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Introduction

Robust biodiversity assessments are of utmost importance for successful conservation, which often relies on cost-effective survey effort specification [START_REF] Richardson | An evidence-based approach to specifying survey effort in ecological assessments of bat activity[END_REF]. With the recent progress in data storing capacity, the decrease in the cost of acoustic devices and the improvement of species detection and identification, the use of passive acoustic monitoring (PAM) offers promising opportunities in biodiversity assessments, especially for elusive and/or nocturnal taxa [START_REF] Barre´ | Accounting for automated identification errors in acoustic surveys[END_REF][START_REF] Gibb | Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring[END_REF]. PAMs offer a wide range of applications to policy makers and environmental consultant firms [START_REF] Adams | Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats[END_REF]Claireau et al. 2019a, b) as well as to academic researchers in studies of vocal species such as amphibians [START_REF] Rosa | The amphibians of the relict Betampona low-elevation rainforest, eastern Madagascar: An application of the integrative taxonomy approach to biodiversity assessments[END_REF], birds [START_REF] Gregory | Bird census and survey techniques[END_REF], cetaceans [START_REF] Nowacek | Studying cetacean new technological approaches and conservation applications[END_REF], nocturnal arthropods [START_REF] Jeliazkov | Large-scale semi-automated acoustic monitoring allows to detect temporal decline of bush-crickets[END_REF]) and echolocating bats [START_REF] Stahlschmidt | Bats as bioindicators -the need of a standardized method for acoustic bat activity surveys[END_REF]. Beyond providing support for inventories, PAMs enable studies of species habitat use [START_REF] Russo | Use of foraging habitats by bats in a Mediterranean area determined by acoustic surveys: Conservation implications[END_REF] and assessment of anthropogenic pressure (e.g. agricultural intensification: [START_REF] Wickramasinghe | Abundance and species richness of nocturnal of insects on organic and conventional farms: and effects agricultural intensification on bat foraging[END_REF]; disturbance of commuting and migration routes: [START_REF] Barre´ | Estimating habitat loss due to wind turbine avoidance by bats: Implications for European siting guidance[END_REF]light pollution: Azam et al. 2016;road-zone effects: Claireau et al. 2019a, b). PAM schemes are under development in most countries (e.g., UK, [START_REF] Russ | The bats & roadside mammals survey bat conservation trust[END_REF][START_REF] Barlow | Citizen science reveals trends in bat populations: The National Bat Monitoring Programme in Great Britain[END_REF]USA and Canada, Hertzog and Britzke 2009;[START_REF] Loeb | Accounting for detectability improves estimates of species richness in tropical bat surveys[END_REF]France, Kerbiriou et al. 2010;[START_REF] Penone | Use of large-scale acoustic monitoring to assess anthropogenic pressures on orthoptera communities[END_REF]Ireland, Roche et al. 2011;Australia, Wimmer et al. 2012;Germany, Stahlschmidt and Bru¨hl 2012;Switzerland, Obrist and Giavi 2016). A recurrent issue in PAM design is the trade-off between observer investment (number of replicates) and the robustness of the biological indicators produced. Hence, there is an urgent need to assess how local surveys could be further optimised in terms of sampling duration allocated.

Optimising sampling duration is not straightforward, because of the non-linear (logarithmic) relationship between the sampling duration allocated to PAM and the level of confidence of occurrence predictions, abundance and richness estimations [START_REF] Skalak | Sampling period, size and duration influence measures of bat species richness from acoustic surveys[END_REF][START_REF] Froidevaux | Optimizing passive acoustic sampling of bats in forests[END_REF][START_REF] Richardson | An evidence-based approach to specifying survey effort in ecological assessments of bat activity[END_REF]. In many taxa, acoustic activity shows considerable daily, as well as seasonal variation. For instance, bat activity exhibits considerable night-to-night variation because it is narrowly linked to weather conditions and insect availability [START_REF] Hayes | Temporal variation in activity of bats and the design of echolocation-monitoring studies[END_REF][START_REF] Kusch | Spatial and temporal variability of bat foraging in a western European low mountain range forest[END_REF][START_REF] Fischer | Designing Effective Habitat Studies: Quantifying Multiple Sources of Variability in Bat Activity[END_REF]. Consequently, too short duration (i.e., number of survey nights) in PAM schemes may fail to detect periods of highest bat activity [START_REF] Richardson | An evidence-based approach to specifying survey effort in ecological assessments of bat activity[END_REF], which may induce uncertainty in community assessments. Studies focussing on the sampling duration needed to produce robust ecological assessments are recent (e.g., [START_REF] Skalak | Sampling period, size and duration influence measures of bat species richness from acoustic surveys[END_REF][START_REF] Froidevaux | Optimizing passive acoustic sampling of bats in forests[END_REF][START_REF] Banner | Statistical power of dynamic occupancy models to identify temporal change: Informing the North American Bat Monitoring Program[END_REF][START_REF] Richardson | An evidence-based approach to specifying survey effort in ecological assessments of bat activity[END_REF], and many aspects remain to be explored such as spatial (e.g., habitat) and temporal (e.g., season) specificities. Specifically, there is a need to provide context-dependent guidelines for the design of effective acoustic surveys in terms of minimal sampling duration.

