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Abstract

Musical instruments display a wealth of dynamics, from equilibria (where no sound is produced)
to a wide diversity of periodic and non-periodic sound regimes. We focus here on two types of
flute-like instruments, namely a recorder and a pre-hispanic Chilean flute. A recent experimental
study showed that they both produce quasiperiodic sound regimes which are avoided or played on
purpose depending on the instrument. We investigate the generic model of sound production in
flute-like musical instruments, a system of neutral delay-differential equations. Using time-domain
simulations, we show that it produces stable quasiperiodic oscillations in good agreement with
experimental observations. A numerical bifurcation analysis is performed, where both the delay
time (related to a control parameter) and the detuning between the resonance frequencies of the
instrument – a key parameter for instrument makers – are considered as bifurcation parameters.
This demonstrates that the large detuning that is characteristic of prehispanic Chilean flutes plays
a crucial role in the emergence of stable quasiperiodic oscillations.

1 Introduction

Self-sustained musical instruments (brass, woodwind and bowed strings) have attracted considerable
attention from physicists and dynamicists for decades. They exhibit a wealth of dynamics, from equi-
librium regimes where no sound is produced despite an action of the musician to periodic regimes,
quasiperiodic modulated sounds and chaotic oscillations [1, 38, 39]. This wide diversity results from
complex sound production mechanisms involving different fields of physics, from contact mechanics to
hydrodynamics or fluid-structure interaction, many of whom remain only partially understood. The
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acoustical features of the different sound regimes depend sensitively on both the control parameters
adjusted by the musician and the intrinsic parameters determined when the instrument is made (such
as the geometry and constitutive material) [31, 35, 34].

We focus here on flute-like instruments, which include a wide variety of instruments such as ocarina,
recorders, transverse flutes and many other instruments from different cultures and countries. In all
these instruments, sound production relies on the nonlinear coupling between a naturally unstable air
jet blown by the musician and an acoustic field contained in the instrument pipe [4]. We focus more
particularly on the emergence of non-periodic sound regimes in a recorder and in a pre-hispanic Chilean
flute. A recent experimental study showed that both these instruments produce stable quasiperiodic
regimes [16]. The corresponding sounds are provided as supplementary material of [16] and the recorded
time series are reproduced in Figure 1. In the case of the recorder, such sounds are usually avoided and
considered as a defect of the instrument or as a lack of control from the musician. Periodic regimes are on
the contrary the typical regimes produced by the musician, as they correspond to the different notes of
the musical scale. On the other hand, in the pre-hispanic Chilean flute, quasiperiodic regimes are played
on purpose to produce specific sound effects and correspond to the regular playing mode [28, 15, 16].
In this article, we investigate the emergence of such quasiperiodic sound regimes, in relation to a delay
time τ which is related to the musician’s blowing pressure. We also investigate the role played by the
detuning between the resonance frequencies. This intrinsic parameter related to the internal geometry
of the instrument is often referred to as inharmonicity (see for example [34]). It is defined as the relative
difference between the nth resonance frequency and the nth resonance frequency of an ideal, perfectly
cylindrical resonator without losses. The latter is equal to the nth or (2n+ 1)th integer multiple of the
first resonance frequency, depending, respectively, whether the resonator is open on both ends or has
one close end and one open end [3]. The important role of inharmonicity on the properties of sound
regimes is well identified by instrument makers, and has been highlighted qualitatively in other families
of musical instruments [33, 34, 43]. However, its quantitative effects on the stability of periodic regimes
and on the emergence of quasiperiodic regimes as well as the difference between the effect of a positive
and a negative inharmonicity remain open questions, in particular in the case of flute-like instruments.
Because some level of inharmonicity is unavoidable in practice, these are important question in the
context of instrument making. In instruments with side toneholes (such as recorders and transverse
flutes but also clarinets and saxophones), although the acoustical response of the resonator changes
drastically depending on the considered fingering (i.e. the combination of open and closed toneholes as
chosen by the musician), a single physical resonator with a given geometry is used to play all the notes
of the instrument. In comparison with pan-like flutes or organs, where one resonator is used for each
note, controlling the level of inharmonicity for all the different fingerings is a much more challenging
task for the instrument maker. In contrast to recorders, the regular playing mode of prehispanic Chilean
flutes considered here corresponds to quasiperiodic regimes. Another peculiarity of theses instruments
lies in the shape of the resonator which is made of two cylinders of similar length but different ratio (as
represented schematically Figure 2). This has been shown to favor a strong inharmonicity [15]. Here we
investigate the influence of inharmonicity on the emergence of stable quasiperiodic oscillations in both
recorders and prehispanic Chilean flutes. Because they correspond either to the regular playing mode
or to a defect of the instruments, understanding how to favor or to avoid quasiperiodic sound regimes
is particularly valuable in the context of instrument making.

