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Abstract Description of temporal networks and detection of dynamic com-
munities have been hot topics of research for the last decade. However, no
consensual answers to these challenges have been found due to the complexity
of the task. Static communities are not well defined objects, and adding a
temporal dimension makes the description even more difficult. In this article,
we propose a coherent temporal clustering method to explore the dynamics of
research communities: the Best Combination of Local Communities (BCLC).
Our method aims at finding a good balance between two contradictory objec-
tives: closely following the short-term evolution by finding optimal partitions
at each time step, on the one hand, and temporal smoothing, which privileges
historical continuity, on the other hand. We test our algorithm on two biblio-
graphic data sets by comparing their mesoscale dynamic description to those
derived from a (static) simple clustering algorithm applied over the whole

Jordan Cambe
Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon,
France
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data set. We show that our clustering algorithm can reveal more complex dy-
namics than the simple approach and reach a good agreement with expert’s
knowledge.

Keywords dynamic community detection · research communities · temporal
networks · bibliographic networks

1 Introduction

Networks are a convenient way to represent real-world complex systems, such
as social interactions [29],[31], metabolic interactions [4], the Internet/world
wide web [32], transportation systems [7,2], etc. For several systems it is in-
teresting to find and describe areas of the network which are more densely
connected, i.e. the communities of the network. In 20 years of complex net-
works history extensive work was conducted on community detection in static
- non evolving - networks, see [30,3,9] and the review [10] for an overview on
community detection in static graphs.

However, many networks have a temporal dimension and need a dynamic
mesoscopic description at risk of non-negligible information losses if studied as
static networks. Therefore the description of large temporal graphs has been
a hot topic of research for the last decade, see the reviews [20] and [19] for
a description of temporal networks. Most recently the detection of dynamic
communities, that is communities on temporal networks, has become one of
the main interests in network science, as temporal networks require to adapt
the methods of static community detection. So far no consensual method was
found and around 60 methods have been proposed to try to detect dynamic
communities evolving with temporal networks. A total of four published re-
views try to classify and summarize them [1], [18], [25] and [33].

In [33], these methods are classified into 3 main categories: (a) instant op-
timal, (b) temporal trade-off and (c) cross-time. Methods in (a) aim to detect
clusters at different times t, i.e. for many snapshots of the temporal network.
As these clusters are only dependent on the state of the network at time t,
it is then necessary to match the communities at different t with some sim-
ilarity measures, e.g. Jaccard based [27,23,16], core-node [36]. Methods in
category (b) define clusters at t depending on current and past states of the
network. Clusters are incrementally temporally smooth. However such meth-
ods are subject to drift as clusters are added up to each other locally. There is
no compromise between temporal smoothness and ’optimal’ partition at time
t, see for example [34,17,13,12]. Finally, in category (c) clusters at t depend
on both past and future states of the network, see [8,28,26,11]. Clusters are
temporally smooth and not subject to drift, but they do not respect causal-
ity as communities at t are determined using network’s information at t + n,
i.e. communities at time t can change depending on what comes next, which
makes these methods inappropriate for use on-the-fly.

In this article, we present a new tool to achieve a mesoscopic description of
dynamic networks, which tries to find a good compromise between ’global’ and
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’local’ methods. The main originality of our method is to achieve a coherent
temporal clustering procedure, which relies on a single partition methodology,
namely modularity. We apply our method on two data sets of scientific ar-
ticles, to show how it can describe the emergence and evolution of scientific
disciplines. The main difficulties for meta-community detection methods are
twofold: Finding the right temporal smoothing and quantifying the ‘stability’
of communities. How to know whether changes between snapshots are due
to structural evolution of the community or only to algorithm instability, as
many static community detection methods (used at each time t) are noisy (see
[33] for a description of pros and cons of each clustering category). Here, we
propose an algorithm which aims to find a good balance between temporal
inertia (smoothness) and ‘optimal’ partition at any given time t. We compare
this method to the most basic approach, which optimizes the modularity of
the aggregated network using the Louvain algorithm [3]. The latter can be
assimilated to a category (c) method in [33]. We then describe the methods to
analyze differences between partitions: mutual information (MI) measures and
bipartite network (BN) representations. We show that MI based measures are
interesting but give a limited amount of information on how different two par-
titions are, whereas bipartite network representation allows to see how streams
split between partitions. We used the methods on two bibliographic data sets:
(1) the scientific publications of a scientific institution, ENS Lyon and (2) pub-
lications related to the emergence of a new mathematical tool, the ’wavelets’.
We show that the global approach represents a good approximation when the
dynamics is simple, i.e. when there are mainly parallel streams without much
interaction, as in the ENS Lyon case. However, when the dynamics is more
complex (and interesting), i.e. when many communities are born, die, split or
merge, one needs a more sophisticated approach. Using the wavelets example,
we show that our algorithm leads to temporal streams that compare well to a
description by a domain expert of the history of this field.

