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Abstract 

Passive Acoustic Monitoring offers promising opportunities for biodiversity assessments 

and species conservation and is still in development. The robustness of community metrics 

depends on sampling effort and acoustic surveys should be adjusted for cost-effectiveness. 

Using a large-scale acoustic survey of bat assemblages conducted along 5487 survey nights 

across France, we assessed the effect of sampling duration on the level of confidence of four 

community metrics (total bat activity, species of conservation concern activity, species 

richness, and community specialisation index). We further investigated whether this effect 

varied across habitats and seasons. Overall, a high level of confidence (i.e., 95% similarity 

between cumulated survey nights) was reached after 2 to[20 sampling nights, depending on 

the community metric, the habitat and the season considered. CSI required the lowest 

sampling duration. A higher sampling duration was required in three-dimensionally 

structured habitats (e.g., forests) and habitats unfavourable to bats (e.g., intensive 

farmlands), while a high degree of confidence was reached earlier in more favourable 

habitats and non-intensive farmlands, and during the season of higher activity. Beyond 

providing recommendations for the design of context-dependent minimum sampling 

duration in acoustic surveys, we show that weighted community indices such as the CSI are 

efficient summary measures, and advocate for their use when monitoring resources are 

limited. 
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Introduction 

Robust biodiversity assessments are of utmost importance for successful conservation, 

which often relies on cost-effective survey effort specification (Richardson et al. 2019). 

With the recent progress in data storing capacity, the decrease in the cost of acoustic devices 

and the improvement of species detection and identification, the use of passive acoustic 

monitoring (PAM) offers promising opportunities in biodiversity assessments, especially 

for elusive and/or nocturnal taxa (Barre´ et al. 2019; Gibb et al. 2019). PAMs offer a wide 

range of applications to policy makers and environmental consultant firms (Adams et al. 

2012; Claireau et al. 2019a, b) as well as to academic researchers in studies of vocal species 

such as amphibians (Rosa et al. 2012), birds (Gregory et al. 2004), cetaceans (Nowacek et 

al. 2016), nocturnal arthropods (Jeliazkov et al. 2016) and echolocating bats (Stahlschmidt 

and Bru¨hl 2012). Beyond providing support for inventories, PAMs enable studies of species 

habitat use (Russo and Jones 2003) and assessment of anthropogenic pressure (e.g. 

agricultural intensification: Wickramasinghe et al. 2004; disturbance of commuting and 

migration routes: Barre´ et al. 2018; light pollution: Azam et al. 2016; road-zone effects: 

Claireau et al. 2019a, b). PAM schemes are under development in most countries (e.g., UK, 

Russ et al. 2008; Barlow et al. 2015; USA and Canada, Hertzog and Britzke 2009; Loeb et 

al. 2015; France, Kerbiriou et al. 2010; Penone et al. 2013; Ireland, Roche et al. 2011; 

Australia, Wimmer et al. 2012; Germany, Stahlschmidt and Bru¨hl 2012; Switzerland, 

Obrist and Giavi 2016). A recurrent issue in PAM design is the trade-off between observer 

investment (number of replicates) and the robustness of the biological indicators produced. 

Hence, there is an urgent need to assess how local surveys could be further optimised in 

terms of sampling duration allocated. 

Optimising sampling duration is not straightforward, because of the non-linear 

(logarithmic) relationship between the sampling duration allocated to PAM and the level of 

confidence of occurrence predictions, abundance and richness estimations (Skalak et al. 

2012; Froidevaux et al. 2014; Richardson et al. 2019). In many taxa, acoustic activity shows 

considerable daily, as well as seasonal variation. For instance, bat activity exhibits 

considerable night-to-night variation because it is narrowly linked to weather conditions and 

insect availability (Hayes 1997; Kusch and Idelberger 2005; Fischer et al. 2009). 

Consequently, too short duration (i.e., number of survey nights) in PAM schemes may fail 

to detect periods of highest bat activity (Richardson et al. 2019), which may induce 

uncertainty in community assessments. Studies focussing on the sampling duration needed 

to produce robust ecological assessments are recent (e.g., Skalak et al. 2012; Froidevaux et 

al. 2014; Banner et al. 2019; Richardson et al. 2019), and many aspects remain to be explored 

such as spatial (e.g., habitat) and temporal (e.g., season) specificities. Specifically, there is 

a need to provide context-dependent guidelines for the design of effective acoustic surveys 

in terms of minimal sampling duration. 