We consider the jet-drive model, a generic model of flute-like instruments written in the form of
neutral delay-differential equations (NDDEs). This model has been studied by means of a one-parameter
numerical bifurcation analysis only recently [20]. In the classical case of a recorder or transverse flute,
it has shown excellent agreement with the most common bifurcation scenario observed in an actual
experiment when the musician’s mouth pressure is increased. In such a case, successive jumps between
periodic regimes with increasing frequencies (corresponding to notes of the musical scale) are observed,
with no non-periodic sound regimes [31, 32, 20].

Delay differential equations (DDEs) have an infinite-dimensional phase space [40, 41], and specific
numerical methods have to be used for their time-domain simulation and continuation [44]. In partic-
ular, in contrast to ordinary differential equations (ODEs) where initial conditions are defined only at
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t = 0, solving delay differential equations (DDEs) requires to specify the history on a whole internal
[−τ, 0]. Compared to DDEs, NDDEs contain derivatives of delayed terms and can display more compli-
cated bifurcation scenarios and dynamics [37]. The simulation, numerical continuation and bifurcation
analysis of NDDEs implies to use dedicated advanced numerical methods. In this paper, time-domain
simulations are performed using the Matlab solver ddensd [42]. Numerical continuation and bifurcation
analysis are performed in the Matlab-based continuation software DDE-Biftool [24, 23, 25], in which
the collocations schemes for neutral systems described in [26, 27] have been implemented [20].

The model is described in more details in section 2, and the main parameters are recalled. The ge-
ometrical details of the two instruments considered here are taken into account through their acoustic
input admittance. In section 3, we use numerical simulations to investigate the ability of the generic
model to reproduce the quasiperiodic regimes, including their specific acoustical features, observed
experimentally in the recorder and in the pre-hispanic Chilean flute, [16]. Simulated sounds are anal-
ysed in the Fourier domain and in the phase space. This reveals that the generic model can produce
quasiperiodic sounds that share many properties with sounds produced by real instruments. In section
4, we perform a numerical bifurcation analysis where both the delay τ and the inharmonicity (detuning
between resonance frequencies) are considered as bifurcation parameters. This highlights the key role
played by the detuning parameter in the emergence of stable quasiperiodic regimes.
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Figure 1: Radiated sound produced by a Chilean flute (left) played by an experienced player, and by an
alto recorder (right) played by a pressure-controlled artificial mouth. The blowing pressure is around
1260 Pa for the Chilean flute and fixed to 650 Pa for the recorder. The inset shows an enlargement on
the first 0.01 seconds of the signal (solid blue line), and displays a comparison with the waveform of
the periodic sound (dashed red line) obtained using the same instrument and same fingering, but for a
lower blowing pressure Pm = 350Pa. The corresponding sounds are available online as supplementary
material of [16].

2 Physical model of flute-like musical instruments

Musical instruments such as organs, flutes, reed (clarinet, oboe, ...), brass (trumpet, trombone) and
bowed-string instruments (violin, cello ...) are self-sustained oscillators. They are classically described
by a coupled system consisting of a nonlinear exciter and a linear, passive acoustic resonator [1].

2.1 Exciter

A fundamental difference between flute-like instruments and other blowing (wind) instruments lies
in the nature of the exciter [2]. In reed and brass instruments, the excitation mechanism relies on
the vibration of a solid element (a cane reed or the lips of the musician, respectively) [3]. Flute-like
instruments, on the contrary, are essentially fluid oscillators: the exciter consists of a naturally unstable
air jet interacting with a sharp edge of the instrument, referred to as the labium. Figure 3 shows a
schematic representation of a recorder. Considering this instrument as an example, the mechanism of
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Figure 2: Schematic representation of a Chilean flute, highlighting the shape of the resonator. The
air jet oscillating around the labium is represented in blue. Qin and Qout represent the alternate flow
injection inside and outside of the resonator, which constitutes the source.

sound production can be described as follows [4]. When the musician blows into the channel of the
instrument, an air jet with a Bickley profile in created at the channel exit [5]. The central velocity Uj of
the air jet is linked to the pressure difference between the musician’s mouth cavity and the atmosphere
through Bernoulli’s law, and its semi-half width b is estimated as 2h/5 with h the channel height at its
exit [6]. Because the air jet is naturally unstable [7], any small perturbation is amplified and convected
along the jet, across the window of length W (see Figure 3). The spatial amplification rate αi and
convection velocity cp have been estimated experimentally as αi ≈ 0.4/h and cp ≈ 0.4Uj , respectively
[8, 9, 5]. The jet-labium interaction leads to the oscillation of the jet around the labium, with a
transversal deflection η(t) of the jet centerline. This oscillation results in an alternate flow injection
outside and inside the instrument. These two flow sources are referred to as Qout and Qin, respectively,
and are separated from each other by a small distance δd, evaluated by Verge as δd = 4

π

√
2hW [10].

