and their functional proximity. Figure (b) is a reproduction of this analysis
for a bigger number of subjects.
On subfigures on the left, the Euclidean distance between a subject pair’s SCs is plotted against the Euclidean
distance between their FCs.
On subfigures on the right, the Euclidean distance between a subject pair’s SCs is plotted against the Riemannian
distance between their FCs.
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The findings of [5] are that subjects that have similar structural matrices also have similar functional matrices,
but only when FC distances are measured using the Riemannian metric: this statement was motivated by the
computation of the coefficient of determination R2 (Pearson Correlation squared) between x and y values of both
graphs. It was found that the coefficient of determination was higher when using the Riemannian metric between
pairs of subjects (R2 = 0.016 for the FC Euclidean distance vs R2 = 0.135 for the FC Riemannian distance). On
383 subjects, this difference is much less noticeable: R2 = 0.001 for the FC Euclidean distance and R2 = 0.003 for
the FC Riemannian distance. This invalidates the findings that supported a link between structural proximity in
Euclidean terms leading to functional proximity in Riemannian terms.

5.4 Chebyshev Polynomial order

Each GCN was trained for 200 epochs using cross-validation over 10 folds. The means and standard deviations visible
on the figures are computed across these 10 folds. This small number of epochs has been chosen after observation
of the evolution of the loss for higher epochs, and the realisation that after this point, it stayed rather constant.
Chebyshev polynomial orders ranging from K = 1 to K = 7 were tested for.

5.4.1 MSE - Clipped FC

Looking at Figure 7, for both N = 68 and N = 200, similar tendencies can be observed. First, increasing the
order of the polynomial does not improve the estimation of the FC matrix. Second, given the units of the y axis,
this approximation is very close to the approximation made by the reference estimator in terms of performance.
This means the prediction of the FC matrix is approximately as close as the prediction of the reference estimator.
This opened up the question of whether the network was learning the same minimizing FC matrix as the reference
estimator.

Subfigure B compares the estimations of the network (for all points in the dataset) to the reference estimator.
MSEs range in [0, 0.0015], leading us to conclude the network is indeed learning a FC matrix very close to the one
computed by the reference estimator.

The estimation of FC matrices done by this network yields MSEs in the range [0.0386, 0.0394], which is a slight
improvement in comparison to [12].

Pearson Correlation follows patterns similar to the MSE. The network estimates FC matrices with Pearson
Correlation nearing those with the reference estimator. The improvement with respect to [12] is more noticeable
when observing the Pearson Correlation.

Moreover, order 1 of the Chebyshev polynomial does not use the SC’s Laplacian in any way, since it is raised to
the power 0.

For N = 200, looking at the performances of the first order, in terms of MSE, it looks as if it is exactly the
reference estimator’s estimation that the network yields. On figure b. D, the average of MSEs between the reference
estimator and network predictions is 0 for N = 200 and almost 0 for N = 68. Additionally, their Pearson Correlation
reaches 1. If admitting that the network is learning the FC mean, it is not a surprising result, as the only member
of the Chebyshev order is the Laplacian to the power 0, the input is the identity matrix, and a single weight set
and biases need to be learned in the encoder: the network has full freedom in order to adjust weights and biases to
create the latent space that would lead to the FC mean. For higher orders, the weights need to compensate for the
Laplacian’s structure in order to produce the latent space that will lead to FC mean.
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(a) N = 68

(b) N = 200

Figure 7:
(A) Mean (+ standard deviation) MSE between the predicted FC matrices and the real FC matrices. The red line
corresponds to the reference estimator. In purple, we can see the results of [12].
(B) Mean (+ standard deviation) MSE between the predicted FC matrices and the reference estimator.
Subfigures (C) and (D) are the same as (A) and (B) but for the Pearson Correlation.
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5.4.2 MSE - Unclipped FC