2 Data sets

In this section, we present the specificity of each data set and the motivations
for studying them. Key statistical data are summarized in table 1.

All the data sets were extracted from the ISI Web of Knowledge Core Col-
lection database1. The bibliographic records were parsed and analyzed using
Bibliotools, a Python-based open-source software and the historical streams
figures were generated using the web-based visualisation platform BiblioMaps
[14,24,15]. Bibliotools and its extension BiblioMaps were developed by one of
us and are available online, as all the data analysis presented in this paper2.

1 http://apps.isiknowledge.com/
2 http://www.sebastian-grauwin.com/bibliomaps/
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Table 1: Statistics on data sets investigated in the paper. Type is the type
of organization data come from. Period is the period over which spans the
data set. N is the number of publications in the data set. NBC is the number
of articles in the BC table. ρlinks is the density of links in the BC network.
< d >= (NBC − 1) ∗ ρlinks, it indicates the average number of publications
a given publication shares references with. < w > indicates the average link
weight. Q is the modularity of the network using global partitioning (GA).

data set Type Period N NBC ρlinks < d > < w > QGA

Wavelets Thematic 1963-2012 6,582 5,568 0.0065 35.98 0.000719 0.677
ENS-Lyon Institution 1988-2017 16,679 14,389 0.0019 27.04 0.000175 0.919

2.1 ENS-Lyon Publications data set

The ENS-Lyon Publications data set contains all publications produced by
researchers affiliated to the École Normale Supérieure de Lyon in natural sci-
ence fields. It spans the 1988-2017 period and contains 16,679 publications.
As for many scientific institutions, its publication records is highly structured
by disciplinary academic departments. Here, we compare our temporal clus-
tering methods to a partition that clusters articles according to their authors’
laboratories (reference partition, PREF ).

2.2 Wavelets Publications data set

The Wavelets Publications data set contains all publications related to wavelets
and spans from 1910 to 2012 (however the period before 1960 contains only a
few publications). This data set contains 6,582 publications, corresponding to
all the publications of a list of 83 key actors in the field of wavelets selected
by expert advice and bibliographic searches (for more details, see [27]). The
study of this data set represents a difficult task because it emerged from the
collaboration of several research fields, constituted by many entangled sub-
fields. Based on the knowledge of one of the authors (PF), a field’s expert, we
built manually a temporal partition drawing the history of wavelets. We refer
to this partition as PREF and compare our automatically generated partitions
to this partition of reference. We acknowledge that this partition is not an ab-
solute ground truth as it relies on the subjectivity of an expert. However, we
assume that this reference gives a reasonable picture of the field’s evolution.

3 Methods

We start by presenting the three building blocks used in the algorithms we
want to compare: how we define and partition a Bibliographic Coupling (BC)
network, how we match clusters from successive time periods and finally how
we define historical streams (temporal meta-clusters). We then present two
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standard methods to compare partitions: Normalized Mutual Information and
Bipartite Networks.

3.1 Building Block 1: Bibliographic Coupling partitioning

Given a set of publications on a given period, a Bibliographic Coupling (BC)
network can be defined based on the relative overlap between the references
of each pair of publications. More specifically, we compute Kessler’s similari-
ties ωij = Rij/

√
RiRj , where Rij is the number of shared references between

publications i and j and Ri is the number of references of publication i. In
the BC network, each publication corresponds to a node and two publications
i and j share a link of weight ωij . If they don’t share any reference, they are
not linked (ωij = 0); if they have an identical set of references, their connexion
has a maximal weight (ωij = 1). Here, we consider that the link between two
publications is only meaningful if they share at least two references and we
impose ωij = 0 if they share only one reference, to avoid meaningless links
between articles [14].

We use weighted links to reinforce the dense (in terms of links per publica-
tion) regions of the BC networks. This reinforcement facilitates the partition
of the network into meaningful groups of cohesive publications, or communi-
ties. We measure the quality of the partition with the modularity Q (eq. 1), a
quantity that roughly compares the weight of the edges inside the communities
to the expected weight of these edges if the network were randomly produced:

Q =
1

2Ω

∑
i,j

[
ωi,j −

ωiωj

2Ω

]
δ (ci, cj) , (1)

where ωi =
∑

j ωij is the sum of the weights of the edges linked to node i,
ci and cj are the communities containing respectively nodes i and j, δ is the
Kronecker function (δ(u, v) is 1 if u = v and 0 otherwise) and Ω = 1

2

∑
ij ωij is

the total weight of edges. We compute the graph partition using the efficient
heuristic algorithm presented in [3].