Overall, they act as a dipolar source of pressure p(t) which excites the acoustic resonator composed of
the air column contained in the instrument pipe. The resonator acts as a filter which favors or inhibits
certain frequency components in the spectrum of the acoustic field. Finally, the acoustic waves in the
resonator perturb back the unstable air jet at the channel exit [11, 9]. These perturbations are amplified
while being convected along the air jet, thus sustaining the oscillation of the jet around the labium and,
as such, the sound production. The convection time of this perturbation along the jet introduces a
delay time τ = W/cp. Importantly, the value of τ is directly related to the pressure in the musician’s
mouth and is, as such, the main control parameter.

Although the physics behind the sound production is similar in both instruments considered in this
article, it is worth noting that the exciter part of the two instrument significantly differ from each other.
For the recorder, most geometrical parameters are fixed by the instrument maker (see Figure 3). For
the Chilean flute on the other hand, the channel is not a part of the instrument but is rather formed
by the musician lips, and the labium is one of the instrument edges, as shown in Figure 2. Many of the
exciter parameters are then directly controlled by the musician: this includes the length W of the jet,
the height h of the channel and the offset y0 between the channel centerline and the labium. Because
these parameters can change significantly during the musical performance, their estimation is more
complicated.

2.2 Resonator

The response of the resonator to the excitation by the source of pressure is described in the frequency
domain, through its input acoustic admittance Y (ω). This approach allows to take into account the
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influence of the complex inner shape of the instruments. The admittance is defined as the ratio, in the
frequency domain, between the acoustic velocity below the labium Vac(ω) and the source of pressure
P (ω) resulting from the interaction between the air jet and the labium:

Y (ω) =
Vac(ω)

P (ω)
. (1)

It can be either measured experimentally [12, 13] or determined from analytical formulae [3], and is
commonly represented in the Fourier domain as a sum of an infinite number of resonance modes [3]:

Y (ω) =

∞∑
n=1

aniω

ω2
n − ω2 + iω ωn

Qn

, (2)

with ω the angular frequency and an, ωn and Qn the amplitude, resonance angular frequency, and
quality factor of the nth resonance mode, respectively. Here, this sum is truncated to take into account
the first five modes [14], whose resonance frequencies span the frequency band of interest in the musical
context.

The resonators of the two instruments considered in this article are significantly different from each
other [16]. The resonator of the recorder can be represented, in first approximation, as a cylinder
open on both ends. By closing or opening the different toneholes along the resonator, the musician
can change the resonator properties (and in particular its apparent length), and thus access a wealth
of sound regimes. On the other hand, the resonator of Chilean flutes is composed of two cylinders in
series, with similar length but with diameters in a ratio close to two [15] (see Figure 2). Similarly to
Pan flutes, it has one open end on the musician’s side, one closed end, and no toneholes.

The input admittance of the recorder is calculated using the software WIAT [18], from the precise
knowledge of its inner geometry [19]. On the other hand, an experimentally measured admittance
is considered for the Chilean flute [16]. In both cases, the modal parameters in equation (2) are
estimated using an optimisation procedure (least square method). Figure 4 shows, for both instruments,
the comparison between the original (calculated or measured) admittance and the fitted admittance
represented as a sum of five resonance modes. The corresponding modal parameters are given in Table
1. Because the recorder has an open-open resonator, a sixth mode has to be taken into account to
ensure the convergence at zero frequency. It is written in a slightly different form [3, 20]:

Y0(ω) =
a0

iωb0 + c0
. (3)

Overall, Figure 4 shows excellent agreement between the original and fitted admittances, in particular
around the resonance frequencies (i.e. around the maxima of |Y (ω)|). For the Chilean flute, the
differences are more important around anti-resonances (minima of |Y (ω)|)). This is due to the fact
that only a finite number of resonance modes is taken into account. However, the instrument playing
frequencies are close to the resonance frequencies [31], and we therefore expect these differences to have
little effect on the observed dynamics. Finally, the resonator is described by the following equation:

Vac(ω) =

(
a0

iωb0 + c0
+

5∑
n=1

aniω

ω2
n − ω2 + iω ωn

Qn

)
P (ω), (4)

with a0 = 0 for the Chilean flute, as explained above. From equation (4), Vac(ω) is written as the sum
of the contribution of the different resonance modes:

Vac(ω) = Vac0(ω) +

5∑
n=1

Vacn(ω), (5)

where:

Vac0(ω) =
a0

iωb0 + c0
P (ω),

Vacn(ω) =
aniω

ω2
n − ω2 + iω ωn

Qn

P (ω).
(6)
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Figure 3: Schematic representation of the cross section of the upper part of a recorder flute. The
naturally unstable air jet blown by the musician is perturbed by the internal acoustic field vac at
the channel exit, leading to a transversal deflection η0 of the jet. This perturbation is subsequently
convected and amplified along the jet.