(a) N = 68

(b) N = 200

Figure 8:
(A) Mean (+ standard deviation) MSE between the predicted FC matrices and the real FC matrices. The red line
corresponds to the reference estimator. In purple, we can see the results of [12].
(B) Mean (+ standard deviation) MSE between the predicted FC matrices and the reference estimator.
Subfigures (C) and (D) are the same as (A) and (B) but for the Pearson Correlation.
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The usage of the clipped FC enabled comparison to the work of [12]. However, in order to compare to the AIRM on
SPDs loss, the same pre-processing of data needs to be applied, and that includes bypassing the clipping step.
Not clipping the FC matrices yields results with the same tendencies as with the clipped FCs. For example, looking
at Figure 8.a for N = 68, observing the Pearson Correlation (subfigures C and D):

• On figure C, the reference estimator’s performance is displayed at 0.7194.

• On figure C, for the first order Chebyshev polynomial, Pearson Correlation between predicted FCs and real
FCs is 0.7160

• On figure C, for the first order Chebyshev polynomial, Pearson Correlation between predicted FCs and the ref-
erence estimator is 0.9960: the reference’s estimation and the network’s estimation are very similarly correlated
to the real FC matrices, and almost fully correlated to each other.

5.4.3 AIRM on SPDs - Unclipped FC

Figure 9: For N = 68
(A) Mean (+ standard deviation) AIRM on SPDs between the predicted FC matrices and the real FC matrices.
(B) Mean (+ standard deviation) AIRM on SPDs between the predicted FC matrices and the reference estimator.
Subfigures (C) and (D) are the same as (A) and (B) but for the Pearson Correlation.

At the time of this report, the corresponding figure for N = 200 could not be produced.
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When using the AIRM on SPDs, there does not seem to be a phenomenon of mean estimation by the network: the
distance between real FC matrices and predictions is bigger (around 22.53 for all orders) than the distance between
real FC matrices and the reference estimator (10.80).

Figure 10: Evolution of the loss over all epochs of training for the first fold of the GCN trained with the AIRM on
SPDs as loss, for Chebyshev polynomial order 4, and dataset N = 68

When observing more in detail the evolution of loss for any example of network driven by the AIRM on SPD, we
can observe that the loss stays the same, after an initial drop in value. This could be indicative of a local minimum
being reached.

Nevertheless, the estimations of the network may be far from the real FC matrices, they seem to have the
correlations near those of the reference estimator (above 0.67 for the first 5 orders), and these predictions seem to
be very correlated to the reference estimator (above 0.91 for the first 5 orders).

6 Discussion

We have extended the work of [12] and altered the GCN architecture in multiple ways. First, using separate weight
sets for the second-order Chebyshev polynomial leads to small improvements in performances as quantified by the
MSE, and a non-negligible increase in Pearson correlation. Second, this separation of weight sets enabled the us-
age of higher Chebyshev polynomial orders. Increasing the order of the Chebyshev polynomial does not increase
performances. However, through the observation of the first order Chebyshev Polynomial that makes no use of SC
information and still yields good results, we found out that the estimations of the network were in fact very close
to the FC matrix estimated by the reference estimator, both in MSE and Pearson Correlation, leading to the con-
clusion that the network is converging towards the mean. Moreover, using the Affine Invariant Riemannian Metric
on Symmetric Positive Definite matrices does not lead to an estimation of the Frechet Mean, but it does output
estimations that are correlated to the real functional connectivity almost as much as the mean’s correlation to real
functional connectivity. The current architecture does not seem to be appropriate for this loss, as the loss seems
to reach a local minimal value early on in the learning. Finally, the findings of [5] stating there is a link between
the structural proximity of two subjects in Euclidean terms and their functional proximity in Riemannian terms has
been invalidated when performing their same analysis on a bigger dataset.

Following this, we will reflect on the design choices that were made and propose future improvements.
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Neural network input The relevance of Graph Neural Networks lies in the fact that node states change as some
function of its neighbors. However, this actually implies that a node should have an initial state, be it a meaningful
activation level, or a set of attributes. While the identity matrix can be interpreted as a set of networks with a single
node activated, it has no physiological basis. We wonder what initial state should be given to the brain network.
As we are hoping to predict correlations of activity at a rest state, perhaps cortical network modes can be identified
across all subjects.