3.2 Building Block 2: Matching communities from successive time periods

Given the sets of communities {Ct
1, ...C

t
kt
} in each time window t, the prob-

lem at hand is to identify a set of relevant historical communities, or streams,
that correspond to a chain of communities from successive time periods (at
most one per period). In order to decide which community of a given period
should be added to a chain of communities from previous periods, we need to
use some measure of the similarity between communities from different time
periods. A standard measure is the Jaccard index, which computes the pro-
portion of shared nodes between clusters of successive and overlapping periods
(see e.g. [6,27]). One drawback of this measure is the need to use overlapping
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periods which implies that there is no bijection between the publications and
the streams (a given publication can belong to several streams).

Here, we take advantage of the fact that links can be computed between
nodes from different time periods (publications from different periods can have
common references). We could for example define a similarity measure between
two clusters Ca and Cb from different periods either by the total sum of the
links between pairs of publications from these clusters Ωa,b =

∑
i∈Ca,j∈Cb

ωi,j

or by a normalized version of this sum ωa,b = Ωa,b/|Ca||Cb|, which is comprised
between 0 and 1. While these two measures may appear quite intuitive, each
of them has some drawbacks as well: using Ωa,b may bias the construction
of the streams by linking two ‘large’ (in terms of publications) but rather
dissimilar (in terms of shared references) clusters. On the opposite, using ωa,b

may create some biases by linking two very similar clusters of very different
sizes rather than the two clusters that have the second-best similarity and have
similar sizes. To be coherent with our construction of clusters (maximizing the
modularities within each time period), we propose here to use a modularity-
based concept to match clusters from successive time periods. The similarity
measure we use is thus

δQ = Ωa,b −ΩaΩb/2ΩA,B (2)

where ΩA,B =
∑

i∈A,j∈B ωi,j is the total sum of the links between pairs
of publications from these two periods. δQ thus corresponds to the change in
the modularity of the BC network built from the two periods A and B when,
starting from partitions defined on each period, clusters a and b are merged.

Matching Algorithm

Only compare pairs of communities (a, b) with a minimum similarity
ωa,b > Θ = 10−6.

Define the best match of each cluster by the one maximizing δQ.
for each temporal window do

Define the predecessor of each cluster as its best match from the
previous time period.

Define the successor of each cluster as its best match from the
next time period.

end
Two clusters are said to be paired if they are predecessors / successors
of each other.

If a cluster is not the successor of its predecessor, we have a split.
If a cluster is not the predecessor of its successor, we have a merge.
Streams are defined as chains of paired clusters.

An illustration of this algorithm is given in Figure 1.
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Fig. 1: Matching clusters from successive time periods. We start with the BC
network built from clusters of publications detected independently in periods
A and B. For each cluster a of period A and cluster b of period B, we compute
the modularity change δQab obtained by grouping these two clusters in the
2-periods BC network. The ‘successor’ of cluster a is defined as the cluster
b from period B maximizing this quantity and the ‘predecessor’ of cluster b
is defined as the cluster a from period B maximizing this quantity. In the
stream visualisation, ‘paired’ clusters (successor / predecessor of each other)
are represented on the same y-position, and we only show the BC links between
successors or predecessors, which highlight dynamical events such as merge and
splits. In these figures, the size of the nodes are proportional to the number
of publications in the corresponding clusters and the thickness of the links
represent the average weights of the BC links between publications from two
clusters.

3.3 Building Block 3 : Defining historical streams

We compare the results of two types of algorithms which build historical com-
munities, or streams, starting from publications data sets. The first method is
‘global’, as it considers the whole data set to compute the communities. The
second is ‘local’, as it starts from successive windows of ∆T years and starts by
building a mesoscopic description adapted to that specific window. Hereafter,
we present the results from the two main variants and refer the reader to the
Annex A for more detailed results.

3.3.1 Global Algorithm (GA)

The Global Algorithm builds a global BC network by taking into account all
the publications in the data set. Streams are defined as time evolution of these
(static) communities maximizing the global modularity. Since we are working
in a single (large) time period, this approach does not yield any dynamical
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events such as splitting / merging of communities, but it provides a simple
reference.

3.3.2 Best-Combination Local Communities (BCLC)

This local algorithm starts by running, for each time period, N independent
runs (we used N = 100) of the Louvain algorithm. Because of the noise in-
herent to the Louvain algorithm, the best modularity partitions in each time
period are not necessarily the ones that best match each other across suc-
cessive time periods. We thus optimize the inter-period combination by the
following algorithm:

BCLC Algorithm

Compute the Bibliographic Coupling Graph ;
Split the data set into temporal windows ∆t ;
for each of the N = 100 partitions of the first period do

Run the matching algorithm with each of the N = 100 partitions
of the second period to define the 2-periods streams;

end
Among the N ∗N defined streams, select the ones maximizing the
modularity of the BC network on the first 2 periods, as defined in
Eq. 2;

Define the ‘best combination’ partitions of the first 2 periods as those
corresponding to those streams;

for each pair of successive temporal windows A and B, starting from
the second one do

for each of the N = 100 partitions of the period B do
Run the matching algorithm between these partitions and the
‘best combination’ partition of period A (known from a
previous step) to define 2-periods streams;

end
Among the N defined streams, select the ones maximizing the
modularity of the BC network on periods A and B;

Define the ‘best combination’ partition of period B as the one
corresponding to those streams

end

Note that maximizing a global indicator over the T periods with N runs
would take too long as there would be NT possibilities to explore. For this
reason, we choose the best combinations between the first two periods (N2

checks) and then one period at a time (N(T − 2) checks).