Biodiversity assessments rely on the estimation of ecological indicators such as total abundance (i.e., all species pooled) or species richness [START_REF] Gotelli | Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness[END_REF][START_REF] Gregory | Population trends of widespread woodland birds in Europe[END_REF]Vorˇ´ısˇek et al. 2010). The level of confidence of these metrics can be influenced by sampling duration [START_REF] Skalak | Sampling period, size and duration influence measures of bat species richness from acoustic surveys[END_REF][START_REF] Richardson | An evidence-based approach to specifying survey effort in ecological assessments of bat activity[END_REF]. Total abundance (or total activity when the number of individuals is hard to measure; e.g., [START_REF] Dietz | High interannual variability of a climate -driven amphibian community in a seasonal rainforest[END_REF]) can be used as a simple summary index to monitor average trends, but obscures the identities of species driving the trend [START_REF] Siriwardena | How can assemblage structure indices improve monitoring of change in bird communities using ongoing survey data?[END_REF]. Species richness describes a quantitative aspect of an assemblage while ignoring species composition and structure [START_REF] Mouillot | A functional approach reveals community responses to disturbances[END_REF]. The use of ecological indices that are sensitive to changes in these aspects has been recently advocated for the assessment of ecosystem health [START_REF] Siriwardena | How can assemblage structure indices improve monitoring of change in bird communities using ongoing survey data?[END_REF][START_REF] Tuneu-Corral | Ecological indices in long-term acoustic bat surveys for assessing and monitoring bats' responses to climatic and land-cover changes[END_REF]. For instance, indices of habitat specialisation (e.g. Community Specialisation Index; CSI) were used to detect worldwide declines in specialist species, representing a significant form of biotic homogenisation at the global scale [START_REF] Clavel | Worldwide decline of specialist species: Toward a global functional homogenization?[END_REF]). Community-level specialisation accounts for changes in species composition and species-specific relative abundance. It has been proposed as an indicator of species assemblage response to the combined effect of habitat and climatic disturbance, applicable at both local and global scales (Devictor et al. 2008b;[START_REF] Clavel | Worldwide decline of specialist species: Toward a global functional homogenization?[END_REF]). An additional aspect of a community that is of interest to conservation practitioners is the abundance of species of conservation concern (hereafter, SCC; [START_REF] Razgour | Using multi-scale modelling to predict habitat suitability for species of conservation concern: The grey long-eared bat as a case study[END_REF]). These species are generally rarer, and their temporal variability in abundance is expected to differ from the most common species and overall trends/responses [START_REF] Inger | Common European birds are declining rapidly while less abundant species ' numbers are rising[END_REF]. Until recently, traitbased approaches have been seldom tested on bat assemblages, due to a lack of large-scale data on community composition and species traits [START_REF] Regnery | Tree microhabitats as indicators of bird and bat communities in Mediterranean forests[END_REF]Kerbiriou et al. 2018a;Kerbiriou et al. 2018c;[START_REF] Lacoeuilhe | The relative effects of local and landscape[END_REF]). So far, recent studies focusing on the effect of sampling duration on bat assemblages were either based on species richness [START_REF] Skalak | Sampling period, size and duration influence measures of bat species richness from acoustic surveys[END_REF][START_REF] Froidevaux | Optimizing passive acoustic sampling of bats in forests[END_REF], occupancy/presence-absence [START_REF] Banner | Statistical power of dynamic occupancy models to identify temporal change: Informing the North American Bat Monitoring Program[END_REF][START_REF] Froidevaux | Evaluating survey methods for bat roost detection in ecological impact assessment[END_REF] or activity [START_REF] Fischer | Designing Effective Habitat Studies: Quantifying Multiple Sources of Variability in Bat Activity[END_REF][START_REF] Richardson | An evidence-based approach to specifying survey effort in ecological assessments of bat activity[END_REF]. Species richness, abundance or activity, and community indices respond differently to environmental drivers through time and space (Devictor et al. 2008a, b;Kerbiriou, et al. 2018a;Kerbiriou et al. 2018c). Therefore, there is a need to simultaneously assess the variation in these community metrics between temporal replicates (e.g., consecutive survey nights in bats) and determine whether a given community metric is more demanding than another in terms of sampling duration.

Species abundance and composition vary across habitat types and management regimes, mostly due to contrasting resource availability such as insect abundance for bats from temperate regions [START_REF] Azam | Disentangling the relative effect of light pollution, impervious surfaces and intensive agriculture on bat activity with a national-scale monitoring program[END_REF]Kerbiriou et al. 2018c;[START_REF] Froidevaux | Managing hedgerows for nocturnal wildlife: Do bats and their insect prey benefit from targeted agri-environment schemes?[END_REF]. Dynamics in prey abundance can differ between habitat types [START_REF] Ciechanowski | Spatiotemporal variation in activity of bat species differing in hunting tactics: effects of weather, moonlight, food abundance, and structural clutter[END_REF]). In addition, the devices' ability to detect echolocation calls can be affected by the spatial structure of a given habitat [START_REF] Brigham | The influence of structural clutter on activity patterns of insectivorous bats[END_REF]. It is therefore crucial to assess whether habitat can influence the level of confidence in bat community metrics across broad environmental gradients in order to adjust the sampling duration required.