Using equations (6), equations (4) and (5) are written in the time-domain through an inverse Fourier
transform, which leads to:

vac(t) = vac0(t) +

5∑
n=1

vacn(t),

v̇ac0(t) =
a0

b0
p(t)− c0

b0
vac0(t),

v̈acn(t) = anṗ(t)− ω2
nvacn(t)− ωn

Qn
v̇acn(t), ∀n ∈ [1, 5].

(7)

2.3 A system of neutral delay-differential equations

Overall, the state-of-the art model of flute-like instruments is formed by system (7) together with the
following equations:

η(t) =
h

Uj
eαiW vac(t− τ),

p(t) =
ρδdbUj
W

d

dt

[
tanh

(
η(t)− y0

b

)]
− ρ

2α2
vc

vac(t)abs(vac(t)).

(8)

Here, the second term in the second equation corresponds to nonlinear losses at the labium due to
vortex shedding [21], and αvc is the corresponding vena contracta factor, estimated as 0.6 for the case
of a sharp edge [22]. System (7)–(8) can be re-written as a system of 2m first-order neutral delay
differential equations, with m the total number of modes taken into account (for more details on the
calculations, see, for example, [20]). We investigate this system using a Matlab dedicated time-domain
solver and the continuation toolbox DDE-Biftool [24, 23, 25], which has been adapted to allow for
the continuation of equilibria and periodic solutions of NDDES, as well as their bifurcations in two
parameters [26, 27, 20]. For numerical reasons, the time variables are rescaled with respect to the first
resonance angular frequency ω1.
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Figure 4: Modulus (top) and phase (bottom) of the admittance Y of a Chilean flute (left) and of an
alto recorder (right). The experimentally measured admittance of the Chilean flute and the admittance
determined analytically from the precise pipe geometry of the recorder are shown in blue. The corre-
sponding fitted admittances written as a sum of resonance modes are shown in red.

3 Time-domain simulations

We now investigate the ability of the generic flute model (7)–(8) to reproduce the two qualitatively
different non periodic sound regimes produced by the Chilean flute and the recorder. Although they
have been shown recently to be both quasiperiodic [16], these two sound regimes show qualitative
differences in terms of modulation frequency and spectral content. Compared to recorders, Chilean
flutes produce deeply modulated sound regimes, with a low modulation frequency and a very rich
spectrum with high energy levels in the higher order partials [28].

Here we perform time-domain simulations of system (7)–(8), considering two different sets of param-
eters corresponding to the recorder and the Chilean flute, respectively. The simulations are performed
using the Matlab solver ddensd dedicated to neutral delay differential equations [42]. The resonator
parameters are as discussed above (see Table 1) and the exciter parameters are mostly identical in both
cases, except for the air jet length W . This is justified by the fact that this is fixed to W = 4.25 mm at
the making stage for the recorder while it is a control parameter for the Chilean flute. For the similar
case of transverse flutes, it has been estimated experimentally that the ratio W/h varies between 3 and
12 [29], and we consider here a (fixed) value of W = 10mm. The two sets of parameters are summarized
in Table 2.

Figure 5 shows the simulated time series for both parameter sets, and for fixed values of the (rescaled)
delay time τ̃ = ω1τ . Both simulated sound regimes show a modulation of the oscillation amplitude,
which is reminiscent of the experimental time series (see Figure 1) [16]. The two sound regimes show
qualitative differences in excellent agreement with the experimental observations. In particular, the
modulation is deeper and the modulation frequency is much lower for the Chilean flute than for the
recorder (note that different scales are used for the x-axis of the left and right panels in Figure 5). This
is reminiscent of the strong beating component at a frequency close to 15Hz which has been shown to
be characteristics of the sounds produced by these Chilean flutes [28, 15].