Biodiversity assessments rely on the estimation of ecological indicators such as total 

abundance (i.e., all species pooled) or species richness (Gotelli and Colwell 2001; Gregory 

et al. 2007; Vorˇ´ısˇek et al. 2010). The level of confidence of these metrics can be 

influenced by sampling duration (Skalak et al. 2012; Richardson et al. 2019). Total 

abundance (or total activity when the number of individuals is hard to measure; e.g., Dubos 

et al. 2020) can be used as a simple summary index to monitor average trends, but obscures 

the identities of species driving the trend (Siriwardena et al. 2019). Species richness 

describes a quantitative aspect of an assemblage while ignoring species composition and 

structure (Mouillot et al. 2013). The use of ecological indices that are sensitive to changes 



in these aspects has been recently advocated for the assessment of ecosystem health 

(Siriwardena et al. 2019; Tuneu-Corral et al. 2019). For instance, indices of habitat 

specialisation (e.g. Community Specialisation Index; CSI) were used to detect worldwide 

declines in specialist species, representing a significant form of biotic homogenisation at the 

global scale (Clavel et al. 2011). Community-level specialisation accounts for changes in 

species composition and species-specific relative abundance. It has been proposed as an 

indicator of species assemblage response to the combined effect of habitat and climatic 

disturbance, applicable at both local and global scales (Devictor et al. 2008b; Clavel et al. 

2011). An additional aspect of a community that is of interest to conservation practitioners 

is the abundance of species of conservation concern (hereafter, SCC; Razgour et al. 2011). 

These species are generally rarer, and their temporal variability in abundance is expected to 

differ from the most common species and overall trends/responses (Inger et al. 2015). Until 

recently, traitbased approaches have been seldom tested on bat assemblages, due to a lack 

of large-scale data on community composition and species traits (Regnery et al. 2013; 

Kerbiriou et al. 2018a; Kerbiriou et al. 2018c; Lacoeuilhe et al. 2018). So far, recent studies 

focusing on the effect of sampling duration on bat assemblages were either based on species 

richness (Skalak et al. 2012; Froidevaux et al. 2014), occupancy/presence-absence (Banner 

et al. 2019; Froidevaux et al. 2020) or activity (Fischer et al. 2009; Richardson et al. 2019). 

Species richness, abundance or activity, and community indices respond differently to 

environmental drivers through time and space (Devictor et al. 2008a, b; Kerbiriou, et al. 

2018a; Kerbiriou et al. 2018c). Therefore, there is a need to simultaneously assess the 

variation in these community metrics between temporal replicates (e.g., consecutive survey 

nights in bats) and determine whether a given community metric is more demanding than 

another in terms of sampling duration. 

Species abundance and composition vary across habitat types and management regimes, 

mostly due to contrasting resource availability such as insect abundance for bats from 

temperate regions (Azam et al. 2016; Kerbiriou et al. 2018c; Froidevaux et al. 2019). 

Dynamics in prey abundance can differ between habitat types (Ciechanowski et al. 2007). 

In addition, the devices’ ability to detect echolocation calls can be affected by the spatial 

structure of a given habitat (Brigham et al. 1997). It is therefore crucial to assess whether 

habitat can influence the level of confidence in bat community metrics across broad 

environmental gradients in order to adjust the sampling duration required. 

Seasonal changes in environmental conditions, as well as daily weather fluctuations at a 

given site may also affect species activity and estimations of species composition (Hayes 

1997; O’Donnell 2000). In temperate bats, intra-annual changes in activity measures mostly 

occur with migration or hibernation, but also due to variation in energetic demands (which 

increase during the reproductive season and before hibernation). PAM schemes need to 

account for intra-annual changes in species activity to provide robust ecological 

assessments. 

Using data from a French citizen science programme of bat PAM, we examined how the 

level of confidence (i.e., the similarity between consecutive cumulated nights) in the 

estimation of four community metrics was affected by sampling duration (i.e., the number 

of sampling nights). We predicted that the longest sampling duration is needed for bat 

activity, because of the larger amplitude due to between-night variability in activity, 

especially for species of conservation concern. The community specialisation index 

(hereafter, CSI) should be the most consistent through sampling nights, since its calculation 

(i) is based on count proportions that are less fluctuating than activity per se, and (ii) is less 



sensitive to taxonomic turnover between assemblages. We further assessed how variation in 

the level of confidence differed between seasons and along habitat gradients. 

Longer sampling duration should be required during periods of the lowest activity (e.g., 

April–May), and in unfavourable habitats (e.g. intensive agricultural and urban areas) 

because resources are expected to be less abundant/predictable, inducing more daily 

variation in activity We expected the opposite response in more favourable habitats (e.g. 

forests or semi-natural open habitats such as scrublands), because bat activity should be less 

variable through time and space with more abundant resources (e.g. Adams et al. 2005). 