Seasonal changes in environmental conditions, as well as daily weather fluctuations at a given site may also affect species activity and estimations of species composition [START_REF] Hayes | Temporal variation in activity of bats and the design of echolocation-monitoring studies[END_REF][START_REF] Donnell | Influence of season, habitat, temperature, and invertebrate availability on nocturnal activity of the new zealand long-tailed bat (chalinolobus tuberculatus)[END_REF]. In temperate bats, intra-annual changes in activity measures mostly occur with migration or hibernation, but also due to variation in energetic demands (which increase during the reproductive season and before hibernation). PAM schemes need to account for intra-annual changes in species activity to provide robust ecological assessments.

Using data from a French citizen science programme of bat PAM, we examined how the level of confidence (i.e., the similarity between consecutive cumulated nights) in the estimation of four community metrics was affected by sampling duration (i.e., the number of sampling nights). We predicted that the longest sampling duration is needed for bat activity, because of the larger amplitude due to between-night variability in activity, especially for species of conservation concern. The community specialisation index (hereafter, CSI) should be the most consistent through sampling nights, since its calculation (i) is based on count proportions that are less fluctuating than activity per se, and (ii) is less sensitive to taxonomic turnover between assemblages. We further assessed how variation in the level of confidence differed between seasons and along habitat gradients. Longer sampling duration should be required during periods of the lowest activity (e.g., April-May), and in unfavourable habitats (e.g. intensive agricultural and urban areas) because resources are expected to be less abundant/predictable, inducing more daily variation in activity We expected the opposite response in more favourable habitats (e.g. forests or semi-natural open habitats such as scrublands), because bat activity should be less variable through time and space with more abundant resources (e.g. [START_REF] Adams | Effect of lights on activity levels of forest bats: increasing the efficiency of surveys and species identification[END_REF].

Material and methods

Bat survey

We used data from the French Bat Monitoring Programme (FBMP; http://vigie-nature. mnhn.fr/page/vigie-chiro), carried out by trained volunteers between 2011 and 2019. We excluded sites that were monitored only during one night, resulting in 1715 replicates (siteyear combinations) for a total of 5487 survey nights. Replicates were distributed within 1158 sites across France (Fig. 1), which were monitored between 1 and 4 years (mean: 1.17 years). The closest study sites were distant from less than 1 km from each other (maximum = 1340 km, mean = 398 km). Each year, sites were monitored during 2 to 20 consecutive nights (mean: 3.3 nights; Fig. S1). Volunteers set stationary recording devices, recording all sounds between 8 and 192 kHz throughout the entire night, from 30 min before sunset to 30 min after sunrise. Bat calls were recorded during key activity periods between April and September, which encompass the gestation period (April-May, characterised by important population movements), the lactation period (June-July, with important foraging activity; [START_REF] Racey | Variations in gestation length in a colony of pipistrelle bats (Pipistrellus pipistrellus) from year to year[END_REF][START_REF] Dietz | High interannual variability of a climate -driven amphibian community in a seasonal rainforest[END_REF]) and the post-breeding period (August-September, with juveniles dispersal, mating and fat deposition for hibernation; [START_REF] Are´valo | Seasonal variations in the lipid composition of white and brown tissues in the bat Pipistrellus pipistrellus[END_REF]). Observers used a variety of acoustic ultrasound recorders, mainly Song Meter SM2Bat?, SM3Bat and SM4Bat (Wildlife Acoustics Inc., Concord, MA, USA) and Batlogger (Elekon), all responding to the FBMP criteria with standardised trigger setting to limit heterogeneity in detectability. Sampling sessions occurred only when weather conditions were favourable, i.e. no rain, temperature above seasonal normal and avoiding strong winds (\30 km.h -1 ). Recordings were treated with the Tadarida software (https://github. com/YvesBas/Tadarida-C/; [START_REF] Bas | Tadarida: A Toolbox for Animal Detection on Acoustic Recordings[END_REF]. This software automatically detects and extracts sound parameters of recorded echolocation calls and classifies them into known classes (i.e bat taxa) according to a confidence index value using a random forest algorithm [START_REF] Breiman | Random forests[END_REF]. Species (n = 26; Table S1) were identified with Tadarida software [START_REF] Bas | Tadarida: A Toolbox for Animal Detection on Acoustic Recordings[END_REF] and filtered according to a minimum of 90% success probability (see [START_REF] Barre´ | Accounting for automated identification errors in acoustic surveys[END_REF] for more details). We assumed that this conservative approach would be sufficiently accurate to compute reliable community metrics despite the small proportion of errors. With the filtering, some Myotis are strongly underrepresented in our dataset such as M. bechsteinii which obtained such low error risk across only 34 nights. However, we are confident that in the best conditions, all Myotis except M. brandtii, M. myotis and M. blythii (the latter 2 being grouped in our dataset) can be identified with certainty on the basis of acoustic records. For instance, M. capaccinii and M. daubentonii overlap only partially, and particularly little on their longest calls (open/commuting behaviour; see Barataud 2015 and unpublished internal report at http://www.spektrogram.chiroptera.se/wp-content/ uploads/2015/11/VisualDeterminationOfMyotis.pdf). We therefore assume that the proportion of detection errors should not affect our conclusions.

