
HAL Id: hal-03766779
https://hal.science/hal-03766779v1

Preprint submitted on 1 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving a Continent-Scale Inventory Routing Problem at
Renault

Louis Bouvier, Guillaume Dalle, Axel Parmentier, Thibaut Vidal

To cite this version:
Louis Bouvier, Guillaume Dalle, Axel Parmentier, Thibaut Vidal. Solving a Continent-Scale Inventory
Routing Problem at Renault. 2022. �hal-03766779�

https://hal.science/hal-03766779v1
https://hal.archives-ouvertes.fr

Solving a Continent-Scale Inventory Routing Problem at Renault

Louis Bouvier∗1,2, Guillaume Dalle1, Axel Parmentier1, and Thibaut Vidal3

1CERMICS, Ecole des Ponts, France
2Groupe Renault

3Polytechnique Montréal, Canada

September 1, 2022

Abstract

This paper is the fruit of a partnership with Renault. Their backward logistic requires to solve a
continent-scale multi-attribute inventory routing problem (IRP). With an average of 30 commodities,
16 depots, and 600 customers spread across a continent, our instances are orders of magnitude larger
than those in the literature. Existing algorithms do not scale. We propose a large neighborhood search
(LNS). To make it work, (1) we generalize existing split delivery vehicle routing problem and IRP
neighborhoods to this context, (2) we turn a state-of-the art matheuristic for medium-scale IRP into a
large neighborhood, and (3) we introduce two novel perturbations: the reinsertion of a customer and
that of a commodity into the IRP solution. We also derive a new lower bound based on a flow relaxation.
In order to stimulate the research on large-scale IRP, we introduce a library of industrial instances.
We benchmark our algorithms on these instances and make our code open-source. Extensive numerical
experiments highlight the relevance of each component of our LNS.

1 Introduction
The inventory routing problem (IRP) arises when a supplier manages the delivery of commodities to its
customers on a multiple-day horizon in a centralized manner (Archetti and Speranza 2016). It consists in
planning routes to deliver commodities from depots to customers with the objective of minimizing inventory
and routing costs. This NP-hard problem has received significant attention in the operations research
literature over the past 40 years.

The present paper is motivated by a partnership with Renault, a major European car manufacturer
who must routinely solve IRP instances of unprecedented continental scale and complexity as part of their
backward logistic problem. Indeed, they receive car parts from suppliers at their plants in packaging, and
reuse the latter, which implies the need for backward packaging logistics. The goal of our partnership
is to redesign their IRP algorithm. This is challenging because of (1) the size of the resulting instances,
with 600 customers and 16 depots on average, (2) the 30 different commodities involved, and (3) the specific
challenges that arise from the geography and timescale. When depots and customers are scattered across a
whole continent, travel times can last up to ten days. Beyond requiring a long horizon, 21 days in our case,
this makes the problem more difficult because classic decoupling results on the IRP, which were exploited
in previous algorithms, are no longer valid. For instance, changing the order of the customers along a route
impacts the arrival day at each customer and therefore the customer inventory levels. Hence, routes with
suboptimal routing cost may be better because of inventory cost, which is not usually the case with the IRP.
It can be compared with the continuous-time IRP discussed in M. Savelsbergh and Song (2008) or Lagos,

∗Corresponding author: louis.bouvier@enpc.fr

1

mailto:louis.bouvier@enpc.fr

Boland, and M. Savelsbergh (2020). Finally, our partner’s supply chain process requires that (4) the solution
algorithm should not take more than 90 minutes on our computing cluster.

State of the art exact algorithms rely on branch-and-cut (Archetti, Bertazzi, et al. 2007; Coelho and
Laporte 2013; Manousakis et al. 2021) and branch-and-price-and-cut methods (Desaulniers, Rakke, and
Coelho 2015) with dedicated valid inequalities. They can optimally solve single-commodity single-depot
instances with up to 50 customers, but are not appropriate for our large-scale setting.

Typical heuristics include route-based matheuristics (Fischetti and Fischetti 2016), decomposition matheuris-
tics, and metaheuristics.

In this field, Bertazzi et al. (2019) and Archetti, Boland, and Speranza (2017) are route-based matheuris-
tics. The main idea is to reduce the size of the mixed-integer linear program (MILP) formulation of the IRP,
by selecting promising routes heuristically. Although Bertazzi et al. (2019) is dedicated to the multi-depot
case, neither of the two papers handles the multicommodity aspect we must face, and their largest instances
have up to six days horizon, six depots and 50 customers. The methods cannot be applied directly in our
context, because the MILP remains too large, even when we restrict ourselves to “promising routes”. We
instead adapt their principle to our setting, leading to the “reload fixed-path vehicles” subroutine.

Another common approach is to tackle the IRP through a decomposition (Campbell and M. W. P.
Savelsbergh 2004; Cordeau et al. 2015). For instance, first set the quantities to be sent, and then create
the routes to respect them. The largest instances solved with this two-step method have a single depot, up
to five commodities, a six days horizon and 50 customers. We also adapt it to our setting and use it as an
initialization heuristic.

Some metaheuristics have been designed for real world IRP. For instance, Benoist et al. (2011) is a ran-
domized local search to address a large-scale single-commodity IRP with pickups, time windows, driver safety
and other constraints that are specific to their use case, but less relevant to ours. Su et al. (2020) address a
real-world IRP from the ROADEF IRP-Challenge 2016 available at https://www.roadef.org/challenge/
2016/fr/ with a large neighborhood search based on mathematical programming. As for Benoist et al.
(2011), the single-commodity formulation with additional constraints is not adapted to our multicommodity
context. Other large neighborhoods are introduced in Nolz, Absi, and Feillet (2014) for a single-depot single-
commodity stochastic version of the IRP. They are based on perturbation ideas such as the removal of every
customer visit on a particular day, followed by a best-insertion policy. This process of removal and insertion
is at the core of our work, but we leverage MILP formulations for the insertion. A kernel search heuristic
based on a preliminary tabu search is considered in Archetti, Guastaroba, et al. (2021). In this framework,
smaller MILPs with increasing size are solved iteratively to improve an initial solution. Single-depot, single-
commodity instances with up to six days horizon and 200 customers are solved. The study Coelho, De Maio,
and Laganà (2020) fixes a part of the decision variables, this time based on the problem’s main “axes” – that
is to say the different types of sites involved in the deliveries, the routing and the inventory aspects. It solves
reduced MILPs in a variable neighborhood search, and defines the multi-attribute IRP as a multicommodity,
multi-depot and multi-vehicle IRP. This constraint structure is the closest to ours. Nonetheless, the instances
are smaller, with up to six days horizon, 50 customers, six depots and three commodities. Besides, this study
is restricted to one-day routes, whereas we explicitly deal with routes that last multiple days, which creates
an additional combinatorial challenge. Another difference is that it incorporates a heterogeneous fleet with
three distinct vehicle types, whereas we consider a homogeneous infinite fleet of vehicles.

Therefore, to the best of our knowledge, no algorithm is known to properly scale to our instances. In
this context, our main contributions are the following:

1. We introduce two new large-scale perturbation neighborhoods designed for the multi-attribute IRP.
They are based on well-solved MILP formulations, and enable to escape from local minima.