Figure 6 shows the Poincaré sections of both simulated time series, represented in a 3D-space whose
dimensions are delayed version of the variable vac. More precisely, the embedding dimension is estimated
(here as four) using a false nearest neighbor algorithm, and a suitable delay τe is selected by detecting
the first zero of the auto-correlation of the signal vac(t) [30]. The projected Poincaré sections are defined
as the trajectory in the four-dimensional reconstructed phase space passing through a fixed value of
vac(t − 3τe). In both cases, the Poincaré sections feature densely filled closed loop. It is worth noting
that the seemingly self-intersections of the curve, observed in the case of the recorder (Figure 6, right),
is only due to the further projection of the 3D picture onto a 2D plane by the printed Figure. Overall,
this demonstrates the quasiperiodic nature of both simulated sounds.
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Figure 5: Simulated sound regimes: acoustical velocity vac with respect to time, for the Chilean flute
(left) and recorder parameters (right). The rescaled delay time τ̃ is 0.74 (left) and 0.295 (right),
corresponding to pressure Pm = 915 Pa and Pm = 4900 Pa in the musician’s mouth, respectively.

a0 b0 c0 a1 ω1 Q1 a2 ω2 Q2

Chilean flute 0 1.60 3.31 11.39 1157 26.07 7.04 2343 34.39
recorder 11.22 1.60 3.31 22.36 2510 44.9 16.39 5113 59.65

a3 ω3 Q3 a4 ω4 Q4 a5 ω5 Q5

Chilean flute 9.55 4796 50.67 8.12 5943 52.87 12.94 8419 58.00
recorder 12.64 7569 67.2 10.55 9719 73.57 10.32 11909 79.98

Table 1: Values of the modal parameter considered for the admittance of both the Chilean flute and
the recorder.

Figures 7 and 8 show the modulus of the Fourier spectrum of the simulated acoustic velocity vac(t)
for both instruments. In each case, it allows to identify two base frequencies f1 and f2, such that f1/f2

is not rational and that all the peaks in the spectra appear at frequencies which are linear combinations
of f1 and f2. Here, f1 ≈ 188 Hz and f2 ≈ 367 Hz for the Chilean flute, and f1 ≈ 340 Hz and f2 ≈ 1558
Hz for the recorder. Not only this confirms the quasiperiodicity of both simulated sound regimes, but
also it allows for a more comprehensive comparison with the experimental data [16].

For the Chilean flute parameters, the simulated sound regime has a very rich spectrum, with high
energy levels in the higher order partials [28], which is an important feature of the experimental sound
regimes. Moreover, a similar analysis of the experimental sound regimes obtained with the particular
Chilean flute whose measured admittance Y (ω) is considered here highlighted two base frequency of
approximately 186Hz and 14Hz. This shows excellent agreement with the base frequency f1 ≈ 188Hz
of the simulated sound and with the lowest modulation frequency f2 − f1 ≈ 8.6Hz observed in the
spectrum, which corresponds to the strong beating component at low frequency observed in the time
series (Figure 5, left). For the recorder, the spectrum shows only a few numbers of well-identified peaks
on the whole represented frequency range, and no peaks are observed below 100Hz. These differences
in the spectral content are similar to the ones observed experimentally between the recorder and the
Chilean flute sounds [28, 16]. Again, the base frequencies of the simulated sound are in good qualitative
agreement with the base frequencies obtained on an experimentally recorded sound, which were close
to 400Hz and to 1550Hz for a close (but not identical) configuration of the resonator [16].

Overall, these results demonstrate the ability of the generic model of flute-like instruments to repro-
duce the two qualitatively different quasiperiodic regimes produced by the two instruments considered
in this article. In simulation, the exciter parameters were mostly identical for both the recorder and
the Chilean flute. As such, the peculiar resonator geometry of Chilean flutes, which is accounted for
through its measured input admittance Y (ω), seems to play a crucial role in the emergence, at low
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Figure 6: Projection of the Poincaré sections of the two simulated time series shown in Figure 5, for the
Chilean flute parameters (left) and the recorder parameters (right), and for a rescaled delay τ̃ = 0.74
(left) and τ̃ =0.295 (right). The delay τe is estimated at thefirst zero of the autocorrelation of vac(t).
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h W y0 ρ αvc
Chilean flute 10−3 10−2 2 · 10−4 1.2 0.6

recorder 10−3 4.25 · 10−3 10−4 1.2 0.6

Table 2: Values of the parameters associated with the exciter, for both the Chilean flute and the
recorder.
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Figure 9: One-parameter bifurcation diagram representing the local maxima of the simulated acoustic
velocity vac with respect to the delay time τ̃ , for an increasing (left) and a decreasing (right) delay τ̃ .
The shaded area indicates the parameter range of the spectrogram in Figure 10.

values of the mouth pressure, of a stable quasiperiodic regime with a strong, low-frequency beating
component and a rich spectrum.

4 Numerical bifurcation analysis

We now focus on the case of the Chilean flute, and explore the influence of two parameters of practical
importance on the existence and stability of the quasiperiodic regime discussed in the previous section.
The influence of τ̃ , which is (indirectly) the main control parameter of the musician, is explored in
time-domain simulations and through a bifurcation analysis performed with the continuation toolbox
DDE-Biftool. Secondly, we investigate the influence of the inharmonicity (as defined in the introduction)
which is related to the geometry of the resonator and is, as such, of particular importance in the context
of instrument making [33, 34].