Processing pipelines Although, this work is focused on improving the mapping between structure and function,
it is limited by the input and outputs it works with. Entire fields of research are dedicated to dMRI and fMRI
processing and the pipelines of connectivity matrices aim to follow the best practices established in these fields.
However, considering the many steps that separate the original MRI acquisitions to the I/O of the network, we
have no way of validating that these matrices hold inter-subject differences that are consistent with the original
MRI acquisitions. Are these differences a result of the variability between subjects, or artefacts of the processing
pipelines?

Latent space size The latent space size was defined at an early stage of the project, using the original architecture
of [12] and finding a trade-off between performances and size. It was found that for sizes above 32, the increase in
performance was negligible compared to the added computational complexity. The latent size is therefore motivated
by purely computational concerns and doesn’t have any physiological motivation. Is it possible to have a basis of
graph states that can help to decompose known network modes?

Bias towards the mean Since we found that the network is biased towards the mean, future work may be oriented
towards the current task at hand, with the input and output demeaned. However, demeaning an adjacency matrix
seems to be non-straightforward task, as it may lead to negative adjacency and would alter the dynamics of signal
propagation on the graph.

Frequency analysis While graph filtering originally occurs in frequency space, this operation was moved to vertex
space, due to computational concerns. Given the size of the networks we work with, this is not a concern anymore.
Perhaps, it could be interesting to compare the eigenmodes of the subjects’ SC matrices.

Additional thoughts It seems that the project in its current state does not harness the power of GCNs because
no interpretable information is travelling through cortical areas and modulating the propagation of information with
increasing Chebyshev orders may only be investigated once this fact has been addressed. For example, considering
a GCN on its own, outside of the autoencoder architecture, in order to compute a new graph state from a sensible
initial graph state might be of interest. Of course, this may not lead to an application to structure-function mapping,
or it may, if this first GCN output is an intermediate step in the functional connectivity estimation.
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[2] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering”. In: Advances in Neural Information Processing Systems 29 (2016)
(2016). doi: 10.48550/ARXIV.1606.09375. url: https://arxiv.org/abs/1606.09375.

[3] Flavio Dell’Acqua and J-Donald Tournier. “Modelling white matter with spherical deconvolution: How and
why?” en. In: NMR Biomed 32.4 (Aug. 2018), e3945.

[4] Rahul S. Desikan et al. “An automated labeling system for subdividing the human cerebral cortex on MRI
scans into gyral based regions of interest”. In: NeuroImage 31.3 (2006), pp. 968–980. issn: 1053-8119. doi:
https://doi.org/10.1016/j.neuroimage.2006.01.021. url: https://www.sciencedirect.com/science/
article/pii/S1053811906000437.

[5] Samuel Deslauriers-Gauthier et al. “A Riemannian Revisiting of Structure–Function Mapping Based on Eigen-
modes”. In: Frontiers in Neuroimaging 1 (2022). issn: 2813-1193. doi: 10.3389/fnimg.2022.850266. url:
https://www.frontiersin.org/articles/10.3389/fnimg.2022.850266.

[6] Samuel Deslauriers-Gauthier et al. “A unified framework for multimodal structure–function mapping based
on eigenmodes”. In: Medical Image Analysis 66 (2020), p. 101799. issn: 1361-8415. doi: https : / / doi .
org/10.1016/j.media.2020.101799. url: https://www.sciencedirect.com/science/article/pii/
S1361841520301638.

[7] David A. Feinberg et al. “Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast
Diffusion Imaging”. In: PLOS ONE 5.12 (Dec. 2010), pp. 1–11. doi: 10.1371/journal.pone.0015710. url:
https://doi.org/10.1371/journal.pone.0015710.
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