2. We design an efficient large neighborhood search (LNS) built upon these large neighborhoods. We gen-
eralize 12 Traveling Salesman Problem (TSP), and Split Delivery Vehicle Routing Problem (SDVRP)
(see e.g. Dror and Trudeau (1990) and Archetti and Speranza (2008)) neighborhoods from the litera-
ture to our IRP context. We propose a new matheuristic inspired by Archetti, Boland, and Speranza
(2017) and Bertazzi et al. (2019) and adapted to our large-scale setting.

2

https://www.roadef.org/challenge/2016/fr/
https://www.roadef.org/challenge/2016/fr/

3. We compute a new lower bound based on a linear program (LP) relaxation (one flow per commodity).
To the best of our knowledge, this relaxation is not considered in the literature. We expect the bound
not to be tight, which is a feature of every relaxation in the IRP literature. But it is useful to compare
algorithm performance on instances with distinct scales.

4. We provide a publicly available library of realistic multi-attribute IRP instances of a continent scale,
as an incentive for further research on the topic.

5. We give access to our open-source Julia (Bezanson et al. 2017) package that implements the ideas of
the present paper.

6. We proceed to extensive numerical experiments. Since no algorithm is known to scale to our context,
we compare the adapted route-based matheuristic and our large neighborhood search.

We precisely define the problem we consider in Section 2. We then provide an overview of the differ-
ent solution processes in Section 3. The three next sections 4, 5 and 6 emphasize algorithms details. We
eventually highlight our numerical experiments in Section 7.

2 Problem Description

2.1 Notations and Data
Let Z+ be the set of non-negative integers. For a ∈ Z+, we denote by [a] the set {1, ..., a}. Besides, for x ∈ R,
we define x+ := max(x, 0). We denote by |S| the cardinal of a set or list S. When we explicitly consider
a vector x = (x1, ..., xp) of dimension p ∈ Z+, we use the notation x ∈ Z or x ∈ {0, 1} instead of x ∈ Z|p|
or x ∈ {0, 1}|p| respectively. LetM be the set of commodities, D the set of depots and C the set of customers,
that respectively release and demand commoditiesm ∈ M . The time horizon is T ∈ Z+ days. At the
beginning, each vertex v (depot or customer) has an initial inventory of commoditym denoted by I0mv. On
each day t ∈ [T], a customer c demands a quantity b−mct of commoditym. A depot d releases a quantity b+mdt
of commoditym. We say that a depot d ∈ D uses a commoditym ∈ M if it has a positive initial inventory
or a positive release form at least once over the horizon. We denote byMd the set of commodities used
by depot d. We similarly defineMc as the set of commodities used by customer c ∈ C, based on initial
inventory and demand. A maximum inventory capacity κmvt is set on the night of each day t per vertex v
and commoditym. Below this capacity, no inventory cost is paid. Above, a cost is set to cexcmv per unit, where
“exc” stands for excess. Besides, a price cshortmc is paid per unit of unsatisfied demand for commoditym of
customer c, where “short” stands for shortage. It corresponds to a soft constraint of non-negativity for the
customers’ inventories. We approximate commodities and vehicles by one-dimensional objects. We associate
a length `m to each commoditym ∈M . We consider an infinite fleet of homogeneous vehicles of length L, to
deliver the commodities from depots to customers. They are not assigned to a particular depot. A 1D bin
packing problem must be solved for vehicle loading. The depots and customers are the vertices V = D∪C of
a directed graphD = (V,A) that we name the locations graph. The directed aspect is used to model the fact
that transport durations and distances depend on the trip direction. There is an arc a = (u, v) ∈ A for each
vertex u ∈ D∪C and v ∈ C, v 6= u. Given a vertex v, we denote by δ+(v) the set of arcs outgoing from v, and
by δ−(v) the set of arcs incoming to v. We associate a distance ∆a (in kilometers) and a transport duration τa
(in hours) to each arc. We assume that the distances satisfy the triangular inequality. When planning a
route, a cost is paid per vehicle cveh, per stop (customer visited) cstop, and per kilometer travelled ckm. The
number of stops must not exceed Smax, which is a practical requirement of the car manufacturer. The limit
of driving hours per day is τmax. The IRP consists in building a set of routes (see Section 2.2) to deliver
commodities from depots to customers, minimizing the sum of the routing, inventory and shortage costs and
respecting feasibility constraints detailed in Sections 2.3 and 2.2.

3

2.2 The Route Structure
An admissible path P = (v0, v1, ..., vk) in the locations graph is an elementary path, i.e. a path with pairwise
distinct vertices. It starts from a depot v0 ∈ D, and visits customers (v1, ..., vk) ∈ Ck, vi 6= vj . We have a
limit Smax to the number of customers visited:

|P | ≤ Smax + 1. (1)

We highlight the fact that a path does not end at its starting depot. Let P be the set of admissible paths,
and A(P) the set of arcs in a path P . A route r is a “timed and loaded path”. It is a tuple r = (tr, P r,qr)
where:

• tr ∈ [T] is the day of the departure.

• P r = (vr0, v
r
1, ..., v

r
k) ∈ P is the admissible path followed.

• qr = (qrms)m∈M,s∈[|P r|−1] ∈ (Z+)|M |×(|P
r|−1) are the quantities delivered, for each commoditym ∈M

and to each customer vrs for s ∈ [|P r| − 1].

The total load must not be larger than the vehicle capacity L, which can be written as:∑
m∈M

`m

(∑
s∈[|P r|−1]

qrms

)
≤ L. (2)

Given a route r, and the transport durations τa for a ∈ A, we can compute the arrival day trs at the
customer vrs for s ∈ [|P r| − 1] as follows. We first compute the cumulated transport duration in hours up to
customer vrs , with τ r0 = 0:

τ rs = τ rs−1 + τ(vrs−1,v
r
s)
, ∀s ∈ [|P r| − 1]. (3)

Then, the actual day trs of arrival at customer vrs takes pauses into account:

trs = tr +
⌊ τ rs
τmax

⌋
, ∀s ∈ [|P r| − 1]. (4)

Equation (4) means that when a driver exceeds the driving time limit per day τmax, a pause is made until
the next day. The vehicle then goes on from the location of the pause. Since in practice routes start from
depots in the morning and the deliveries are only available in the evening at the customers, it is indeed a
floor and not a ceiling function we consider in Equation (4). A route must also visit every stop before the
horizon T , which can be written as:

trs ≤ T, ∀s ∈ [|P r| − 1]. (5)

We henceforth denote byR the set of admissible routes. A direct route follows a path P = (d, c) from a
depot d ∈ D to a customer c ∈ C in the locations graph. It has only one arc.