This algorithm returns temporal streams we call BCLC-streams. These
streams still maximize the modularity at each time t while using some cross-
time information to improve the global modularity. Figure 2 is an illustration
of different runs of this algorithm. Choosing the value of the period T is a
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Fig. 2: Choosing the best combination. Given a set of clusters from period
A, we perform the matching algorithm between these clusters and N=100
sets of clusters from period B obtained by independent runs of the Louvain
algorithm. In each case, we compute the modularity Q obtained by grouping
paired clusters in a single clusters in the 2-periods BC network. The ‘best
combination’ is defined as the set of clusters from period B maximizing this
quantity.

trade-off. It needs to be long enough so that communities within each period
have enough articles to be meaningful and limit clustering variability. But it
also needs to be short enough to follow scientific dynamics. For example, the
mean cited half-life of scientific articles is close to 7 years [22]. After trying
different values, we chose a period T = 5 years, which is adapted to the tem-
porality of scientific communities.

3.4 Comparing partitions

We conclude this methodological section by introducing two standard ways of
comparing partitions.

3.4.1 Normalized Mutual Information

The mutual information (MI) is a widely used measure for comparing commu-
nity detection algorithms. It is defined as a measure of the statistical indepen-
dence between two random variables (see eq. 3). In other words, if H(PX) is
the entropy associated with partition X and H(PY ) is the entropy associated
with partition Y (the entropy is a measure of how partitioned is our network,
the more communities - here temporal streams - the higher the entropy), then
MI(PX , PY ) represents the overlap of the two partitions. In layman’s terms,
it tells us how much we know about the partition PX when the partition PY is
given. You may refer to [35,21] for a deeper description on mutual information.
In particular, note that the mutual information is a symmetrical measure

MI(PX , PY ) = H(PY )−H(PY |PX) = MI(PY , PX) (3)
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The MI is defined on [0,+∞], therefore it is difficult to make sense of it
without an upper-bound. There exists different ways to normalize the mutual
information. The idea is to take into account the entropies of the partitions we
consider to gauge the proportion of mutual information between the partitions.
Normalizing by the entropy of one of the partition, e.g. H(PX) (see eq. 4)
measures how much of the partition PX is included in the partition PY . We call
this normalized mutual information NMIX . If it reaches its maximum value
1, it means that it is possible to retrieve all the information (the partition) of
PX from the partition PY . However this measure does not take into account
the size of the other partition, PY . A partition PY where each node would
be its own community would make NMIX equals to 1 even though both
partitions are very different. This measure then needs to be combined with at
least another NMI which takes into account the relative size of both partitions
(see eq. 5). Here the mutual information is normalized by

√
H(PX) ∗H(PY ),

which shows how much of the two entropies overlap on a scale between 0 and
1. This expresses how similar the partitions are. It is equal to 1 when the
partitions are the same. Moreover, this last NMI is symmetrical, so it takes
into account both retrieval of PX from PY and retrieval of PY from PX .

NMIX(PX , PY ) =
MI(PX , PY )

H(PX)
(4)

NMI(PX , PY ) =
MI(PX , PY )√
H(PX) ∗H(PY )

= NMI(PY , PX) (5)

While Mutual information based measures give a value of similarity between
two partitions, it is not straightforward to analyze. For example, it does not
allow to track where the (dis)similarities come from. To allow in depth com-
parison, we represent pairs of partitions as bipartite networks.

3.4.2 Bipartite Network of streams

To track and quantify differences between partitions X and Y , we compute
a bipartite network where the niX ∈ NX are the first kind of nodes. They
represent the streams siX ∈ PX (hence |NX | = |PX |). It follows that the

second kind of nodes njY ∈ NY represent the streams sjY ∈ PY . A weighted

directed edge is drawn between niX and njY only if their corresponding streams

siGA and sjBCLC share articles. For a given pair of nodes (niX ,njY ) the weights
of the two edges between them (one in each direction) are defined in eq.6.
We quantify differences between streams of two partitions from this graph,
quantities are given in table 3.

wni
X→nj

Y
=
|siX ∩ s

j
Y |

|siX |

wnj
Y→ni

X
=
|sjY ∩ siX |
|sjY |

(6)
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Table 2: |PX | is the number of streams in partition X. H(PX) is the entropy
of partition X. MI(PX , PY ) is the mutual information between the partitions
X and Y . NMIREF is the mutual information MI normalized by H(PREF ).
NMI(GA,BCLC) is the symmetrical normalized mutual information (nor-
malized by

√
H(GA) ∗H(BCLC)).