4.1 Influence of the delay τ̃

Figure 9 shows a one-parameter bifurcation diagram obtained from time-domain simulation for the
Chilean flute parameters. It represents the local maxima of the acoustic velocity vac(t) for an increasing
and decreasing value of τ̃ (corresponding to a decreasing and increasing pressure in the musician’s mouth,
respectively). The starting value τ̃ = 0.74 corresponds to the delay time considered in Figures 5-7. For
each value of τ̃ , the initial conditions over the history interval [−τ̃ + t0, t0] are set to the previously
calculated solution, i.e. for a slightly smaller (respectively, larger) τ̃ . This shows that, when increasing
the delay, the system remains on the quasiperiodic regime shown in Figure 5 up to τ̃ = 0.82. However,
the modulation which was clearly visible in Figure 5 becomes less and less deep. From τ̃ = 0.82, a
periodic solution is observed, which corresponds, in Figure 9 (left), to a fixed number of (constant)
maxima of vac for each value of τ̃ . Increasing τ̃ further leads to the emergence of another quasiperiodic
regime around τ̃ = 0.88. It exists only on a small range of τ̃ and the system subsequently jumps, at
τ̃=0.9, towards another periodic regime whose amplitude increases with the delay. Starting from this
periodic regime and decreasing the delay τ̃ back down to 0.74 (Figure 9, right), one observes a hysteresis
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Figure 10: Left: Spectrogram of the simulated acoustic velocity vac shown in Figure 9 (left, shaded
area), for a increasing value of the delay τ̃ . Right: modulus of the fitted input admittance Y (ω) of the
Chilean flute, already shown in Figure 4 (top, left).

phenomenon. In particular, the quasiperiodic regime observed around τ̃= 0.88 when τ̃ is increased is
not observed for a decreasing τ̃ . Rather, the system remains on the same branch of periodic solutions
down to τ̃ = 0.835, where it jumps back to another periodic regime which was already observed when
increasing τ̃ . Decreasing the delay further leads to the emergence of the quasiperiodic regime highlighted
in the previous section, without hysteresis effect compared to the case where the delay is increased.

Figure 10 shows the spectrogram of the acoustic velocity vac around the transition between the
quasiperiodic and the periodic regime, observed when τ̃ is increased from 0.74 to 0.84. This parameter
range is highlighted by a shaded area in Figure 9 (left). In Figure 10, the x-axis is τ̃ , the y-axis is
the frequency and the modulus of the Fourier spectrum at each frequency is represented by the color
scale. The right panel reproduces the modulus of the fitted input admittance Y (ω) of the Chilean flute,
to allow for a comparison between the spectral content of the simulated acoustic velocity vac and the
resonance frequencies of the passive system. This shows that the system undergoes a transition from the
quasiperiodic sound regime towards the first register, that is to say a periodic regime whose frequency is
very close to the first resonance frequency. These results suggest that the quasiperiodic regime emerges
from a torus bifurcation of the first register. In comparison, for the case of transverse flutes or recorders,
the destabilisation of the first register occurring when τ is decreased (i.e. when the mouth pressure
is increased) classically leads to a transition towards another register, that is to say towards a stable
periodic regime whose frequency is close to one of the upper order resonance frequencies [32, 31, 35].

This dynamics is investigated further by performing a bifurcation analysis using advanced numerical
continuation methods. Figure 11 shows the one-parameter bifurcation diagram of system (7)–(8) in
the dimensionless delay τ̃ . Periodic solutions are represented by the maximum value of the acoustic
velocity vac(t) (left panel) and by their frequency (right panel). For a decreasing τ̃ (which corresponds
to an increasing pressure in the musician’s mouth), successive periodic solution branches emerge in
successive Hopf bifurcations H. The right panel in Figure 11 shows that each branch of periodic
solutions corresponds to a particular register of the instrument, and that these registers appear in
increasing order (and thus with increasing oscillation frequency) when decreasing τ̃ . Figure 11 shows
that all periodic solutions branches are unstable immediately after they emerge in a Hopf bifurcation.