2.3 Inventory Routing Formulation
The variables we consider are the following. We denote by z−mdt the quantity of commoditym sent from
depot d on day t, and by z+mct the quantity of commoditym delivered to customer c on day t. Let Imvt be the
inventory of commoditym at vertex v on the evening of day t. We last denote by xr the number of vehicles

4

following route r. We then consider the MILP formulation:

min
x,z,I

∑
r

xr

(
cveh + cstop(|P r| − 1) + ckm

∑
a∈A(P r)

∆a

)
(multi-attribute-IRP)

+
∑
d,t,m

cexcmd (Imdt − κmdt)+ (6a)

+
∑
c,t,m

cexcmc (Imct − κmct)+ + cshortmc (b−mct − Imc(t−1))+ (6b)

subject to z−mdt =
∑
r,

vr0=d,
tr=t

∑
s∈[|P r|−1]

xrq
r
ms, ∀m ∈M, ∀d ∈ D, ∀t ∈ [T] (6c)

z+mct =
∑
r

∑
s∈[|P r|−1],trs=t,vrs=c

xrq
r
ms, ∀m ∈M, ∀c ∈ C, ∀t ∈ [T] (6d)

Imdt = Imd(t−1) + b+mdt − z−mdt, ∀m ∈M, ∀d ∈ D, ∀t ∈ [T] (6e)

Imd0 = I0md, ∀m ∈M, ∀d ∈ D (6f)

Imct =
(
Imc(t−1) − b−mct

)+
+ z+mct, ∀m ∈M, ∀c ∈ C, ∀t ∈ [T] (6g)

Imc0 = I0mc, ∀m ∈M, ∀c ∈ C (6h)
x ≥ 0, z ≥ 0, I ≥ 0 (6i)
x ∈ Z, z ∈ Z, I ∈ Z (6j)

We notice that, given an IRP instance and the route variables x, we can deduce the quantities sent or
received z and the inventory I. The latter are useful to express the IRP as an MILP.

Objective function. The first sum models a cost per vehicle, per stop and per kilometer travelled. The
second one is related to the excess inventory during the nights at the depots. The third one has both
an excess inventory and a shortage part. The quantity

(
b−mct − Imc(t−1)

)+ is a substitute that is bought
separately when a shortage appears.

Constraints. The x variable is used to count the number of vehicles that follow the admissible routes
defined in Section 2.2. Equation (6c) is used to bind the total quantities that are sent from each depot to the
route deliveries at each customer. Equation (6d) links the total quantities received per customer to the route
deliveries. Constraints (6e)-(6f) define the inventory dynamics at the depots, and (6g)-(6h) at the customers.
We highlight we cannot deliver a commodity to a customer that does not need it – in the sense of Cm –
because the maximum inventory capacity is set to zero and the excess inventory cost to infinity. The MILP
(multi-attribute-IRP) is intractable over our instances, we instead suggest several heuristic approaches in
the next section.

3 Overview of the Algorithms and General Concepts
We emphasize the main principles of the algorithms in Section 3.1 before going into the details of each of
their components. We also introduce generic flow graphs and formulations in Section 3.2, concepts useful in
the rest of the present paper.

3.1 Overview of the Algorithms
We compare three algorithms with increasing degrees of sophistication and performance: an initialization +
local search algorithm to quickly derive non-trivial IRP solutions, a route-based matheuristic, and our LNS.
The two first algorithms are adapted from frameworks of the literature, the last one is our main contribution.

5

3.1.1 Subroutines

Our algorithms are illustrated on Figure 1 and combine five subroutines. We call inner iteration an iteration
within any subroutine, and outer iteration a path through the four types of neighborhoods in the LNS (see
the loop in Figure 1). The first subroutine builds an initial solution. 1) The flow relaxation + bin packing
(flow relaxation, bin packing) subroutine solves a flow relaxation – thus an LP – per commodity and
deduces direct routes by approximately solving bin packing problems to respect vehicle capacity. The other
four subroutines improve or perturb an existing solution, and can be applied any number of times in any
order. 2) The routing local search (routing local search) subroutine takes a random subset of routes and
applies a local search with TSP and SDVRP neighborhoods (see Section 5.1). 3) The reload fixed-path vehicles
(reload fixed path vehicles) subroutine solves an MILP per depot to re-optimize the load of the routes
starting from it. The MILP is solved with a very low gap threshold in the route-based matheuristic, and up to
a larger gap threshold in the LNS, adding a time limit. 4) The customer reinsertion (customer reinsertion)
subroutine removes a customer from every delivery of a solution and solves an MILP to reinsert it in the
existing routes, also creating new direct routes. 5) The commodity reinsertion (commodity reinsertion)
subroutine removes a commodity from every delivery of a solution and solves an MILP to reinsert it. These
MILPs are solved up to a gap and time limit. We see the last four subroutines as local search procedures,
and call them with a customizable number of inner iterations per outer iteration. In Section 4 we detail the
flow relaxation + bin packing subroutine. The routing local search subroutine is described in Section 5. The
three large neighborhoods – reload fixed-path vehicles, customer and commodity reinsertion – are detailed
in Sections 6.1, 6.2 and 6.3 respectively.

Figure 1: Different algorithms ordered by degree of sophistication. Dark gray corresponds to initialization,
gray to descent subroutines, and light gray to perturbation subroutines.

3.1.2 Algorithms

Initialization + local search. This algorithm simply runs the initialization + bin packing subroutine
to build an initial solution, and then applies the routing local search subroutine to improve it. It has the
advantage of being fast (about four minutes on our large-scale instances on average) since it is based on an
LP. It is detailed in Algorithm 1.

6

Algorithm 1: Initialization + local search
input : I an IRP instance.
output: A solution r to the IRP.
y = flow relaxation (I);
r = bin packing (I, y);
r = routing local search (I, r);

Route-based matheuristic. As detailed in Section 1, Archetti, Boland, and Speranza (2017) and Bertazzi
et al. (2019) solve the IRP given a subset of “promising routes” that are defined heuristically. This corresponds
to reducing the set of feasible solutions to the IRP, which allows solving an MILP. The routes are either
selected among those created during a tabu search and leading to cost improvements, or in a constructive
manner. The underlying assumption is that they are likely to appear in a good IRP solution. We adapt this
idea to our setting. The main difficulty is that our MILP (multi-attribute-IRP) is intractable, even when
we restrict the set of “promising routes” to the set of an initial solution. This is due to the multicommodity
aspect, the scale of our instances and the routes that last several days. We solve the restricted MILP
heuristically, using a large neighborhood approach: 1) Apply the initialization + local search algorithm to
get an initial solution. 2) Take the current solution as set of promising routes, and solve sequentially one
MILP per depot, with the corresponding promising routes that start from it. It is detailed in Algorithm 2.

Algorithm 2: Route-based matheuristic
input : I an IRP instance, r = (rk)1≤k≤K the current solution with K ∈ Z+ routes, time limit a

time limit.
output: The solution r updated.
r = initialization + local search(I);
for d ∈ D do

r = reload fixed path vehicles(I, r, d); // small gap
if time elapsed ≥ time limit then

break;

Large neighborhood search. The large neighborhood search Algorithm 3 first uses the initialization +
local search approach to find a good initial solution. It then explores four kinds of neighborhoods. Two
of them always improve the solution: the routing local search and reload fixed-path vehicles subroutines.
Contrary to the route-based matheuristic, the latter is applied with a greater gap limit and an additional
time limit, in order to avoid spending too much time within it and cycle over the neighborhoods instead.
The two remaining ones are perturbations, which means they can deteriorate the solution. They fix a part
of the current solution and optimize the quantities and routes involving a particular customer or commodity
over the entire horizon. They both lead to substantial changes, allowing the search to escape from local
minima. The LNS uses both iteratively, selecting 200 customers and 15 commodities at random per outer
step. The outer LNS iterations are illustrated by the loop arc on Figure 1. The LNS returns the best solution
found, comparing after each subroutine the current solution with the best one so far. The main idea behind
this LNS is to consider the structure of the IRP, “decompose” it along its major axes, and solve smaller
natural problems to explore the solution space. One difference with Coelho, De Maio, and Laganà (2020)
or Archetti, Guastaroba, et al. (2021), is that our idea is not to fix a part of the variables of the MILP
(multi-attribute-IRP) and optimize with respect to the remaining ones, but to define new smaller MILPs
based on the structure of the IRP. Let us now introduce a concept that helps describing our subroutines.