Computing community metrics

Total activity

We considered the number of bat passes recorded during one night as a measure of activity [START_REF] Hundt | Bat surveys: good practice guidelines[END_REF][START_REF] Mimet | Contribution of private gardens to habitat availability, connectivity and conservation of the common pipistrelle in Paris[END_REF]. One bat pass is recorded when a bat pulse is detected within a five-second interval, i.e. the mean duration of bat species passes according to commonly accepted standards in France and Europe [START_REF] Stahlschmidt | Bats as bioindicators -the need of a standardized method for acoustic bat activity surveys[END_REF][START_REF] Barataud | Acoustic ecology of European bats. Species Identification and Studies of Their Habitats and Foraging Behaviour, Biotope Ed[END_REF][START_REF] Millon | Bat activity in intensively farmed landscapes with wind turbines and offset measures[END_REF]Kerbiriou et al. 2018b). We considered total activity as the sum of bat passes, all species included. Overall, the average total activity per site was 521 bat passes per night ± 853 SD (see Table 1 for habitat-and season-specific statistics, Fig. S4 for distribution frequencies).

Activity of species of conservation concern (SCC)

This metric was computed as the total activity of all species that are listed in Annex II of the EU Habitats Directive 92/43/EEC (EEC 1992; Table S1). The list considered here included Barbastella barbastellus, Miniopterus schreibersii, Myotis bechsteinii, Myotis capaccinii, Myotis emarginatus, Myotis myotis, Rhinolophus euryale, Rhinolophus ferrumequinum and Rhinolophus hipposideros. Mean SCC activity was 24.9 bat passes per night ± 106.4 SD (Fig. S3).

Species richness

Species richness was computed as the total number of species recorded during one sampling night. We considered 27 of the 34 species recorded in France (Table S1). Across all sites, mean species richness was 8 ± 3.25 SD (Fig. S3).

Community specialisation (CSI)

We first computed for each species a 'Species habitat Specialisation Index' (SSI; [START_REF] Julliard | Spatial segregation of specialists and generalists in bird communities[END_REF]. The SSI was computed by totalising the number of bat passes of the species recorded within 20 habitat classes across France (i.e. categories for which C 10 pixels were represented in the final data; Table S2) and computing the coefficient of variation of those 20 counts. The performance of this index has been previously assessed and is assumed to fairly represent the degree of habitat specialisation in bats [START_REF] Kerbiriou | Long term trends monitoring of bats, from biodiversity indicator production to species specialization assessment[END_REF]. The higher the coefficient, the more specialised the species is with respect to habitat. Habitat type data were extracted from Copernicus (Corine Land Cover 2012, resolution 100 m 9 100 m; https://land.copernicus.eu/pan-european/corine-land-cover) and associated with each study site at their corresponding pixel. To integrate the different habitats used by our study species as comprehensively as possible, SSIs were computed for every site of the full FBMP dataset (N = 3596; i.e., we included the sites that were monitored only one night). We eventually computed a Community Specialisation Index (CSI) for each study site, as the average SSI of all individuals (here bat passes) recorded at the site [START_REF] Julliard | Spatial segregation of specialists and generalists in bird communities[END_REF]. The average CSI across study sites was 1.23 ± 0.33 SD (Fig. S3).

Statistical analyses

Assessing the sensitivity of community metrics to sampling duration

We first assessed how the four aforementioned community metrics (i.e. total bat activity, SCC activity, bat species richness and CSI) varied along a range of temporal sampling duration. Community metrics (CMs) were computed for a varying number of survey nights. We computed CMs at each site, for n cumulated nights of monitoring (n being the number of nights included in the calculation, ranging between 1 and the maximum number of monitored night available at each site). Specifically, total activity and activity of SCC were the mean number of nightly bat passes (respectively for all species included and for SCC only) across n nights (i.e., average activity per night), species richness was computed as the total number of cumulated species detected across n nights, and CSI as the mean CSI across n nights. We calculated an index of similarity between consecutive cumulated nights, as the ratio between a metric computed on the basis of n nights and the same metric computed with n ? 1 nights, which we interpret as a level of confidence/robustness in CM estimations. We chose to use ratios instead of differences to provide a relative measure of CM confidence independent of the magnitude of the indices. To estimate the level of confidence in community metric estimations, regardless of the direction of the dissimilarity (i.e. overestimation or underestimation), we considered the 'absolute value' of this ratio. Therefore, we assumed Similarity index = CMn/CMn?1 when CMn\ CMn?1; otherwise, we assumed Similarity index = CMn?1/CMn. This enabled us to obtained indices of similarity ranging between 0 and 1, with 1 representing a high level of confidence. We chose to report the number of nights needed to reach a 95% similarity as a conservative level of confidence in CM estimations.