Measures ENS-Lyon Wavelets
|PGA| 57 27

|PBCLC | 97 36
|PREF | 17 36
H(PGA) 3.63 2.80

H(PBCLC) 4.00 2.97
H(PREF ) 2.37 3.18

MI(GA,REF ) 1.93 2.03
MI(BCLC,REF ) 1.93 2.49
MI(GA,BCLC) 3.10 1.90

NMIREF (GA,REF ) 0.82 0.64
NMIREF (BCLC,REF ) 0.81 0.80

NMI(GA,BCLC) 0.81 0.64

4 Results

It is difficult to represent the richness of the information conveyed by streams in
paper figures. To be able to attribute scientific meaning to each of the streams,
and characterize them through their main authors, references, keywords... an
interactive stream visualization is available at
http://www.sebastian-grauwin.com/streams/BCstreams.html .

4.1 General features

As illustrated in Figures 3 and 4, the global method cannot lead to a rich
dynamics description. By construction, GA streams are well separated from
each other (Figure 3a) and show only a few links in Figure 4a, which could be
interpreted as splits or merges of subfields. On the opposite, BCLC streams
lead to a more dynamical history for both data sets. There are only a few
links Figure 3b, because different streams correspond to different scientific
(sub)disciplines, which are known to be only marginally connected. However,
our method rightly spots teams that split to focus on different research topics
(as streams ‘Blichert-Toft’ and ‘Lecuyer’, 6th and 7th from the top). Similarly,
many splits and merges occur in Figure 4b. To analyze these differences, we
compare the partitions for each data set using the two measures defined above:
Mutual information (Table 2) and community similarity from the bipartite
network representation.
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Fig. 3: Labels on each stream correspond to the most frequent author name
in that stream during a given period. Streams with the same color have close
research topics (here the proximity of streams to each other is computed from
the weight of BC network links between clusters of a same period). Bar height
is proportional to the number of publications in a given year. Links between
streams show the streams that are preceding/following each other.
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Fig. 4: Labels on each stream correspond to the most frequent author name
in that stream during a given period. Streams with the same color have close
research topics (here the proximity of streams to each other is computed from
the weight of BC network links between clusters of a same period). Bar height
is proportional to the number of publications in a given year. Links between
streams show the streams that are preceding/following each other.
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4.2 Results on ENS Lyon data set

Table 2 shows the highly different number of streams of each partition : 57
streams for the global method, 97 for the local one and only 17 for the ref-
erence partition (the 17 laboratories of the ENS Lyon). The high values of
NMIREF (GA,REF ) (0.82) and NMIREF (BCLC,REF ) (0.81) suggest that
the extra streams in both PGA and PBCLC are mostly hierarchical subdivi-
sions of the laboratory streams from PREF . A partition being a subdivision of
another does not result in a decrease of MI between them. The MI decreases
only if communities of a partition need to be mixed to become communities
of another. These results suggest that PGA and PBCLC are merely a smaller-
scale division of PREF . Similarly, the high value of NMI(GA,BCLC) (0.81)
suggests that PBCLC and PGA convey the same information.

The measures from Table 3 confirm this analysis. 1stE(GA,REF ) shows
that streams from PGA share on average 86 ± 17% of their articles with a
stream from PREF and an average of 3.37±1.76 streams from PGA are needed
to retrieve 80% of streams from PREF . Similar observations can be made for
PBCLC . Moreover, Sum80(GA,BCLC) shows that it takes on average two
streams from PBCLC to reach 80% of streams from PGA.

Figure 5 shows a part of the bipartite network between PGA (left) and
PBCLC (right) on the ENS Lyon publications data set. The part of the network
is centered on nine streams from PGA equivalent to 17 streams from PBCLC . It
suggests that streams from PREF are not a mix of different streams from PGA

or PBCLC . They are rather unions of (almost) entire streams, which means
that GA and BCLC yield almost the same partitions, but at different scales.

4.3 Results on Wavelets data set

4.3.1 Overall comparison

Describing the history of the wavelets research field is a complicated task as
it was born from the collaboration of multiple fields and sub-fields. The val-
ues from table 2 show that, even though partitions have a similar number of
streams (27 for PGA and 36 for PBCLC), there are significant differences be-
tween the local and global method. In this case, NMI(BCLC,REF ) is signifi-
cantly higher thanNMI(GA,REF ) (0.82 vs. 0.68). MoreoverNMI(GA,BCLC)
is rather low (0.64) which suggests that differences do not only arise from
differences of scale. We visualize some of these differences in section 4.3.2.
From Table 3 we see that most similar streams between PGA and PREF share
75%±20% of articles on average, whereas the corresponding figure for PBCLC

and PREF is 87%± 17%.