7

Algorithm 3: Large neighborhood search
input : I an IRP instance, r = (rk)1≤k≤K the current solution with K ∈ Z+ routes, time limit a

time limit, ncust the number of customers to reinsert, ncomm the number of commodities to
reinsert.

output: The solution r updated.
r = initialization + local search(I);
while time elapsed < time limit do

r = routing local search(I, r);
for d ∈ D do

r = reload fixed path vehicles(I, r, d); // large gap

Csub = sample(C, ncust);
for c ∈ Csub do

r = customer reinsertion(I, r, c); // large gap

Msub = sample(M,ncomm);
for m ∈Msub do

r = commodity reinsertion(I, r,m); // large gap

3.2 Flow Graphs and Formulations
Let us consider the generic MILP formulation:

min
y,x

∑
m∈M

y>mcm +
∑
r∈r

xrcr (generic-flow-MILP)

subject to
∑

a∈δ+(v)

yma =
∑

a∈δ−(v)

yma, ∀m ∈M, ∀v ∈ Vm (7a)

ymin
m ≤ ym ≤ ymax

m , ∀m ∈M (7b)∑
m∈M

yma`m ≤ xrL, ∀a = (d→ (c, r)), ∀r ∈ r (7c)

y ∈ Z (7d)
x ∈ {0, 1} (7e)

The variable ym encodes a flow on a given commodity graph thanks to Equations (7a)-(7b). This flow
enables modelling the depot and customer inventory dynamics of commoditym defined by constraints (6e)-
(6h), and the quantities sent and received. Variable x encodes the routes that are used to deliver the
commodities. Constraint (7c) indeed enforces the flows to respect the vehicle capacity when a route is used.
In order to obtain a specific MILP formulation from this generic one, we must specify which commodity
graph is used, and which set of routes r is considered. We are going to use several distinct commodity
graphs. However, they all share a common structure which we describe now:

Depot subgraphs. A subgraph per depot d (Figure 2 (b)), which models its inventory dynamics. It is
shared by the distinct formulations we introduce in this paper and has the following vertices: (t, d, morning)
for t ∈ [T + 1], and (t, d, evening) for t ∈ [T].

Customer subgraphs. A subgraph per customer c (Figure 2 (c)), which models its inventory dynamics.
It is also shared by the distinct formulations we introduce in this paper, and it has the following vertices:
(t, c, morning) for t ∈ [T + 1], and (t, c, evening) for t ∈ [T].

8

Table 1: Arcs of the commodity flow graph shared by our formulations.
When not stated in the table, Min is 0, Cost is 0 and Max is∞.

Subgraph Arc type Arc description Origin Destination Min Max Cost

Depot Incoming Initial inventory depot initial inventory (1, d, morning) I0md I0md
Depot Outgoing Final inventory depot (T + 1, d, morning) final inventory
Depot Incoming Release depot release (t, d, morning) b+mdt b+mdt

Customer Incoming Initial inventory customer initial inventory (1, c, morning) I0mc I0mc
Customer Outgoing Final inventory customer (T + 1, c, morning) final inventory
Customer Outgoing Demand customer (t, c, morning) demand b−mct b−mct
Customer Incoming Shortage customer shortage (t, c, morning) cshortmc

Routes Transport d→ c Formulation specific (see Sections 4.1, 6.1, 6.2, 6.3)

Depot Internal Daily inventory depot (t, d, morning) (t, d, evening)
Depot Internal Free night inventory depot (t, d, evening) (t+ 1, d, morning) κmdt
Depot Internal Excess night inventory depot (t, d, evening) (t+ 1, d, morning) cexcmd

Customer Internal Daily inventory customer (t, c, morning) (t, c, evening)
Customer Internal Free night inventory customer (t, c, evening) (t+ 1, c, morning) κmct
Customer Internal Excess night inventory customer (t, c, evening) (t+ 1, c, morning) cexcmc

Artificial Circulation source release
Artificial Circulation source initial inventory
Artificial Circulation source shortage
Artificial Circulation demand sink
Artificial Circulation final inventory sink
Artificial Circulation sink source

A route subgraph. Its specific structure depends on the formulation we consider. It contains paths
between vertices of the form (t, d, morning) and vertices of the form (t̃, c, evening) as shown on Figure 2 (a).
Flow variables y on those paths model the quantities sent from depots to customers.

Artificial vertices. In order to model commodity flows as circulations over commodity graphs, we add
artificial vertices connected to the subgraphs above: source, sink, initial inventory, final inventory,
release, shortage, and demand.

The details of the arcs of the shared subgraphs defined above are in Table 1. For each arc, we give the
following information. The subgraph it belongs to is first given. Then, we distinguish “incoming”, “outgoing”
and “internal” arcs with respect to the depots and customer subgraphs. A short description is stated to
understand the meaning of the arcs. We specify the origin and destination vertices, as well as the minimum
and maximum flow capacities associated to the flow variables on the arcs. Last, the cost corresponding to
these variables are also given.

Given a graph D̃ = (Ṽ, Ã) with capacities associated to its arcs (ymin,ymax), we define the set of circu-
lations as C(D̃,ymin,ymax) = {y ∈ RÃ,ymin ≤ y ≤ ymax,∀v ∈ Ṽ,

∑
a∈δ+(v) ya =

∑
a∈δ−(v) ya}. We use this

notation instead of constraints (7a)-(7b) in the rest of the paper.

Remark 3.1 In (generic-flow-MILP), routes are modelled with individual paths in the commodity graphs,
bound with indicator variables x. Sometimes, we define them as paths in another flow graph. In this case,
some vertices and arcs are shared between routes. We detail this aspect in Sections 6.2 and 6.3.

Remark 3.2 We sparsify the commodity graph. Instead of considering the sets of depotsD and customers C
in the commodity graphDm, we define the subsetsDm = {d ∈ D,m ∈Md} and Cm = {c ∈ C,m ∈Mc} the
depots and customers that use commoditym. We then restrict the depots and customer subgraphs ofDm to
the ones ofDm and Cm.

9

Customer 1 Customer 2 Customer 3 · · ·

routes

Depot 1 Depot 2 · · ·

(a) Global structure

(1, d1, mo) (1, d1, ev) (2, d1, mo) · · · (T, d1, ev) (T + 1, d1, mo)

release

initial inventory final inventory

routes

(b) Depot subgraph

(1, c1, mo) (1, c1, ev) (2, c1, mo)(2, c1, mo) · · · (T, c1, ev) (T + 1, c1, mo)initial inventory

shortage demand

final inventory

routes

(c) Customer subgraph

Figure 2: Commodity flow graph. Overview of the global graph structure (a), and then details of the
subgraphs “Depot 1” (b) and “Customer 1” (c). The abbreviations “mo” and “ev” stand for morning and
evening respectively.