To assess the effect of sampling duration, we modelled the response of Similarity indices to the number of nights using Generalised Linear Models assuming a beta distribution (GLM; glmmTMB R package; [START_REF] Brooks | glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling[END_REF]. This technique enables to produce beta regressions, and produced the same results when using the betareg R package Fig. 2 Variation in the level of confidence in community metric estimations (total bat activity, species of conservation concern activity, species richness, Community Specialisation Index) along a gradient of sampling duration (number of survey nights). The 'level of confidence'' is inferred from an index of similarity between estimations based on n survey nights and estimations based on n?1 survey nights. For practical purposes, the x-axis is represented as the number of nights included in the estimation (a value of 2 represents the ratio between estimations based on 1 and 2 nights). Predicted values were obtained from univariate beta regressions (shaded areas represent 95% confidence intervals) (Cribari-neto and Gruen 2020; see Fig. S2 for the equivalent of the predicted values presented in Fig. 2). We accounted for habitat, seasonal and site effects as follows:

Habitat effect -We considered the proportion of five habitat types that were represented within a 200m buffer around the recording device (corresponding approximately to the maximal detection range for most bats). To characterise habitat types, we pooled the Corine Land Cover categories into five main classes (intensive farmland, non-intensive farmland, forest, scrubland/herbaceous and urban; Table 1). Proportions were extracted from buffer zones using the raster R package [START_REF] Hijmans | raster: geographic data analysis and modeling[END_REF]. We did not include wetlands in our analyses because they were poorly represented in our dataset (Table S2). We added four continuous variables, representing the proportion of a given habitat type (respectively intensive farmland, non-intensive farmland, forest, and scrubland/herbaceous; see below for more details) as continuous fixed variables (additive effects). We chose not to include the effect of urbanised areas because these were the most represented in our study area (31.5%; Table 1). Therefore, the effect of urbanised areas was represented at the intercept and predicted when setting the proportion of the remaining four habitat variables to zero.

Seasonal effect-We used a three-level season factor, representing each key study period of the year: pre-breeding (April-May), lactation (June-July) and post-breeding periods (August-September). The season was added to the model as an additive categorical fixed effect.

Residual site and year effects-we quantified the residual variation between sites and year using random terms (therefore, switching to Generalised linear mixed models using the same modelling technique and error distribution). The model assessing the effect of each additional survey night on community metrics resulted in the following formula: m0:Similarityindexts as: þ bn:Numberof nights + bi:

Intensivefarmland þ bni: Non intensive farmland þ bsh: Scrubland + bf: Forested þ esite þ eyear þ e
where a is the intercept for a season s (corresponding to the mean certainty after 1 day of sampling), bt, bi, bu, bs, bf and bs are respectively the slope estimates of the fixed effect of the number of nights n, the proportion of intensive farmland i, non-intensive farmland ni, scrubland-herbaceous sh and forested areas f, esite and year are the unexplained variance between site and year respectively, and e is the residual variance.

We accounted for spatial autocorrelation by including a spatial autocovariate in our models, which was computed using the spdep R package version 0.6-13 (Learnbayes 2017). Since its inclusion did not affect our results, we reported the resulting estimates in supporting information (Table S3).

Assessing habitat and seasonal effects

We tested whether the sensitivity of similarity indices to sampling duration differed between habitats and seasons. In other terms, we assessed whether community metrics needed longer or shorter sampling periods in a given habitat or season to reach an equivalent level of confidence. We included to the model m0 an interaction term between the number of nights and the proportion of habitat classes, and between the number of nights and season. This resulted in the following model: m1: Similarity index.ns as: þ bn:s:

Number of nights þ bi: Intensive farmland þ bni: Non-intensive farmland þ bsh: Scrubland þ bf: Forested þ bn:i: Intensive farmland þ bn:ni: Non-intensive farmland þ bn:sh: Scrubland þ bn:f: Forested þ esite þ eyear þ e
where bt.s is the season-specific slope for effect number of nights n, bn.i, bn.ni, bn.sh and bn.f are respectively the slopes for the interactions between the number of nights n and the proportion of intensive farmland i, non-intensive farmland area ni, scrubland-herbaceous sh and forested areas f.

Results

Sensitivity to sampling duration

Species of Conservation concern activity required the highest sampling duration to obtain similar estimations between n and n?1 survey nights, and a 95% level of similarity was not reached after 20 nights. An average 95% of similarity was reached after 13.8 ± 0.7 nights The level of confidence is inferred from the similarity between estimates based on n and n?1 survey nights.