4.3.2 Examples of major differences

We now show some major differences between PGA and PBCLC for the wavelets
data set. From Figure 6, we can see two types of differences between partitions:
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Fig. 5: Part of the bipartite network representation of ENS Lyon data set. This
network shows the links between temporal communities from PGA (left in red)
and PBCLC (right in blue). On each node is given the stream ID and the most
frequent author name of the temporal community. Size of nodes accounts for
the size of the streams, each stream contains at least 20 articles.

scale differences (e.g. g 9 with s 51 and s 166) as in the ENS Lyon case; and
more significant differences, when fractions of PGA streams have to be com-
bined to retrieve PBCLC streams (for example, the group of streams around g 5
and g 10). Interestingly, g 7 combines scale and mixing differences. Looking
at the BN representation of these PBCLC streams with corresponding PREF

streams (Figure 7), we see that our PBCLC description is quite similar to the
reference description. There are more ‘stream-to-stream’ equivalences, repre-
sented by the double arrow on each side of the edge linking streams. Note
that, though PBCLC is closer to PREF , there are still scale differences (e.g.
s 21, s 111) and mixing differences (e.g. s 85, s 52).

To understand the origin of the better match of PBCLC to the reference, it
is instructive to inspect some of the differences between the local (PBCLC) and
the global partition PGA. Let’s look first at the difference between the global
method stream g 7, which corresponds to a merger of four local streams, among
which s 21 and s 53 (see Figure 6). Figure 4b shows that these streams do not
belong to the same time period. Stream s 53 corresponds to the bottom stream
(labelled ’Frisch’), and represents early works on wavelets, from 1963 to 1994,
focusing on multi fractal analysis and turbulence. The second stream, s 21
(1987 - 2014, 6th from the top, labelled ’Arneodo’), addressed similar issues
in a first period and then, since the early 90’s, enlarged the subject matter
to include mathematical formalization, together with new applications beyond
turbulence, such as genome characterization. Our method appropriately distin-
guishes these two streams, which correspond to different subfields. The second
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Table 3: In this table each cell contains two lines. Each measure M(X,Y )
is made on edges. The first line correspond to M measured on edges from
nX to nY and the second line corresponds to M being measured on edges
from nY to nX . So, the first row in 1stE(X,Y ) is the average proportion of
articles nX shares with nY ± its standard deviation. The second row is the
average proportion of articles nY shares with nX ± its standard deviation. For
instance, for the ENS-Lyon, this means that streams of PGA share on average
86% of their articles with their most similar stream in PREF , whereas streams
from PREF only share on average 49% of their articles with their most similar
stream in PGA. Sum80(X,Y ) is the average number of streams from PY it
takes to retrieve 80% of the streams’ articles from PX . For example in the
case of the Wavelet data set, on average 1.88± 0.96 streams from PBCLC are
needed to retrieve 80% of a stream from PGA.

Measures ENS-Lyon Wavelets

1stE(GA,REF )
0.86± 0.17 0.75± 0.20
0.49± 0.20 0.81± 0.17

Sum80(GA,REF )
1.26± 0.54 1.88± 0.93
3.37± 1.76 1.5± 0.73

1stE(BCLC,REF )
0.89± 0.14 0.87± 0.17
0.49± 0.26 0.87± 0.15

Sum80(BCLC,REF )
1.23± 0.44 1.26± 0.50
4.87± 3.35 1.31± 0.57

1stE(GA,BCLC)
0.74± 0.23 0.72± 0.23
0.85± 0.16 0.83± 0.19

Sum80(GA,BCLC)
1.96± 1.14 1.88± 0.96
1.34± 0.51 1.61± 0.83

difference relates to the evolution of one of the authors’ (PF) activities. In
the global approach, most PF articles belong to a single cluster that gathers
papers in signal representations, and especially time-frequency representations
that have been at the heart of his works over the years (third stream start-
ing from the bottom in Figure 4a). This is a good approximation, but a finer
description of the subjects addressed by PF during his career include three
topics: (a) time-frequency methods per se, (b) relations of these methods with
wavelets and (c) wavelet methods related to self-similarity, in domains such
as turbulence. Using the interactive stream visualization, it is possible to look
for BCLC streams containing PF’s publications. One finds three streams, ad-
dressing the three topics described above, and corresponding to (the stream
label refers to its position in Figure 4b, starting from the top) respectively
streams 3, 8 and 6. These two examples suggest that BCLC is able to cap-
ture the complexity of a field dynamics’, including relevant subfields, while
the global approach tends to merge streams that represent different fields of
inquiry.
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Fig. 6: Part of the bipartite network representation of Wavelets data set be-
tween temporal communities from PGA (left in red) and PBCLC (right in blue).
Each node is labelled by the stream ID and the most frequent author name of
the temporal community. Node size accounts for stream size.
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Fig. 7: Part of the bipartite network representation of Wavelets data set be-
tween temporal communities from PBCLC (left in blue) and PREF (right in
green). Each node is labelled by the stream ID and the most frequent author
name of the temporal community. Node size accounts for stream size.