4 Flow Relaxation + Bin Packing Subroutine
The flow relaxation + bin packing subroutine is a fast heuristic to get an initial solution to (multi-attribute-
IRP). It takes as input an IRP instance, and returns an initial IRP solution built from intermediate flow
solutions that encode who sends what to whom and when.

4.1 Multiple Minimum Cost Flows and Relaxation
Minimum cost flow formulation. Let y = (yma)m∈M,a∈Am be a flow variable and c be the corresponding
costs defined in Table 1 for the shared subgraphs and Figure 3 for the specific route subgraph. We consider
the following LP:

min
y

∑
m∈M

y>mcm (flow-relaxation)

subject to ym ∈ C(Dm,ymin
m ,ymax

m), ∀m ∈M (8a)

In this variant of the generic MILP (Section 3.2), we do not introduce a route variable x and the corre-
sponding cost. We instead consider a soft version of constraint (7c) in the commodity cost cm. This leads
to a separate flow LP for each commodity in (flow-relaxation). Let us now introduce the details of the
commodity graph.

Details of the commodity graph. We define one graph per commoditym, namedDm = (Vm,Am). The
vertices Vm are exactly the ones defined in Section 3.2. The arcs detailed in Table 1 are included. We specify
the route subgraph in the table of Figure 3. It is made of direct transport and delayed transport d → c

10

arcs. These arcs are added when the date of arrival at the customer is smaller than the horizon T . For
each tuple (t, d, c) ∈ [T] × Dm × Cm, we add one delayed arc

(
(t, d) → (t̃, c)

)
per possible delayed arrival

day t̃ induced by an indirect path from d to c (thus visiting any set of other customers before c) that respects
the route constraints defined byR. Those possible delays are pre-computed, using a breadth-first search
algorithm over the locations graph, with maximum depth set to Smax. Indeed, we can browse the locations
graph starting from depots, saving the cumulative delay at any vertex and any depth smaller than Smax.
The flow on these arcs models the quantity of commodity sent from depot d on day t to customer c with
arrival on day t̃. The precise structure of the graph is illustrated on Figure 3. In arc annotations, capacities
are given between brackets (e.g. [0, κmdt]), and costs without (e.g. cexcmd). Dotted arrows are related to the
shared artificial vertices, continuous ones to depots, customers and route subgraphs. When not stated in the
table, Min is 0, Cost is 0 and Max is∞. On this figure, only two days, one depot and one customer are
shown. Besides, some artificial vertices are omitted for simplicity. The cost ctrmdc is detailed below.

[b+mdt, b
+
mdt] [b+md(t+1), b

+
md(t+1)]

[b−
mct̃

, b−
mct̃

] [b−
mc(t̃+1)

, b−
mc(t̃+1)

]cshortmc cshortmc

[0, κmdt]

cexcmd

[0, κmct̃]

cexcmc

c trm
dc

(t̃, c, morning) (t̃, c, evening) (t̃+ 1, c, morning) · · ·· · ·

(t, d, morning) (t, d, evening) (t+ 1, d, morning) · · ·· · ·

release

shortage
demand

(a) Graph details

Subgraph Arc description Origin Destination Min Max Cost

Routes Transport d→ c (t, d, morning) (t+ b τdcτmax
c, c, evening) ctrmdc

Routes Delayed transport d→ c (t, d, morning) (t̃, c, evening) ctrmdc

(b) Additional commodity graph arcs compared with Table 1

Figure 3: Details of the commodity graphDm for the flow relaxation problem.

Since the routing price is paid at the vehicle level, we cannot derive a minimum cost commodity flow
that takes it into account exactly without adding variables for each individual vehicle. Instead, we want to
approximate this cost with transportation arcs between depots and customers naturally involving commodity
flow variables. A way to do so is to use a “vehicle fraction” unit per commodity, leading to:

ctrmdc =
`m
L

(cveh + cstop + ckm∆dc), ∀d ∈ Dm, ∀c ∈ Cm. (9)

In Equation (9) the factor `mL is a way to scale the price paid for the delivery of a unit of commoditym
based on the percentage of a vehicle it occupies, hence the “vehicle fraction”.

Proposition 4.1 The optimization problem (flow-relaxation) based on |M | flows is a relaxation of (multi-

11

attribute-IRP). The optimal value of (flow-relaxation) is a lower bound to the cost of an optimal solution to
our initial problem.

We now sketch the proof. Given a feasible solution of (multi-attribute-IRP), we can deduce a feasible
solution of (flow-relaxation) by fixing the quantities sent by each depot to each customer per day, delay and
commodity. The inventory costs are modelled exactly with (flow-relaxation) thanks to the delayed arcs, thus
equal to the ones of (multi-attribute-IRP). The transportation costs are lower bounded with Equation (9).
The structure of the graph detailed on Figure 3 only allows geographically direct routes between depots
and customers, whereas the route constraints allow up to Smax stops. Nonetheless, considering additional
arcs c1 → c2 with fraction costs ctrmc1c2 = `m

L (cstop + ckm∆c1c2) and delay τc1c2 in an extended flow graph
would also produce solutions with only direct routes. Indeed, by triangular inequality, it would always be
cheaper to send commodities through geographically direct (d→ c) (possibly delayed) arcs in this framework
of “vehicle fraction” costs, rather than sending quantities to intermediate customer c1 before reaching the
destination c2.

4.2 Bin Packing
We highlight here how the minimum cost flows can be used to derive an IRP solution, a step further from
the lower bound computation. The |M | minimum cost flow solutions resulting from (flow-relaxation) enable
us to set the quantities sent by each depot to each customer per day and commodity, but do not directly
lead to a set of routes. Indeed, for now, we do not know how quantities are loaded in various vehicles. We
highlight the fact that the delayed arcs are not used to build an initial solution. They are only introduced to
compute a lower bound. To deduce a set of direct routes, we approximately solve one bin packing problem
per tuple (d, c, t) ∈ D × C × [T], using the first-fit-decreasing heuristic. The instance of the bin packing is
given by the set of commodities to be sent on day t from depot d to customer c, their respective lengths, and
the length of one vehicle. The solution to the bin packing problem leads to a low number of vehicles each of
length L, with corresponding loading made of possibly |M | distinct commodities. At this point, we get a set
of direct routes as a first feasible solution to (multi-attribute-IRP).

5 Routing Local Search Subroutine
Our solution processes emphasized on Figure 1 rely on the routing local search subroutine Algorithm 4. We
detail here both the local search procedure, and the neighborhoods listed in Table 2.

5.1 The Neighborhoods
Before introducing the local search procedure, we focus on the TSP and SDVRP neighborhoods in an IRP
framework. The routing local search subroutine combines those neighborhoods.