Estimates were obtained from mixed beta regression and included site and year random effects. The intercept represents the April-May season for a 100% proportion of forested area. The tested variables with a significant effect are shown in bold. The site and year variances were respectively of 0.05 and 0.001 (Bat activity), 0.005 and 0.006 (SCC activity), 1.5.10 -9 and 2.6.10 -16 (Species richness), 0.01 and 0.001 (CSI)

for total bat activity. Species richness required 8.6 ± 0.4 nights to reach the same level of similarity. For CSI, a mean similarity [ 95% was already reached after 2 nights of monitoring (Fig. 2).

Habitat effect

Overall, CM estimations were the most uncertain in forests, intensive farmland and urbanised areas (Table 2), requiring the highest sampling duration in these habitats. CMs were the most similar between n and n?1 survey nights in semi-natural open habitats (scrubland/herbaceous) and non-intensive farmlands overall. Compared to semi-natural open habitats, intensive farmlands approximately required 9 (total bat activity), 10 (SCC activity), 8 (species richness) and 0 (CSI) additional sampling nights to reach a 95% level of similarity, respectively (Fig. 3).

Seasonal effect

The level of confidence of CM estimations was the lowest during the period of April-May, the highest during the lactation period (June-July), and intermediate during the post- breeding periods (August-September; Fig. 4). During the April-May period, average values of total bat activity, SCC activity, species richness and CSI estimations required approximately 6,[6, 3 and 0 additional sampling days to reach a 95% similarity compared to the June-July period, respectively. However, the seasonal effect was robust to model selection uncertainty only for SCC activity (Table 2).

Discussion

Differential sensitivity to sampling duration between community metrics Amongst the four tested community metrics, the index of mean habitat specialisation of bat assemblages (CSI) showed the highest similarity between each additional survey night. Its apparent low between-night variability was not related to a lack of spatial (Fig. S3) nor temporal (Fig. S4) variance. The higher consistency of CSI between consecutive survey nights may instead be due to the use of proportions of count data between species, enabling this metric to remain consistent despite large variations in the number of bat passes-unlike abundance/activity, and despite occasional detection of new species-unlike species richness.

A high level of confidence in species richness estimation was reached earlier than activity, presumably due to a smaller overall magnitude for this metric (Table 1; Fig. S3). Nightly variation may be related to transient individuals, which are more frequent during the pre-breeding period (Fig. 4). Temporal shifts in species richness may be related to variability in density between species differing in home range size (e.g., [START_REF] Boughey | Effects of landscape-scale broadleaved woodland configuration and extent on roost location for six bat species across the UK[END_REF]. Species with larger home ranges are expected to be less easily detected than species that are concentrated in smaller areas. Species-specific variation may be also due to differential sensitivity to weather between species of different foraging strategies (e.g. [START_REF] Ciechanowski | Spatiotemporal variation in activity of bat species differing in hunting tactics: effects of weather, moonlight, food abundance, and structural clutter[END_REF][START_REF] Loeb | Accounting for detectability improves estimates of species richness in tropical bat surveys[END_REF]. We found that 7 to 15 nights were required to reach a threshold of 95 % similarity in species richness, mostly depending on the habitat. The magnitude of our results is consistent with [START_REF] Skalak | Sampling period, size and duration influence measures of bat species richness from acoustic surveys[END_REF], whose study found that 2 to 5 nights of monitoring were needed to detect 80% of the most common species in a North American bat assemblage. These authors also suggested that more extended sampling periods ([ 45 nights) were necessary to detect the rarest species, which is also consistent with our findings regarding species of conservation concern.

Being the last metrics to reach a 95% level of similarity between estimations based on n and n?1 nights, total bat activity and species of conservation concern activity (i.e. the number of bat passes), were the most sensitive to sampling duration amongst the investigated metrics. This was expected since bat activity strongly depends on weather-driven insect activity [START_REF] Kusch | Spatial and temporal variability of bat foraging in a western European low mountain range forest[END_REF], which generates a high between-day variation in detection. Bat activity can be influenced by weather also through effects on reproduction (e.g. temperature effect on mating calls; [START_REF] Kusch | Spatial and temporal variability of bat foraging in a western European low mountain range forest[END_REF], or foraging (e.g. the fog which could absorb echolocation calls; [START_REF] Ciechanowski | Spatiotemporal variation in activity of bat species differing in hunting tactics: effects of weather, moonlight, food abundance, and structural clutter[END_REF]). The degree of confidence in this metric may also be limited by differences in detection range between species. The confidence levels established for bat activity were similar to those found in a previous study performed in the UK [START_REF] Richardson | An evidence-based approach to specifying survey effort in ecological assessments of bat activity[END_REF].

Estimations of SCC activity were the least similar between consecutive survey nights. Those species are generally rarer. Hence, the number of nights with no activity detected is likely to be greater, which may cause more substantial between-day variation compared to total bat activity. This result can also be affected to higher chances of detection errors for some species. However, the high level of data filtering (90% of success probability; [START_REF] Barre´ | Accounting for automated identification errors in acoustic surveys[END_REF] should minimise this impact.