Material and methods 

Bat survey 

We used data from the French Bat Monitoring Programme (FBMP; http://vigie-nature. 

mnhn.fr/page/vigie-chiro), carried out by trained volunteers between 2011 and 2019. We 

excluded sites that were monitored only during one night, resulting in 1715 replicates 

(siteyear combinations) for a total of 5487 survey nights. Replicates were distributed within 

1158 sites across France (Fig. 1), which were monitored between 1 and 4 years (mean: 1.17 

years). The closest study sites were distant from less than 1 km from each other (maximum 

= 1340 km, mean = 398 km). Each year, sites were monitored during 2 to 20 consecutive 

nights (mean: 3.3 nights; Fig. S1). Volunteers set stationary recording devices, recording all 

sounds between 8 and 192 kHz throughout the entire night, from 30 min before sunset to 30 

min after sunrise. Bat calls were recorded during key activity periods between April and 

September, which encompass the gestation period (April–May, characterised by important 

population movements), the lactation period (June–July, with important foraging activity; 

Racey and Swift 1981; Dietz et al. 2007) and the post-breeding period (August–September, 

with juveniles dispersal, mating and fat deposition for hibernation; Are´valo et al. 1990). 

Observers used a variety of acoustic ultrasound recorders, mainly Song Meter SM2Bat?, 

SM3Bat and SM4Bat (Wildlife Acoustics Inc., Concord, MA, USA) and Batlogger 

(Elekon), all responding to the FBMP criteria with standardised trigger setting to limit 

http://vigie-nature.mnhn.fr/page/vigie-chiro
http://vigie-nature.mnhn.fr/page/vigie-chiro
http://vigie-nature.mnhn.fr/page/vigie-chiro
http://vigie-nature.mnhn.fr/page/vigie-chiro


Fig. 1 Distribution of the 1158 study sites 

across France sampled between 2011 and 

2019. We show the longitude and latitude 
(WGS84) 

heterogeneity in detectability. 

Sampling sessions occurred only 

when weather conditions were 

favourable, i.e. no rain, temperature 

above seasonal normal and avoiding 

strong winds (\30 km.h-1). 

Recordings were treated with the 

Tadarida software (https://github. 

com/YvesBas/Tadarida-C/; Bas et 

al. 2017). This software 

automatically detects and extracts 

sound parameters of recorded 

echolocation calls and classifies 

them into known classes (i.e bat 

taxa) according to a confidence index value using a random forest algorithm (Breiman 

2001). Species (n = 26; Table S1) were identified with Tadarida software (Bas et al. 2017) 

and filtered according to a minimum of 90% success probability (see Barre´ et al. 2019 for 

more details). We assumed that this conservative approach would be sufficiently accurate 

to compute reliable community metrics despite the small proportion of errors. With the 

filtering, some Myotis are strongly underrepresented in our dataset such as M. bechsteinii 

which obtained such low error risk across only 34 nights. However, we are confident that in 

the best conditions, all Myotis except M. brandtii, M. myotis and M. blythii (the latter 2 

being grouped in our dataset) can be identified with certainty on the basis of acoustic 

records. For instance, M. capaccinii and M. daubentonii overlap only partially, and 

particularly little on their longest calls (open/commuting behaviour; see Barataud 2015 and 

unpublished internal report at http://www.spektrogram.chiroptera.se/wp-content/ 

uploads/2015/11/VisualDeterminationOfMyotis.pdf). We therefore assume that the 

proportion of detection errors should not affect our conclusions. 

Computing community metrics 

Total activity 

We considered the number of bat passes recorded during one night as a measure of activity 

(Hundt 2012; Mimet et al. 2020). One bat pass is recorded when a bat pulse is detected 

within a five-second interval, i.e. the mean duration of bat species passes according to 

commonly accepted standards in France and Europe (Stahlschmidt and Bru¨hl 2012; 

Barataud 2015; Millon et al. 2015; Kerbiriou et al. 2018b). We considered total activity as 

the sum of bat passes, all species included. Overall, the average total activity per site was 

521 bat passes per night ± 853 SD (see Table 1 for habitat- and season-specific statistics, 

Fig. S4 for distribution frequencies). 

https://github.com/YvesBas/Tadarida-C/
https://github.com/YvesBas/Tadarida-C/
https://github.com/YvesBas/Tadarida-C/
http://www.spektrogram.chiroptera.se/wp-content/uploads/2015/11/VisualDeterminationOfMyotis.pdf
http://www.spektrogram.chiroptera.se/wp-content/uploads/2015/11/VisualDeterminationOfMyotis.pdf
http://www.spektrogram.chiroptera.se/wp-content/uploads/2015/11/VisualDeterminationOfMyotis.pdf
http://www.spektrogram.chiroptera.se/wp-content/uploads/2015/11/VisualDeterminationOfMyotis.pdf


Activity of species of conservation concern (SCC) 

This metric was computed as the total activity of all species that are listed in Annex II of the 

EU Habitats Directive 92/43/EEC (EEC 1992; Table S1). The list considered here included 

Barbastella barbastellus, Miniopterus schreibersii, Myotis bechsteinii, Myotis capaccinii, 

Myotis emarginatus, Myotis myotis, Rhinolophus euryale, Rhinolophus ferrumequinum and 

Rhinolophus hipposideros. Mean SCC activity was 24.9 bat passes per night ± 106.4 SD 

(Fig. S3). 