5 Discussion

We have presented a coherent approach to create a dynamic mesoscopic de-
scription of a temporal network. As the standard method used to create static
communities, our method only uses modularity to build the dynamic com-
munities. We have compared our method to the static (global) approach. We
first showed that both methods give the same result for networks with well-
separated streams (high modularity), as in the case of ENS-Lyon publications.
However, when analyzing data sets with more complex dynamics, as for the
birth of wavelets (section 4.3.2), our method can generate a more satisfactory
dynamics, as compared to an expert reference partition.

Clearly, much more work is needed to develop a standard approach for de-
scribing dynamical networks at a mesoscopic scale. The stochastic character of
many partitioning algorithms (as Louvain’s [3]), and the different scales gen-
erated by each method make comparisons difficult. Moreover, the dynamical
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character of the communities renders the definition of an acceptable reference
partition even trickier than for static networks.

6 Declarations

6.1 Funding

This work was supported by the ACADEMICS grant of the IDEXLYON,
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en éducation vue par la base de données internationales scopus. Les Sciences de
l’education-Pour l’Ere nouvelle 50(1), 67–84 (2017)

25. Masuda, N., Lambiotte, R.: A Guide to Temporal Networks. WORLD
SCIENTIFIC (EUROPE) (2016). DOI 10.1142/q0033. URL
https://www.worldscientific.com/doi/abs/10.1142/q0033

26. Matias, C., Miele, V.: Statistical clustering of temporal networks through a dy-
namic stochastic block model. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 79(4), 1119–1141 (2016). DOI 10.1111/rssb.12200. URL
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12200

27. Morini, M., Flandrin, P., Fleury, E., Venturini, T., Jensen, P.: Revealing evolutions in
dynamical networks (2017). URL https://hal.inria.fr/hal-01558219

28. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Com-
munity structure in time-dependent, multiscale, and multiplex networks.
Science 328(5980), 876–878 (2010). DOI 10.1126/science.1184819. URL
http://science.sciencemag.org/content/328/5980/876

29. Newman, M.: The structure and function of complex networks. SIAM
Review 45(2), 167–256 (2003). DOI 10.1137/S003614450342480. URL
https://doi.org/10.1137/S003614450342480

30. Newman, M.E.J.: Modularity and community structure in networks. Proceed-
ings of the National Academy of Sciences 103(23), 8577–8582 (2006). DOI
10.1073/pnas.0601602103. URL http://www.pnas.org/content/103/23/8577
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Appendices
A Dynamics of Scientific Research Communities

We investigated four temporal community detection methods, two global and
two local methods. However, as measures from GA and GPA are very close
and measures from BMLA and BCLC are also very close, we only presented
the GA and BCLC methods in the core of this article. The two other methods
(GPA and BMLA) and their measures are described below.

A.1 Global Projected Algorithm (GPA)

Here, we want to include some dynamics into our global algorithm. We thus
start with the set of GA-streams obtained by running the Louvain algorithm
[3] on the global BC network. Then, we define BC networks in each period,
only keeping the articles sharing at least two references with at least one other
article within the period. Removing the “long-term connections only” articles
which do not share two or more references with another article in their period
results in an average loss of 7.8% of the articles taken into account in the global
BC network. For each time period, we define local communities by grouping
together the publications that are in the same GA-streams, resulting in a set
of local projected communities in each period. Finally, we compute historical
streams by applying our matching algorithm to the projected communities.
Interestingly, the streams that are build from this method do not necessarily
correspond to the GA-streams: the predecessors / successors of a cluster may
not be subsets of the same GA-stream of this particular cluster, resulting in
splits or merges. In practice, a few GA-streams may in effect be cut into into
two or more GPA-streams localized in different time periods. This approach
thus allows to visualize the evolution of a GA-stream in terms of dynamical
events (splits and merges).

A.2 Best-Modularity Local Algorithm (BMLA)

For each time period, we run N independent runs (we used N = 100) of the
Louvain algorithm. Because of the noise inherent to the Louvain algorithm,
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these partitions may be a bit different, while having similar modularity values
(in practice the modularity difference between the partitions of different runs
is lower than 0.005). Compared to the BCLC method, we do not try here to
choose the partitions of the run best matching the partition from the previous
or next period, but keep the partition with the best modularity among the
N runs in each time period. BMLA historical streams are then defined by
applying the matching algorithm to these ‘best-modularity’ partitions.