Sensitivity to habitat

The lowest level of confidence in CM estimations was found in forested areas, intensive agricultural landscapes and urbanised areas. This was expected for intensive farmlands [START_REF] Azam | Disentangling the relative effect of light pollution, impervious surfaces and intensive agriculture on bat activity with a national-scale monitoring program[END_REF]. A lower proportion of foraging versus commuting behaviours is likely to increase with the level of agricultural intensification in the surrounding landscape, due to a lower prey availability driven by the use of agrochemicals and the loss of semi-natural structural elements such as hedgerows, grassland patches or herbaceous strips along with crops [START_REF] Frey-Ehrenbold | Landscape connectivity, habitat structure and activity of bat guilds in farmland-dominated matrices[END_REF][START_REF] Azam | Disentangling the relative effect of light pollution, impervious surfaces and intensive agriculture on bat activity with a national-scale monitoring program[END_REF][START_REF] Cleary | Agricultural intensification alters bat assemblage composition and abundance in a dynamic Neotropical landscape[END_REF]. The lower frequency of foraging behaviour in unfavourable matrix habitat increase individual home range sizes and probably contributed to a higher variability in bat detection in intensive farmland.

Higher sampling durations are also needed in forested and urbanised areas, presumably because of the structural complexity of these habitats [START_REF] Gehrt | Bat activity in an urban landscape: Patterns at the landscape and microhabitat scale[END_REF][START_REF] Froidevaux | From field surveys to LiDAR: Shining a light on how bats respond to forest structure[END_REF][START_REF] Froidevaux | Optimizing passive acoustic sampling of bats in forests[END_REF]. A three-dimensionally structured habitat would induce more complex fly paths [START_REF] Brigham | The influence of structural clutter on activity patterns of insectivorous bats[END_REF], which would tend to increase the variability of echolocation call records and hence the level similarity in community metrics between survey nights.

Semi-natural open habitats (i.e. scrubland and herbaceous areas) were associated with the highest level of confidence in the estimation of bat community metrics. This was expected because grasslands and scrublands are supposedly favourable to bat activity due to a higher presence of structural elements (e.g., hedgerows) that promote insect abundance [START_REF] Evans | Effects of crop type and aerial invertebrate abundance on foraging barn swallows Hirundo rustica[END_REF][START_REF] Boughey | Effects of landscape-scale broadleaved woodland configuration and extent on roost location for six bat species across the UK[END_REF][START_REF] Azam | Disentangling the relative effect of light pollution, impervious surfaces and intensive agriculture on bat activity with a national-scale monitoring program[END_REF]Kerbiriou et al. 2018a, b). These elements would induce a higher proportion of foraging behaviour, resulting in lower variation in activity between consecutive nights.

Sensitivity to season

The season with the most consistent measures between survey nights corresponds to the reproduction period (June-July). Individuals, especially females, tend to forage closer to their roost during this period [START_REF] Racey | Feeding ecology of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) during pregnancy and lactation I. Foraging behaviour[END_REF]. Moreover, foraging activity is expected to be more constant for females during June-July as a result of a higher metabolic demand during lactation [START_REF] Racey | Feeding ecology of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) during pregnancy and lactation I. Foraging behaviour[END_REF]. The tested community metrics were the least consistent during April-May, which was expected given the lower bat activity and subsequent higher nightly variation during this period. All metrics showed a slightly lower level of confidence during August-September compared to the June-July period, presumably due to higher dispersal rates and juvenile activity. The temporal variability in dispersal events would have translated in more variable bat detections subsequent to a decreased density.

Limitations

Using acoustic detectors suggests a bias in the detection of some species: low frequency and higher intensity echolocation calls are more easily detectable than high frequency and low intensity echolocation pulses. This led to a relative underestimation of the activity of Fig. 5 Practical framework representing habitat-and season-specific mean sampling duration required to obtain a 95% similarity between four community metrics computed on the basis of n and n?1 survey nights some species. Moreover, the variety of detector types may have induced a variability in species detection, despite the standardisation of triggering criteria. However, we believe that the influence of these potential biases on our results may be limited in our study due to the large number of replicates (n = 1715).