Species richness 

Species richness was computed as the total number of species recorded during one sampling 

night. We considered 27 of the 34 species recorded in France (Table S1). Across all sites, 

mean species richness was 8 ± 3.25 SD (Fig. S3). 



 



Community specialisation (CSI) 

We first computed for each species a ‘Species habitat Specialisation Index’ (SSI; Julliard et 

al. 2006). The SSI was computed by totalising the number of bat passes of the species 

recorded within 20 habitat classes across France (i.e. categories for which C 10 pixels were 

represented in the final data; Table S2) and computing the coefficient of variation of those 

20 counts. The performance of this index has been previously assessed and is assumed to 

fairly represent the degree of habitat specialisation in bats (Kerbiriou et al 2010). The higher 

the coefficient, the more specialised the species is with respect to habitat. Habitat type data 

were extracted from Copernicus (Corine Land Cover 2012, resolution 100 m 9 100 m; 

https://land.copernicus.eu/pan-european/corine-land-cover) and associated with each study 

site at their corresponding pixel. To integrate the different habitats used by our study species 

as comprehensively as possible, SSIs were computed for every site of the full FBMP dataset 

(N = 3596; i.e., we included the sites that were monitored only one night). We eventually 

computed a Community Specialisation Index (CSI) for each study site, as the average SSI 

of all individuals (here bat passes) recorded at the site (Julliard et al. 2006). The average 

CSI across study sites was 1.23 ± 0.33 SD (Fig. S3). 

Statistical analyses 

Assessing the sensitivity of community metrics to sampling duration 

We first assessed how the four aforementioned community metrics (i.e. total bat activity, 

SCC activity, bat species richness and CSI) varied along a range of temporal sampling 

duration. Community metrics (CMs) were computed for a varying number of survey nights. 

We computed CMs at each site, for n cumulated nights of monitoring (n being the number 

of nights included in the calculation, ranging between 1 and the maximum number of 

monitored night available at each site). Specifically, total activity and activity of SCC were 

the mean number of nightly bat passes (respectively for all species included and for SCC 

only) across n nights (i.e., average activity per night), species richness was computed as the 

total number of cumulated species detected across n nights, and CSI as the mean CSI across 

n nights. We calculated an index of similarity between consecutive cumulated nights, as the 

ratio between a metric computed on the basis of n nights and the same metric computed with 

n ? 1 nights, which we interpret as a level of confidence/robustness in CM estimations. We 

chose to use ratios instead of differences to provide a relative measure of CM confidence 

independent of the magnitude of the indices. To estimate the level of confidence in 

community metric estimations, regardless of the direction of the dissimilarity (i.e. 

overestimation or underestimation), we considered the ‘absolute value’ of this ratio. 

Therefore, we assumed Similarity index = CMn/CMn?1 when CMn\ CMn?1; otherwise, we 

assumed Similarity index = CMn?1/CMn. This enabled us to obtained indices of similarity 

ranging between 0 and 1, with 1 representing a high level of confidence. We chose to report 

the number of nights needed to reach a 95% similarity as a conservative level of confidence 

in CM estimations. 

To assess the effect of sampling duration, we modelled the response of Similarity indices 

to the number of nights using Generalised Linear Models assuming a beta distribution 

(GLM; glmmTMB R package; Brooks et al. 2019). This technique enables to produce beta 

regressions, and produced the same results when using the betareg R package 

https://land.copernicus.eu/pan-european/corine-land-cover


 

Fig. 2 Variation in the level of confidence in community metric estimations (total bat activity, species of 

conservation concern activity, species richness, Community Specialisation Index) along a gradient of 

sampling duration (number of survey nights). The ‘level of confidence’’ is inferred from an index of similarity 

between estimations based on n survey nights and estimations based on n?1 survey nights. For practical 

purposes, the x-axis is represented as the number of nights included in the estimation (a value of 2 represents 

the ratio between estimations based on 1 and 2 nights). Predicted values were obtained from univariate beta 

regressions (shaded areas represent 95% confidence intervals) 

(Cribari-neto and Gruen 2020; see Fig. S2 for the equivalent of the predicted values 

presented in Fig. 2). We accounted for habitat, seasonal and site effects as follows: 