Routes impact inventories. We highlight the fact that the 12 neighborhoods detailed below in Table 2
alter the routes of a solution and the inventories at the depots or at the customers (contrary to the SDVRP
framework). Therefore, whenever a neighborhood is considered, we evaluate the effects on inventories and
routes so as to check feasibility and to estimate the cost change. For instance, the optimal order of a route
not only depends on the distances ∆, but also on the delays introduced in the inventory dynamics of the
customers involved. Therefore, even elementary neighborhoods require calculation. They can be seen as a
generalization of the TSP and SDVRP concepts to the continuous-time IRP.

5.2 Routing Local Search
From the list of neighborhoods emphasized in Table 2, we design the routing local search, Algorithm 4.
During one iteration, it starts from the largest neighborhoods involving multiple depots, then considers the

12

Table 2: Routing local neighborhoods: single-depot and multi-depot variants are considered.
Type Name Description

relocate change the position of one stop in a route.
TSP swap exchange the positions of two stops in a route.

2-opt* cut a route into three parts and revert the order of the middle one.

insert give a stop s from route r1 to route r2.
swap single depot swap adapted to two routes with same depot.

SDVRP single-depot merge merge two routes r1 and r2 on the same day.
merge multi day merge extended to routes with different start dates.
delete route delete a route.
change day move a route in time, one day before or after.

insert multi depot insert extended to routes with distinct depots.
SDVRP multi-depot swap multi depot swap extended to routes with distinct depots.

2-opt* multi depot cut two routes each into two parts and exchange their end parts.

single-depot neighborhoods, and finishes by the single route TSP neighborhoods. Since the neighborhoods
tend to reduce the number of routes, the routing local search algorithm deletes routes at several stages of
its iteration. It only explores neighborhoods in feasible directions that improve the cost.

Some features of this local search differ from the common SDVRP local search algorithms. Because of the
computations involved for insert, swap single depot, and for the multi-depot neighborhoods, and the
number of pairs of routes, the routing local search subroutine only samples a fraction of them. To do so,
it explicitly samples a subset of the pairs of routes of the solution according to a uniform distribution. We
tune this approach with parameter p in Algorithm 4 to find a good cost gain per CPU time ratio. We do so
instead of restricting the routes candidates with geographic criteria, because the inventory costs cannot be
neglected. Two routes that visit customers that are far from each other may still be suitable candidates for
a swap for instance, due to the change in inventory cost. The change day function is applied per route one
day forward or backward, until no improvement is found.

Algorithm 4: Routing local search
input : I an IRP instance, r = (rk)1≤k≤K the current solution with K ∈ Z+ routes, nit ∈ Z+ a

number of iterations, p a percentage.
output: The solution r updated.
for i = 1 : nit do

perform one pass of insert multi depot over p% of the pairs of routes at random;
perform one pass of swap multi depot over p% of the pairs of routes at random;
perform delete route per day and depot until no improvement;
perform one pass of 2-opt* multi depot over p% of the pairs of routes at random;
perform delete route per day and depot until no improvement;
perform best merge per day and depot until no improvement;
perform best merge multi day per day and depot until no improvement;
perform delete route per day and depot until no improvement;
perform insert over p% of the pairs of routes per day and depot;
perform swap single depot over p% of the pairs of routes per day and depot;
perform one pass of relocate, swap and 2-opt* over the routes until no improvement;
perform change day until no improvement;

13

6 MILP-Based Neighborhoods and Perturbations
We now introduce three subroutines that are based on optimization problems written as MILPs. They all
leverage the commodity graph structure emphasized in Section 3.2.

6.1 Reload Fixed-Path Vehicles Subroutine
Reload neighborhood problem. Let us define the problem behind this large neighborhood. We consider
a subset of routes rreload of the current IRP solution r, in our case the routes that start from a given depot d.
We solve the following problem: choose the routes to keep in the solution among rreload, and re-estimate the
delivered quantities (for the whole set of commodities) of the routes kept, to minimize the total cost. In our
large neighborhood setting, we fix the remaining routes of the current solution r.

We denote by xr for r ∈ rreload the indicator variable for keeping route r, and by y = (ym)m∈M the set
of commodity flow variables. The commodity flow graphs

(
Dm(r, rreload)

)
m∈M involved are defined below.

We model the problem with the following formulation:

min
y,x

∑
m∈M

y>mcm +
∑

r∈rreload
xr

(
cveh + cstop(|P r| − 1) + ckm

∑
a∈A(P r)

∆a

)
(Reload-MILP)

subject to ym ∈ C
(
Dm(r, rreload),ymin

m (r, rreload),ymax
m (r, rreload)

)
, ∀m ∈M (10a)∑

m∈M
yma`m ≤ xrL, ∀a = (d→ (c, r)), ∀r ∈ rreload (10b)

y ∈ Z (10c)
x ∈ {0, 1} (10d)

This formulation is very close to the generic MILP introduced in Section 3.2. The objective function
is composed of one flow cost per commoditym ∈ M (inventory and shortage costs), and of the routing
cost of each route kept among rreload. Constraint (10b) ensures that the commodity flows from depots to
customers only exist along routes that are kept, and that the capacity of the vehicles is respected. The last
two constraints define integer and binary variables. We highlight that this MILP exactly formulates the
reloading of a given subset of routes. Solving the problem (Reload-MILP) leads to a new feasible solution
with lower cost.

The commodity graphDm(r, rreload) form ∈M depends both on the current solution r, and on the routes
to potentially keep and reload rreload. As previously, the backbone structure is the same as in Section 3.2: one
subgraph per customer, one per depot, one for the routes, and additional vertices to create circulations. The
special route subgraph is detailed on Figure 4. In arc annotations, capacities are given between brackets (e.g.
[0, κmdt]), and costs without (e.g. cexcmd). Dotted arrows are related to the shared artificial vertices, continuous
ones to depots, customers and route subgraphs. When not stated in the table, Min is 0, Cost is 0 and Max
is∞. We explicitly create individual route paths, with vertices of the form (trs, cs, r). It models the fact
that when using route r, commodities are delivered to customer cs on day trs at position s of the route. The
details of the arcs can be found in the table of Figure 4. Besides, since we fix the quantities sent by the routes
in r\rreload, we need two additional vertices in the route subgraph that we name fixed deliveries sent,
and fixed deliveries received. The former is connected to depot vertices in order to take other quantities
sent into account. The second is connected to customer vertices to model other quantities received.

6.2 Customer Reinsertion Subroutine
As mentioned in the overview Section 3, our neighborhoods are based on a decomposition of the IRP along
its main axes. Previous sections focus on the routes. Here, we design a perturbation based on the customers.
We call it perturbation because it may slightly increase the cost of the IRP solution.