The third, fourth and fifth register stabilise successively in torus bifurcations encountered when the
delay τ̃ is decreased, and they remain stable down to the minimal considered value of τ̃ . On the contrary,
the first and second registers stabilise and destabilise several times through torus bifurcations T but also,

11



0.2 3.75
1
  

0

15
v

a
c

0.74 0.93

5

8
S

HHH

T

T

0.2 3.75
1
 

0

1500

fr
e
q
u
e
n
c
y
 (

H
z
)

0.74 0.93

180

200

T T

H

HS

T

Figure 11: One-parameter bifurcation diagram of (7)–(8) in the dimensionless delay τ̃ , showing the
maximum amplitude of the acoustic velocity vac (left) and the frequency (right) along branches of
periodic solutions. The stable and unstable solutions are represented in blue and red, respectively.
Shown are Hopf bifurcation points H (blue dots), torus bifurcation points T (green dots) and point S
of saddle-node bifurcation of periodic orbits (red dot). In the right panel, the light gray lines show
the resonance frequencies of the instrument. The insets show enlargements of the branch of periodic
solution corresponding to the first register on the range of τ̃ represented in Figure 9.

for the second register, in a saddle-node bifurcation of periodic orbits S. The first register displays three
successive stability ranges. In particular, a small range of stability is observed for 0.81 < τ̃ < 0.85. On
this range of τ̃ , the second register is also stable. This multistability explains the hysteresis phenomenon
observed in simulation in Figure 9. Moreover, the change of stability of the first register at τ̃ = 0.82
corresponds to the value at which the transition between a stable quasiperiodic regime and the first
register is observed in simulation (see Figures 9 and 10).

Overall, as τ̃ is decreased, an increasing level of multistability is observed between the higher-order
registers. More precisely, and as already discussed in the literature [31, 32, 20], the lower order registers
(with the lower oscillation frequencies, thus corresponding to the lower pitch notes) emerge, stabilise
and subsequently destabilise for larger values of τ (i.e. for smaller mouth pressure) than the higher
order registers. This corresponds to the experimental observations, where successive notes with higher
and higher pitch are obtained when the musician blows harder and harder into the instrument [31, 35].

4.2 Influence of the detuning

The inharmonicity is defined, in the musical context, as the detuning between the upper order resonance
frequencies and the integer multiples of the first resonance frequency. Here we investigate its influence
on the bifurcation scenario detailed in Figure 11. This parameter depends on the details of the internal
geometry of the instrument. It is therefore adjusted at the making stage, and it is of particular impor-
tance from the instrument maker’s point of view: not only are the values of the resonance frequencies
related directly to the intonation of the instrument, but different studies have also shown that, on
clarinet-like instruments, a strong inharmonicity can favor the emergence of stable non-periodic sound
regimes [34, 36].

The specific shape of the Chilean flute resonator results in a strong inharmonicity, as already shown
in Figure 4. Compared to the input admittance of the recorder, where resonance peaks appear at
frequencies close to integer multiples of the first resonance frequency, the input admittance of the
Chilean flute rather shows a series of double resonance peaks. Using a theoretical model of the resonator,
Blanc et al [15] showed that the fact that the instrument is made of two cylinders of different radius,
with one open and one close end, results in an admittance showing series of double resonance peaks.
More precisely, one finds pairs of resonance peaks which are located on both sides of the theoretical
resonance frequencies of a close-open cylindrical pipe of half the total length of the instrument. The
space between two consecutive peaks depends on the ratio between the radius of the two cylindrical
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parts of the resonator.
To investigate the influence of this specific feature of the admittance of Chilean flutes on the emer-

gence of a stable, deeply modulated quasiperiodic regime, we define a global inharmonicity parameter Γ,
which allows to change the input admittance of the instrument in a continuous manner from a perfectly
harmonic case (when Γ = 0) to the case of the Chilean flute measured admittance (Figure 4), when Γ =
1. More precisely, we define, for each resonance mode, a parameter ξn characterising the inharmonicity
of the nth resonance mode as measured for the considered Chilean flute:

ξn =
ωn

(2n− 1)ω1
− 1. (9)

From there, one can investigate the influence of the inharmonicity by changing Γ and by defining the
resonance (angular) frequencies of the instrument as follows:

ωΓn = (1 + Γξn)(2n− 1)ω1. (10)

It is straightforward from equation (10) that, for Γ = 0, one hasfn = (2n− 1)f1 which corresponds to
the ideal case of a perfectly harmonic cylindrical resonator with one open and one close end. On the
other hand, for Γ = 1, one gets the resonance frequencies ωn measured on the actual Chilean flute, and
given in Table 1. Because the Chilean flute has a negative inharmonicity (i.e. the resonance frequencies
are shifted towards lower frequencies compared to the perfectly harmonic case), a positive (negative) Γ
corresponds here to a negative (positive) inharmonicity.