Habitat effect – We considered the proportion of five habitat types that were represented 

within a 200m buffer around the recording device (corresponding approximately to the 

maximal detection range for most bats). To characterise habitat types, we pooled the Corine 

Land Cover categories into five main classes (intensive farmland, non-intensive farmland, 

forest, scrubland/herbaceous and urban; Table 1). Proportions were extracted from buffer 

zones using the raster R package (Hijmans 2018). We did not include wetlands in our 

analyses because they were poorly represented in our dataset (Table S2). We added four 

continuous variables, representing the proportion of a given habitat type (respectively 

intensive farmland, non-intensive farmland, forest, and scrubland/herbaceous; see below for 

more details) as continuous fixed variables (additive effects). We chose not to include the 

effect of urbanised areas because these were the most represented in our study area (31.5%; 

Table 1). Therefore, the effect of urbanised areas was represented at the intercept and 

predicted when setting the proportion of the remaining four habitat variables to zero. 



Seasonal effect—We used a three-level season factor, representing each key study period 

of the year: pre-breeding (April–May), lactation (June–July) and post-breeding periods 

(August–September). The season was added to the model as an additive categorical fixed 

effect. 

Residual site and year effects—we quantified the residual variation between sites and 

year using random terms (therefore, switching to Generalised linear mixed models using the 

same modelling technique and error distribution). The model assessing the effect of each 

additional survey night on community metrics resulted in the following formula: 

m0:Similarityindexts as: þ bn:Numberof nights + bi: 

Intensivefarmland þ bni: Non  intensive farmland þ bsh: 

Scrubland + bf: Forested þ esite þ eyear þ e 

where a is the intercept for a season s (corresponding to the mean certainty after 1 day of 

sampling), bt, bi, bu, bs, bf and bs are respectively the slope estimates of the fixed effect of the 

number of nights n, the proportion of intensive farmland i, non-intensive farmland ni, 

scrubland-herbaceous sh and forested areas f, esite and year are the unexplained variance 

between site and year respectively, and e is the residual variance. 

We accounted for spatial autocorrelation by including a spatial autocovariate in our 

models, which was computed using the spdep R package version 0.6–13 (Learnbayes 2017). 

Since its inclusion did not affect our results, we reported the resulting estimates in supporting 

information (Table S3). 

Assessing habitat and seasonal effects 

We tested whether the sensitivity of similarity indices to sampling duration differed between 

habitats and seasons. In other terms, we assessed whether community metrics needed longer 

or shorter sampling periods in a given habitat or season to reach an equivalent level of 

confidence. We included to the model m0 an interaction term between the number of nights 

and the proportion of habitat classes, and between the number of nights and season. This 

resulted in the following model: 

m1: Similarity index.ns as: þ bn:s: Number of nights þ bi: Intensive farmland þ bni: 

Non-intensive farmland þ bsh: Scrubland þ bf: Forested þ bn:i: Intensive 

farmland þ bn:ni: Non-intensive farmland þ bn:sh: Scrubland þ bn:f: Forested þ 

esite þ eyear þ e 

where bt.s is the season-specific slope for effect number of nights n, bn.i, bn.ni, bn.sh and bn.f are 

respectively the slopes for the interactions between the number of nights n and the 

proportion of intensive farmland i, non-intensive farmland area ni, scrubland-herbaceous sh 

and forested areas f. 



Results 

Sensitivity to sampling duration 

Species of Conservation concern activity required the highest sampling duration to obtain 

similar estimations between n and n?1 survey nights, and a 95% level of similarity was not 

reached after 20 nights. An average 95% of similarity was reached after 13.8 ± 0.7 nights 

Table 2 Parameter estimates for the effect of habitat and season on the level of confidence in four community 

metrics (total bat activity, species of conservation concern SCC activity, species richness, and community 

specialisation index CSI) along a sampling effort gradient (number of consecutive survey nights) 

Bat activity similarity index Estimate SE z value Pr([|z|) 

Intercept 1.450 0.073 19.749 \ 0.001 

Number of nights 0.076 0.018 4.128 0.001 

Intensive agriculture - 0.148 0.089 - 1.655 0.019 

Non-intensive agriculture - 0.127 0.097 - 1.320 0.055 

Urban - 0.029 0.108 - 0.267 0.789 

Scrub/Herbaceous - 0.484 0.137 - 3.762 \ 0.001 

Season (Jun–Jul) - 0.109 0.071 - 1.604 0.094 

Season (Aug–Sep) - 0.031 0.065 - 1.672 0.655 

Number of nights: Intensive agriculture 0.045 0.022 1.999 0.046 

Number of nights: Non-intensive agriculture 0.183 0.035 5.248 < 0.001 

Number of nights:Urban 0.073 0.034 2.139 0.032 

Number of nights: Scrub/Herbaceous 0.310 0.050 6.109 < 0.001 

Number of nights: Season (Jun-Jul) 0.117 0.019 6.254 < 0.001 

Number of nights: Season (Aug–Sep) 0.055 0.019 2.998 < 0.001 

SCC activity similarity index Estimate SE z value Pr([|z|) 