14

[b+mdt, b
+
mdt] [b+md(t+1), b

+
md(t+1)]

[z−mdt, z
−
mdt] [z−md(t+1), z

−
md(t+1)]

[z+
mct̃

, z+
mct̃

] [z+
mc(t̃+1)

, z+
mc(t̃+1)

]

[b−
mct̃

, b−
mct̃

] [b−
mc(t̃+1)

, b−
mc(t̃+1)

]cshortmc cshortmc

[0, κmdt]

cexcmd

[0, κmct̃]

cexcmc

(t̃, c, morning) (t̃, c, evening) (t̃+ 1, c, morning) · · ·· · ·

(t, d, morning) (t, d, evening) (t+ 1, d, morning) · · ·· · ·

release

shortage
demand

fixed deliveries sent

fixed deliveries received

(tr1, c1, r) (tr2, c2, r) · · ·

(a) Graph details

Subgraph Arc description Origin Destination Min Max Cost

Routes Fixed deliveries sent (t, d, morning) fixed deliveries sent z−mdt z−mdt
Routes Fixed deliveries received fixed deliveries received (t, c, evening) z+mct z+mct

Routes Transport d→ (c1, r) (tr, d, morning) (tr1, c1, r)
Routes Transport (cs, r)→ (cs+1, r) (trs, cs, r) (trs+1, cs+1, r)
Routes Transport (cs, r)→ c (trs, c, r) (trs, c, evening)

Artificial Circulation source fixed deliveries received
Artificial Circulation fixed deliveries sent sink

(b) Additional commodity graph arcs compared with Table 1

Figure 4: Details of the commodity graphDm(r, rreload) for the reload fixed-path vehicle neighborhood.

Customer reinsertion problem. Let us define the customer reinsertion problem. Once the customer c ∈
C is removed from the solution – that is to say, removed from the routes that deliver to it, leading to zero
delivery z+ in the inventory dynamics (6g) – we need to reinsert it in the solution, using only former routes
and new direct routes. This means choosing: 1) The insertion position of customer c in each route of the
solution in which it is inserted, keeping the relative order of the other stops unchanged. 2) The quantity of
each commodity to be delivered by those former routes where c is inserted. 3) New direct routes (path, timing
and quantities) to deliver c. It can be formulated as a MILP akin to the generic one defined in Section 3.2.

The customer insertion MILP. Let y = (ym)m∈Mc be the commodity flow variable. Instead of the
indicator route variables in Section 3.2, we use another type of graph to model the vehicles with a flow
variable x. Indeed, a flow is a convenient tool to model the fact that we have multiple insertion positions
in a given route for customer c, and we can choose at most one of them. We link the flow variables on the

15

route subgraphs of the commodity graphs with this vehicle flow. It leads to the MILP:

min
y,x

∑
m∈Mc

y>mcm + c>x x (Cust-MILP)

subject to ym ∈ C(Dmc ,ymin
m ,ymax

m), ∀m ∈Mc (11a)

x ∈ C(Dveh
c ,xmin,xmax) (11b)∑

m∈Mc

yma`m ≤ xaL, ∀a = (d→ c), ∀d ∈ D (11c)

∑
m∈Mc

yma`m ≤ xaLrfree, ∀a = (r → (r, s)), ∀r ∈ r, ∀s ∈ [|P r|] (11d)

x ∈ Z, y ∈ Z (11e)

The vehicle flow as well as each commodity flow must respect circulation constraints. In Equation (11c),
we force the amount of commodities to be sent through new direct routes from the depots to the customer c
not to exceed in length the total content size of the vehicles involved. Indeed, we consider the total vehicle
capacity with this constraint, and not individual vehicles each of capacity L. Similarly, Equation (11d) does
so for the former routes r ∈ r at position s having remaining loading space Lrfree.

Details of the commodity flow graphs. Based on the generic graph structure Section 3.2, we define
new commodity graphsDmc = (Vmc ,Amc) for each commoditym ∈ Mc for the reinsertion of customer c ∈ C.
We highlight the fact that here only one customer is involved in the problem, so only one customer subgraph
is present. The depots and customer subgraphs are introduced in Section 3.2. We now define the route
subgraph specific to this customer reinsertion MILP. First, we have a vertex delivery other customers in
the route subgraph. It is connected to the depot subgraphs to model the quantities sent to other customers.
Figure 5 shows the specific commodity graph. In arc annotations, capacities are given between brackets
(e.g. [0, κmdt]), and costs without (e.g. cexcmd). Dotted arrows are related to the shared artificial vertices,
continuous ones to depots, customers and route subgraphs. When not stated in the table, Min is 0, Cost
is 0 and Max is∞. In this commodity graph, we consider two types of routes. 1) new direct routes are
modelled by direct arcs of the type (t, d, morning)→ (t′, c, evening) and do not involve additional vertices.
2) former routes in which we can insert customer c. They are modelled with one vertex (t, r) for route r
starting on day t, connected to the starting depot morning vertex and to each vertex of the form (trs, s, r).
The vertex (trs, s, r) is related to the possible insertion position s in route r leading to an arrival day trs at
customer c. It is connected to the customer subgraph. The details of the route arcs are in the table of
Figure 5. We cannot only add one vertex per former route, since the optimal insertion position depends on
the commodity flows, and not only on routing costs. Therefore, the optimal insertion position cannot be
pre-computed. Besides, we do not introduce an approximate cost for the transportation arcs. Instead, we
define another graphDveh

c = (Vvehc ,Aveh
c) as follows.

Details of the vehicle flow graph. We consider the Vvehc vertices:

• Artificial vertices labelled: source and sink.

• Depots vertices labelled: (t, d, morning) for t ∈ [T], d ∈ D.

• Customer vertices labelled: (t, c, evening) for t ∈ [T].

• Routes vertices labelled: (t, r) for each former route r ∈ r that can include an additional stop and that
does not reach the vehicle capacity L already.

• Nodes per insertion position in former routes: (trs, s, r) for each position s at which we can insert cus-
tomer c in r without exceeding the time horizon T . The date trs on which the route delivers customer c
can be pre-computed.

16

[b+mdt, b
+
mdt] [b+md(t+1), b

+
md(t+1)]

[z−mdt, z
−
mdt] [z−md(t+1), z

−
md(t+1)]

[b−
mct̃

, b−
mct̃

] [b−
mc(t̃+1)

, b−
mc(t̃+1)

]cshortmc cshortmc

[0, κmdt]

cexcmd

[0, κmct̃]

cexcmc

(t̃, c, morning) (t̃, c, evening) (t̃+ 1, c, morning) · · ·· · ·

(t, d, morning) (t, d, evening) (t+ 1, d, morning) · · ·· · ·

release

shortage
demand

delivery other customers

(t, r)

(trs, s, r) (trs+1, s+ 1, r)

(a) Graph details

Subgraph Arc description Origin Destination Min Max Cost

Routes Delivery other customers (t, d, morning) delivery other customers z−mdt z−mdt

Routes Transport d→ c new route (t, d, morning) (t+ b τdcτmax
c, c, evening)

Routes Transport d→ r former route (t, d, morning) (t, r)
Routes Transport r → (r, s) former route (t, r) (trs, s, r)
Routes Transport (r, s)→ c former route (trs, s, r) (trs, c, evening)

Artificial Circulation delivery other customers sink

(b) Additional commodity graph arcs compared with Table 1

Figure 5: Details of the commodity graphDmc for the customer reinsertion neighborhood.

The arcs of the customer reinsertion vehicle flow graph are defined in Table 3. We see that most of
its structure is shared with the commodity flow graph described above. Besides, the costs crsc are the
ones induced by the insertion of customer c at position s in the stops of route r. They involve routing
and inventory considerations at the other customers delivered by route r, because of the delays. They can
be exactly computed considering the former list of r’s stops, and enumerating the insertion possibilities.
We emphasize the 1-maximum capacity on the arcs of the form (t, d, morning)→ (t, r) combined with the
circulation constraint enforce that at most one insertion position is chosen in former routes.