Figure 12 shows the bifurcation diagram of system (7)–(8) in the (τ̃ ,Γ)-plane of rescaled delay and
inharmonicity parameter. Shown are the curves H of Hopf bifurcations at which the different registers
(whose range are indicated by numbers) emerge. Figure 12 shows that changing Γ has little effect on
the threshold, in τ̃ , at which the first register emerges. Its influence is more important for the upper
order registers. In particular, going from a strong negative inharmonicity (large positive value of Γ)
towards a positive inharmonicity (Γ < 0) leads to a decrease in the value of τ̃ at which the second
register emerges. From a musical point of view, this means that the pressure in the musician mouth
needs to be much higher in the latter case to reach the second register. As such, this note will be much
more difficult to play. Interestingly, the second and the fourth register completely disappear for an
important negative inharmonicity (close to Γ = 2).

The inset in Figure 12 provides details on the influence of Γ on the emergence of the stable quasiperi-
odic regime highlighted in Figure 9. Shown are two torus bifurcation curves T, corresponding to the
successive stabilisation and destabilisation of the first register, observed for the smaller value of τ̃ in
Figure 11. As such, in the inset in Figure 12, the leftmost curve T corresponds to the threshold at
which the quasiperiodic regime observed in time-domain simulation emerges (see Figure 9). The in-
set in Figure 12 also shows a curve S of saddle-node bifurcation of periodic orbits and curves PD of
period doubling bifurcations. The curve S displays several cusps and two 1:1 resonance points, each
of whom corresponding to a connection between the curve S and one of the two curves T [17]. The
curves PD of period doubling bifurcations connect to the rightmost curve T at 1:2 resonances points
[17]. Overall, the results in Figure 12 show that, when decreasing Γ from 1 (i.e. for a weaker negative
inharmonicity compared to the Chilean flute) the value of τ̃ for which the destabilising (i.e. leftmost)
torus bifurcation is observed first decreases and subsequently increases when Γ is decreased from 0.85.
More importantly, none of the represented bifurcations is observed below Γ = 0.58: as the inset in
Figure 12 shows, below this value, the last sequence of stabilisation - destabilisation of the first register,
which was observed when decreasing τ̃ (see Figure 11), is not observed anymore. One thus expects that
the stable quasiperiodic regime described above is not observed anymore when starting from the first
register and decreasing the delay τ̃ , when Γ < 0.58. Overall, these results highlight the strong influence
of inharmonicity on the emergence of both stable periodic and quasiperiodic sound regimes.
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Figure 12: Two-parameter bifurcation diagram of (7)–(8) in the dimensionless delay τ̃ and the inhar-
monicity parameter Γ. Shown are the Hopf bifurcation curves H (blue), and numbers indicate the
register emerging at each Hopf bifurcation curve. The horizontal grey line at Γ = 1 highlights the
inharmonicity corresponding to the case of the Chilean flute. The inset shows an enlargement of the
bifurcation diagram in the framed parameter region, showing curves T of torus bifurcation (green),
curve S of saddle-node bifurcation of periodic solutions (brown) and curves PD of period doubling bi-
furcations (pink). The black dots highlight 1:1 and 1:2 resonances.
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5 Conclusion

The recorder and the prehispanic Chilean flute considered in the article are very different, despite a
common sound production mechanism. The generic model of flute-like instruments, written as a system
of NDDEs, is able to reproduce convincing quasiperiodic sound regimes: for each instrument, important
properties of these regime are qualitatively comparable with those of experimentally-recorded sounds.
This includes the spectral content and the amplitude and frequency of the observed modulation in time
series.

The process through which quasiperiodic sounds emerge has been highlighted by performing a
numerical bifurcation analysis. A stable quasiperiodic regime emerges from the destabilisation of the
first register in a torus bifurcation when the blowing pressure in increased, and is observed over a range of
delay time (blowing pressure) values. The detuning between the different acoustic resonance frequencies
of the air column inside the instrument proved to be a key parameter to control the emergence of
quasiperiodic regimes. In particular, decreasing the inharmonicity can lead to a qualitatively different
bifurcation scenarios, where the stable quasiperiodic regime is not observed anymore. Similarly, some
registers of the instrument (i.e. some notes of the musical scale) can entirely disappear for a strong
positive inharmonicity. Finally, our bifurcation analysis unveils that not only the inharmonicity plays
a key role, but also that positive and negative inharmonicity leads to qualitatively different bifurcation
scenario when the mouth pressure is varied. Since there is a direct link between the geometry of the
flute and the value of the detuning parameter, our results suggest that the particular shape of the
prehispanic Chilean flute may be inspired by the will of makers to favor quasiperiodic regimes.

From a more general point of view, our study demonstrates that the numerical tools dedicated to the
continuation of periodic solutions of NDDEs and their bifurcations allow to investigate the dynamics of
complicated systems originating from actual experiments and applications. We expect that this might
be of general interest, beyond the case of acoustics applications.
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