BMLA Algorithm

Compute the Bibliographic Coupling Graph ;
Split the data set into temporal windows ∆t ;
for each temporal window do

run N = 100 Louvain algorithm on the instant network;
select the instant partition with the highest modularity Q;

end
Match the most similar communities between successive temporal
windows ;

Link the paired communities along time;

This algorithm returns temporal streams we call BMLA-streams. These
streams maximize the modularity at each time t without considering the global
modularity of the whole system.

A.3 Comparing All Algorithms

Table 4 and Table 5 show there is very little difference between the local
algorithms and between the global algorithms, for all measures on both data
sets.
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Table 4: Similarly to Table 2, |PX | is the number of streams in partition X.
H(PX) is the entropy of partition X. MI(PX , PY ) is the mutual informa-
tion between the partitions X and Y . NMIX is the mutual information MI
normalized by H(PX). NMI(PX , PY ) is the symmetrical normalized mutual
information (normalized by

√
H(X) ∗H(Y )).

Measures ENS-Lyon Wavelets
|PGA| 57 27
|PGPA| 54 30
|PBCLC | 97 36
|PBMLA| 103 40
|PREF | 17 36
H(PGA) 3.63 2.80

H(PGPA) 3.63 2.83
H(PBCLC) 4.00 2.97
H(PBMLA) 4.04 3.17
H(PREF ) 2.37 3.18

MI(GA,REF ) 1.93 2.03
MI(GPA,REF ) 1.94 2.09

MI(BCLC,REF ) 1.93 2.49
MI(BMLA,REF ) 1.94 2.47
MI(GA,BCLC) 3.10 1.90

NMIGA(GA,REF ) 0.53 0.73
NMIREF (GA,REF ) 0.82 0.64

NMI(GA,REF ) 0.66 0.68
NMIGPA(GPA,REF ) 0.54 0.74
NMIREF (GPA,REF ) 0.82 0.66

NMI(GPA,REF ) 0.67 0.70
NMIBCLC(BCLC,REF ) 0.48 0.84
NMIREF (BCLC,REF ) 0.81 0.80

NMI(BCLC,REF ) 0.63 0.82
NMIBMLA(BMLA,REF ) 0.48 0.78
NMIREF (BMLA,REF ) 0.82 0.80

NMI(BMLA,REF ) 0.63 0.79
NMIGA(GA,BCLC) 0.86 0.67

NMIBCLC(GA,BCLC) 0.77 0.62
NMI(GA,BCLC) 0.81 0.64
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Table 5: Similarly to Table 3, In this table each cell contains two lines. Each
measure M(X,Y ) is made on edges. The first line correspond to M measured
on edges from nX to nY and the second line corresponds to M being measured
on edges from nY to nX . So, the first row in 1stE(X,Y ) is the average propor-
tion of articles nX shares with nY ± its standard deviation. The second row
is the average proportion of articles nY shares with nX ± its standard devia-
tion. For instance, for the ENS-Lyon, this means that streams of PGA share on
average 86% of their articles with their most similar stream in PREF , whereas
streams from PREF only share on average 49% of their articles with their most
similar stream in PGA. Sum80(X,Y ) is the average number of streams from
PY it takes to retrieve 80% of the streams’ articles from PX . For example in
the case of the Wavelet data set, on average 1.88± 0.96 streams from PBCLC

are needed to retrieve 80% of a stream from PGA.

Measures ENS-Lyon Wavelets

1stE(GA,REF )
0.86± 0.17 0.75± 0.20
0.49± 0.20 0.81± 0.17

Sum80(GA,REF )
1.26± 0.54 1.88± 0.93
3.37± 1.76 1.5± 0.73

1stE(GPA,REF )
0.87± 0.16 0.78± 0.19
0.54± 0.23 0.83± 0.17

Sum80(GPA,REF )
1.24± 0.5 1.65± 0.84

3.12± 1.61 1.47± 0.72

1stE(BCLC,REF )
0.89± 0.14 0.87± 0.17
0.49± 0.26 0.87± 0.15

Sum80(BCLC,REF )
1.23± 0.44 1.26± 0.50
4.87± 3.35 1.31± 0.57

1stE(BMLA,REF )
0.89± 0.14 0.85± 0.19
0.49± 0.25 0.84± 0.17

Sum80(BMLA,REF )
1.23± 0.44 1.34± 0.63
5.0± 3.60 1.37± 0.59

1stE(GA,BCLC)
0.74± 0.23 0.72± 0.23
0.85± 0.16 0.83± 0.19

Sum80(GA,BCLC)
1.96± 1.14 1.88± 0.96
1.34± 0.51 1.61± 0.83