Intercept 0.977 0.091 10.727 \0.001 

Number of nights 0.049 0.020 2.461 0.013 

Intensive agriculture - 0.099 0.099 - 1.000 0.317 

Non-intensive agriculture - 0.176 0.113 - 1.560 0.118 

Urban - 0.218 0.154 - 1.414 0.157 

Scrub/Herbaceous - 0.232 0.144 - 1.604 0.104 

Season (Jun–Jul) 0.038 0.082 - 0.460 0.645 

Season (Aug–Sep) - 0.138 0.085 1.627 0.103 

Number of nights: Intensive agriculture 0.042 0.026 - 0.663 0.096 

Number of nights: Non-intensive agriculture 0.160 0.052 3.049 0.002 

Number of nights: Urban 0.097 0.049 1.971 0.048 

Number of nights:Scrub/Herbaceous 0.162 0.046 3.493 < 0.001 

Number of nights: Season (Jun–Jul) 0.051 0.023 2.214 0.026 

Number of nights:Season (Aug–Sep) - 0.023 0.021 - 1.133 0.257 



Species richness similarity index Estimate SE z value Pr([|z|) 

Intercept 2.227 0.073 29.511 \0.001 

Number of nights 0.066 0.014 4.660 \0.001 

Intensive agriculture 0.033 0.082 0.557 0.577 

Non-intensive agriculture - 0.121 0.095 - 2.149 0.032 

Urban 0.102 0.103 0.870 0.384 

Scrub/Herbaceous - 0.377 0.135 - 4.112 \0.001 

Season (Jun–Jul) - 0.107 0.067 - 2.450 0.014 

Season (Aug–Sep) 0.03 0.070 0.317 0.751 

Number of nights: Intensive agriculture - 0.014 0.017 - 0.858 0.391 

Number of nights: Non-intensive agriculture 0.085 0.024 3.560 <0.001 

Table 2 continued 

Species richness similarity index Estimate SE z value Pr([|z|) 

Number of nights: Urban 0.006 0.029 0.210 0.831 

Number of nights:Scrub/Herbaceous 0.187 0.037 4.981 <0.001 

Number of nights: Season (Jun–Jul) 0.064 0.016 4.242 <0.001 

Number of nights:Season (Aug–Sep) 0.003 0.016 0.359 0.763 

CSI similarity index Estimate SE z value Pr([|z|) 

Intercept 3.604 0.062 58.24 \0.001 

Number of nights 0.052 0.015 3.42 \0.001 

Intensive agriculture - 0.130 0.072 - 1.81 0.070 

Non-intensive agriculture 0.060 0.079 0.76 0.447 

Urban 0.257 0.087 2.98 0.003 

Scrub/Herbaceous - 0.237 0.108 - 2.20 0.028 

Season (Jun–Jul) - 0.161 0.056 - 2.88 0.004 

Season (Aug–Sep) - 0.087 0.059 - 1.48 0.138 

Number of nights: Intensive agriculture 0.021 0.019 1.14 0.254 

Number of nights: Non-intensive agriculture 0.061 0.029 2.12 0.034 

Number of nights: Urban - 0.013 0.026 - 0.48 0.634 

Number of nights:Scrub/Herbaceous 0.186 0.042 4.35 <0.001 

Number of nights: Season (Jun–Jul) 0.084 0.016 5.22 <0.001 

Number of nights:Season (Aug–Sep) 0.031 0.015 2.03 0.042 

The level of confidence is inferred from the similarity between estimates based on n and n?1 survey nights. 

Estimates were obtained from mixed beta regression and included site and year random effects. The intercept 

represents the April–May season for a 100% proportion of forested area. The tested variables with a 

significant effect are shown in bold. The site and year variances were respectively of 0.05 and 0.001 (Bat 

activity), 0.005 and 0.006 (SCC activity), 1.5.10-9 and 2.6.10-16 (Species richness), 0.01 and 0.001 (CSI) 



for total bat activity. Species richness required 8.6 ± 0.4 nights to reach the same level of 

similarity. For CSI, a mean similarity [ 95% was already reached after 2 nights of monitoring 

(Fig. 2). 