Conclusions

The present study provides guidelines for the implementation of cost-effective bat surveys that would avoid the most common methodological pitfalls in community-level assessments. In practice, we provide recommendations for a conservative, minimum number of sampling nights according to the mean values found to reach a high degree of confidence in specific metrics (Fig. 5). We identified that longer sampling duration is needed in unfavourable habitats, and habitats that are structurally complex for comprehensive assessments of the many facets of species assemblages. Adjusting sampling duration according to the ecological context will enable relevant comparison between sites, with a similar level of confidence in community metrics. Our results also support that community indices such as the community habitat specialisation index (CSI), being less demanding than other community metrics in terms of sampling duration, can be efficient summary metrics for biodiversity assessment in case of limited resources. Provided they are used in complementarity with other biological indicators, the advantage of weighted community metrics can be extended to a broader range of taxa, and to other indices such as the Community Openness Index (COI; [START_REF] Tuneu-Corral | Ecological indices in long-term acoustic bat surveys for assessing and monitoring bats' responses to climatic and land-cover changes[END_REF], the Community Thermal Index (CTI; Devictor et al. 2008a, b), the Community Precipitation Index (CPI; [START_REF] Tuneu-Corral | Ecological indices in long-term acoustic bat surveys for assessing and monitoring bats' responses to climatic and land-cover changes[END_REF], the Community Functional Index (CFI; [START_REF] Godet | Dissociating several forms of commonness in birds sheds new light on biotic homogenization[END_REF][START_REF] Barbaro | Biotic predictors complement models of bat and bird responses to climate and tree diversity in European forests[END_REF], and the diversity profile [START_REF] Siriwardena | How can assemblage structure indices improve monitoring of change in bird communities using ongoing survey data?[END_REF]. With the recent development of automated species identification [START_REF] Barre´ | Accounting for automated identification errors in acoustic surveys[END_REF] and the decreasing cost of acoustic devices [START_REF] Whytock | Solo: an open source, customizable and inexpensive audio recorder for bioacoustic research[END_REF][START_REF] Hill | AudioMoth: evaluation of a smart open acoustic device for monitoring biodiversity and the environment[END_REF][START_REF] Sethi | Robust, real-time and autonomous monitoring of ecosystems with an open, low-cost, networked device[END_REF], increasing the number of spatial replicates will become more and more accessible, which will also give room for temporal optimisation of sampling effort. Passive acoustic monitoring schemes represent powerful tools for reliable assessments of potential trends in biodiversity metrics. The improvement of their cost-effectiveness should contribute to their development, along with a better understanding of biodiversity response to global changes and more effective conservation practices.

Fig. 1

 1 Fig. 1 Distribution of the 1158 study sites across France sampled between 2011 and 2019. We show the longitude and latitude (WGS84)

Fig. 3

 3 Fig.3Effect of habitat type on the variations in the level of confidence in four community metrics (total bat activity, species of conservation concern activity, species richness, and Community Specialisation Index) along a gradient of sampling duration. Predicted values were obtained from beta regressions (shaded areas represent 95% confidence intervals). Habitat effects are treated as continuous variables (proportion represented within 200m buffer zones). Each curve represents the prediction for a value of 1 of the corresponding variable (i.e. corresponding habitat type covering 100% of the surrounding 200m), and 0 for the remaining variables

Fig. 4

 4 Fig.4Effect of the season on variation in the level of confidence in four community metrics (total bat activity, species of conservation concern activity, species richness and community specialisation index) along a gradient of sampling duration. Predicted values were obtained from beta regressions (shaded areas represent 95% confidence intervals). The season is treated as a categorical variable

  

  

Table 2

 2 Parameter estimates for the effect of habitat and season on the level of confidence in four community metrics (total bat activity, species of conservation concern SCC activity, species richness, and community specialisation index CSI) along a sampling effort gradient (number of consecutive survey nights)

	Bat activity similarity index	Estimate	SE	z value	Pr([|z|)
	Intercept	1.450	0.073	19.749	\ 0.001
	Number of nights	0.076	0.018	4.128	0.001
	Intensive agriculture	-0.148	0.089	-1.655	0.019
	Non-intensive agriculture	-0.127	0.097	-1.320	0.055
	Urban	-0.029	0.108	-0.267	0.789
	Scrub/Herbaceous	-0.484	0.137	-3.762	\ 0.001
	Season (Jun-Jul)	-0.109	0.071	-1.604	0.094
	Season (Aug-Sep)	-0.031	0.065	-1.672	0.655
	Number of nights: Intensive agriculture	0.045	0.022	1.999	0.046
	Number of nights: Non-intensive agriculture	0.183	0.035	5.248	< 0.001
	Number of nights:Urban	0.073	0.034	2.139	0.032
	Number of nights: Scrub/Herbaceous	0.310	0.050	6.109	< 0.001
	Number of nights: Season (Jun-Jul)	0.117	0.019	6.254	< 0.001
	Number of nights: Season (Aug-Sep)	0.055	0.019	2.998	< 0.001
	SCC activity similarity index	Estimate	SE	z value	Pr([|z|)
	Intercept	0.977	0.091	10.727	\0.001
	Number of nights	0.049	0.020	2.461	0.013
	Intensive agriculture	-0.099	0.099	-1.000	0.317
	Non-intensive agriculture	-0.176	0.113	-1.560	0.118
	Urban	-0.218	0.154	-1.414	0.157
	Scrub/Herbaceous	-0.232	0.144	-1.604	0.104
	Season (Jun-Jul)	0.038	0.082	-0.460	0.645
	Season (Aug-Sep)	-0.138	0.085	1.627	0.103
	Number of nights: Intensive agriculture	0.042	0.026	-0.663	0.096
	Number of nights: Non-intensive agriculture	0.160	0.052	3.049	0.002
	Number of nights: Urban	0.097	0.049	1.971	0.048
	Number of nights:Scrub/Herbaceous	0.162	0.046	3.493	< 0.001
	Number of nights: Season (Jun-Jul)	0.051	0.023	2.214	0.026
	Number of nights:Season (Aug-Sep)	-0.023	0.021	-1.133	0.257
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