Habitat effect 

Overall, CM estimations were the most uncertain in forests, intensive farmland and 

urbanised areas (Table 2), requiring the highest sampling duration in these habitats. CMs 

were the most similar between n and n?1 survey nights in semi-natural open habitats 

(scrubland/herbaceous) and non-intensive farmlands overall. Compared to semi-natural 

open habitats, intensive farmlands approximately required 9 (total bat activity), 10 (SCC 

activity), 8 (species richness) and 0 (CSI) additional sampling nights to reach a 95% level 

of similarity, respectively (Fig. 3). 

Seasonal effect 

The level of confidence of CM estimations was the lowest during the period of April-May, 

the highest during the lactation period (June–July), and intermediate during the post- 



 

Fig. 3 Effect of habitat type on the variations in the level of confidence in four community metrics (total bat 

activity, species of conservation concern activity, species richness, and Community Specialisation Index) 

along a gradient of sampling duration. Predicted values were obtained from beta regressions (shaded areas 

represent 95% confidence intervals). Habitat effects are treated as continuous variables (proportion 

represented within 200m buffer zones). Each curve represents the prediction for a value of 1 of the 

corresponding variable (i.e. corresponding habitat type covering 100% of the surrounding 200m), and 0 for 

the remaining variables 



 

Fig. 4 Effect of the season on variation in the level of confidence in four community metrics (total bat activity, 

species of conservation concern activity, species richness and community specialisation index) along a 

gradient of sampling duration. Predicted values were obtained from beta regressions (shaded areas represent 

95% confidence intervals). The season is treated as a categorical variable 

breeding periods (August–September; Fig. 4). During the April-May period, average values 

of total bat activity, SCC activity, species richness and CSI estimations required 

approximately 6,[6, 3 and 0 additional sampling days to reach a 95% similarity compared 



to the June-July period, respectively. However, the seasonal effect was robust to model 

selection uncertainty only for SCC activity (Table 2). 

Discussion 

Differential sensitivity to sampling duration between community metrics 

Amongst the four tested community metrics, the index of mean habitat specialisation of bat 

assemblages (CSI) showed the highest similarity between each additional survey night. Its 

apparent low between-night variability was not related to a lack of spatial (Fig. S3) nor 

temporal (Fig. S4) variance. The higher consistency of CSI between consecutive survey 

nights may instead be due to the use of proportions of count data between species, enabling 

this metric to remain consistent despite large variations in the number of bat passes— unlike 

abundance/activity, and despite occasional detection of new species—unlike species 

richness. 

A high level of confidence in species richness estimation was reached earlier than 

activity, presumably due to a smaller overall magnitude for this metric (Table 1; Fig. S3). 

Nightly variation may be related to transient individuals, which are more frequent during 

the pre-breeding period (Fig. 4). Temporal shifts in species richness may be related to 

variability in density between species differing in home range size (e.g., Boughey et al. 

2011). Species with larger home ranges are expected to be less easily detected than species 

that are concentrated in smaller areas. Species-specific variation may be also due to 

differential sensitivity to weather between species of different foraging strategies (e.g. 

Ciechanowski et al. 2007; Meyer et al. 2011). We found that 7 to 15 nights were required to 

reach a threshold of 95 % similarity in species richness, mostly depending on the habitat. 

The magnitude of our results is consistent with Skalak et al. (2012), whose study found that 

2 to 5 nights of monitoring were needed to detect 80% of the most common species in a 

North American bat assemblage. These authors also suggested that more extended sampling 

periods ([ 45 nights) were necessary to detect the rarest species, which is also consistent 

with our findings regarding species of conservation concern. 

Being the last metrics to reach a 95% level of similarity between estimations based on n 

and n?1 nights, total bat activity and species of conservation concern activity (i.e. the number 

of bat passes), were the most sensitive to sampling duration amongst the investigated 

metrics. This was expected since bat activity strongly depends on weather-driven insect 

activity (Kusch and Idelberger 2005), which generates a high between-day variation in 

detection. Bat activity can be influenced by weather also through effects on reproduction 

(e.g. temperature effect on mating calls; Kusch and Idelberger 2005), or foraging (e.g. the 

fog which could absorb echolocation calls; Ciechanowski et al. 2007). The degree of 

confidence in this metric may also be limited by differences in detection range between 

species. The confidence levels established for bat activity were similar to those found in a 

previous study performed in the UK (Richardson et al. 2019). 

Estimations of SCC activity were the least similar between consecutive survey nights. 

Those species are generally rarer. Hence, the number of nights with no activity detected is 

likely to be greater, which may cause more substantial between-day variation compared to 

total bat activity. This result can also be affected to higher chances of detection errors for 

some species. However, the high level of data filtering (90% of success probability; Barre´ 

et al. 2019) should minimise this impact. 



Sensitivity to habitat 

The lowest level of confidence in CM estimations was found in forested areas, intensive 

agricultural landscapes and urbanised areas. This was expected for intensive farmlands 

(Azam et al 2016). A lower proportion of foraging versus commuting behaviours is likely 

to increase with the level of agricultural intensification in the surrounding landscape, due to 

a lower prey availability driven by the use of agrochemicals and the loss of semi-natural 

structural elements such as hedgerows, grassland patches or herbaceous strips along with 

crops (Frey-Ehrenbold et al. 2013; Azam et al. 2016; Cleary et al. 2016). The lower 

frequency of foraging behaviour in unfavourable matrix habitat increase individual home 

range sizes and probably contributed to a higher variability in bat detection in intensive 

farmland. 

Higher sampling durations are also needed in forested and urbanised areas, presumably 

because of the structural complexity of these habitats (Gehrt and Chelsvig 2003; Froidevaux 

et al. 2016, 2014). A three-dimensionally structured habitat would induce more complex fly 

paths (Brigham et al. 1997), which would tend to increase the variability of echolocation 

call records and hence the level similarity in community metrics between survey nights. 

Semi-natural open habitats (i.e. scrubland and herbaceous areas) were associated with the 

highest level of confidence in the estimation of bat community metrics. This was expected 

because grasslands and scrublands are supposedly favourable to bat activity due to a higher 

presence of structural elements (e.g., hedgerows) that promote insect abundance (Evans et 

al. 2007; Boughey et al. 2011; Azam et al. 2016; Kerbiriou et al. 2018a, b). These elements 

would induce a higher proportion of foraging behaviour, resulting in lower variation in 

activity between consecutive nights. 

Sensitivity to season 

The season with the most consistent measures between survey nights corresponds to the 

reproduction period (June–July). Individuals, especially females, tend to forage closer to 

their roost during this period (Racey and Swift 1985). Moreover, foraging activity is 

expected to be more constant for females during June–July as a result of a higher metabolic 

demand during lactation (Racey and Swift 1985). The tested community metrics were the 

least consistent during April–May, which was expected given the lower bat activity and 

subsequent higher nightly variation during this period. All metrics showed a slightly lower 

level of confidence during August-September compared to the June–July period, 

presumably due to higher dispersal rates and juvenile activity. The temporal variability in 

dispersal events would have translated in more variable bat detections subsequent to a 

decreased density. 

Limitations 

Using acoustic detectors suggests a bias in the detection of some species: low frequency and 

higher intensity echolocation calls are more easily detectable than high frequency and low 

intensity echolocation pulses. This led to a relative underestimation of the activity of 



 

Fig. 5 Practical framework representing habitat- and season-specific mean sampling duration required to 

obtain a 95% similarity between four community metrics computed on the basis of n and n?1 survey nights 

some species. Moreover, the variety of detector types may have induced a variability in 

species detection, despite the standardisation of triggering criteria. However, we believe that 

the influence of these potential biases on our results may be limited in our study due to the 

large number of replicates (n = 1715). 

Conclusions 

The present study provides guidelines for the implementation of cost-effective bat surveys 

that would avoid the most common methodological pitfalls in community-level 

assessments. In practice, we provide recommendations for a conservative, minimum number 

of sampling nights according to the mean values found to reach a high degree of confidence 

in specific metrics (Fig. 5). We identified that longer sampling duration is needed in 

unfavourable habitats, and habitats that are structurally complex for comprehensive 

assessments of the many facets of species assemblages. Adjusting sampling duration 

according to the ecological context will enable relevant comparison between sites, with a 

similar level of confidence in community metrics. Our results also support that community 

indices such as the community habitat specialisation index (CSI), being less demanding than 

other community metrics in terms of sampling duration, can be efficient summary metrics 

for biodiversity assessment in case of limited resources. Provided they are used in 

complementarity with other biological indicators, the advantage of weighted community 

metrics can be extended to a broader range of taxa, and to other indices such as the 

Community Openness Index (COI; Tuneu-Corral et al. 2019), the Community Thermal 

Index (CTI; Devictor et al. 2008a, b), the Community Precipitation Index (CPI; Tuneu-

Corral et al. 2019), the Community Functional Index (CFI; Godet et al. 2014; Barbaro et al 

2019), and the diversity profile (Siriwardena et al 2019). With the recent development of 

automated species identification (Barre´ et al 2019) and the decreasing cost of acoustic 

devices (Whytock and Christie 2017; Hill et al 2018; Sethi et al 2018), increasing the 



number of spatial replicates will become more and more accessible, which will also give 

room for temporal optimisation of sampling effort. Passive acoustic monitoring schemes 

represent powerful tools for reliable assessments of potential trends in biodiversity metrics. 

The improvement of their cost-effectiveness should contribute to their development, along 

with a better understanding of biodiversity response to global changes and more effective 

conservation practices. 
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