Proposition 6.1 The problem (Cust-MILP) is a relaxation of the optimal customer reinsertion problem in
the IRP solution, where the new direct routes are aggregated per routing arc (d→ c).

We sketch the proof. The constraints for new direct routes do not exactly model the routing structure:
instead of a set of vehicles having each a content size L, it is as if we had one large vehicle with the total
content size on each arc d → c. More precisely, given d ∈ D, filling p ∈ Z+ vehicles of content size L and
cost cveh + cstop + ckm∆dc each enables less loading freedom than filling one large vehicle of content size pL
with same total cost p(cveh + cstop + ckm∆dc). In the objective function, the costs cm form ∈Mc and cx stem
from the arc features stated in Table 1, the table of Figure 5 and in Table 3. Because of their values and
because we relax the routing structure, this problem is a relaxation of the customer reinsertion in the current

17

Table 3: Arcs of the customer reinsertion vehicle flow graphDveh
c .

When not stated, Min is 0, Cost is 0 and Max is∞.
Arc description Origin Destination Min Max Cost

Start routes source (t, d, morning)
End routes (t, c, evening) sink

Transport (d→ c) new route (t, d, morning) (t+ b τdcτmax
c, c, evening) cveh + cstop + ckm∆dc

Transport (d→ r) former route (t, d, morning) (t, r) 1
Transport (r → (r, s)) former route (t, r) (trs, s, r) crsc
Transport ((r, s)→ c) former route (trs, s, r) (trs, c, evening)

Circulation source sink
Circulation sink source

solution of the IRP.

Rebuilding routes. All the decisions we take are encapsulated in the commodity flow variable y. From y,
we can easily update the solution r, filling former routes with the indicated quantities. Then, a bin packing
problem is solved approximately per depot and per day to create the new direct routes from the flows on
direct routes arcs. Aggregating per (d → c) arc enables us to derive a MILP of reasonable size, but this
relaxation can lead to a potential cost increase. Our LNS accepts the new IRP solution if its true cost is not
more than 1% greater than the previous solution cost.

6.3 Commodity Reinsertion Subroutine
The last subroutine we detail here is the commodity reinsertion. As for the customer reinsertion, the idea is
to perturb the solution at a broad scale, possibly increasing the cost.

Commodity reinsertion problem. We are interested in the following problem. Once a commoditym ∈
M is removed from every delivery of the current solution, we want to choose the quantity ofm to send
through each former route, and through new direct routes. Former routes are the routes of the current
solution with the commoditym removed that have a remaining load. The restriction to new direct routes is
a choice to quickly compute a solution.

The commodity insertion MILP. As for the customer reinsertion, we couple a commodity flow vari-
able y with a vehicle flow x. The resulting MILP is given by:

min
y,x

y>mcm + c>x x (Comm-MILP)

subject to ym ∈ C(Dmm,ymin
m ,ymax

m) (12a)

x ∈ C(Dveh
m ,xmin,xmax) (12b)

yma ≤
⌊
L

`m

⌋
xa, ∀a = (d→ c) ∀d ∈ Dm ∀c ∈ Cm (12c)

x ∈ Z, y ∈ Z (12d)

We highlight only one commodity flow and one vehicle flow are involved here. Based on the subgraphs
introduced in Section 3.2, the inventory constraints and costs are exactly modelled. The routing structure
is approximated, with a cost paid per unit of a single “large vehicle with total content size” per arc (d→ c)
for c ∈ Cm and d ∈ Dm, modelled by constraint (12c).

18

Details of the commodity flow graph. Letm ∈ M be the commodity we consider. As previously,
we build a commodity graphDmm = (Vmm ,Amm). It shares the backbone structure with customer and depot
subgraphs as well as artificial vertices defined in Section 3.2. We now detail the specific route subgraph for
the commodity reinsertion problem. It aims at modelling both former routes and new direct routes. For a
former route r ∈ r, for c visited by r, we denote by s ∈ [|P r| − 1] its position in the list of visited stops, and
by trs the date on which it is delivered. We have a vertex (trs, c, r) in the route subgraph. We then have the
arcs of Table 4 to explicitly model the flow of the commoditym through former and new routes, in addition
to those defined in Table 1.

Table 4: Additional arcs of the commodity reinsertion commodity flow graph compared to Table 1.
When not stated, Min is 0, Cost is 0 and Max is∞.

Subgraph Arc description Origin Destination Min Max Cost

Routes Transport d→ c new route (t, d, morning) (t+ b τdcτmax
c, c, evening)

Routes Transport (d→ c1) former route r (tr, d, morning) (tr1, c1, r)
⌊
Lr

free
`m

⌋
Routes Transport (cs → cs+1) former route r (trs, cs, r) (trs+1, cs+1, r)
Routes Deliver cs former route r (trs, cs, r) (trs, cs, evening)

Details of the vehicle flow graph. This flow graph is only used to model new direct routes. Indeed,
all former routes are reused in this problem: we only choose the commodity flow through them. The only
routing decision is related to the creation of new direct routes. Therefore, the commodity reinsertion vehi-
cles graph vertices Vvehm are the following: 1) Artificial vertices labelled: source and sink. 2)Depot vertices
labelled: (t, d, morning) for t ∈ [T], d ∈ Dm. 3) Customer vertices labelled: (t, c, evening) for t ∈ [T], c ∈ Cm.
LetAveh

m be the arcs of the vehicle flow graph. They are detailed in Table 5. Instead of introducing this
graph and the vehicle flow variable x, we could have used the “vehicle fraction costs” defined in Section 4.1.
Nonetheless, in this setting, since only one commodity flow variable is considered, we would have heavily
underestimated the routing costs, creating vehicles that are almost empty in the end. Indeed, with vehicle
fraction costs, filling only a small portion of a vehicle is not a problem.

Table 5: Arcs of the commodity reinsertion vehicle flow graphDveh
m .

When not stated, Min is 0, Cost is 0 and Max is∞.
Arc description Origin Destination Min Max Cost

Start routes source (t, d, morning)
Transport (d→ c) (t, d, morning) (t+ b τdcτmax

c, c, evening) cveh + cstop + ckm∆dc

End routes (t, c, evening) sink

Circulation source sink
Circulation sink source

Rebuilding routes. The commodity reinsertion subroutine proceeds as follows. From the information
written in the y flow variable, it fills the former routes by decoding the corresponding flow. Then, it iteratively
creates new direct routes to zero the corresponding commodity flow in y. In contrast with the previous
section, restricting ourselves to new direct routes is a limitation. It applies a routing local search to
address the potential cost rise induced. The new solution is accepted by the LNS, even if its cost is higher.

7 Computational Experiments
First, we want to analyze the quality of the solutions of our LNS. We compare them with the route-based
matheuristic in terms of cost. We hope to reduce both routing and inventory costs with our LNS, based on

19

the variety of neighborhoods and perturbations along different axes of the problem. Since we deal with a time
limit criterion for practical reasons at Renault, we want to see how time is spread among the subroutines of
our LNS. We are also interested in the ratio of cost gain per CPU time for each subroutine. Since the aim of
our LNS is to modify the solution at a large scale, we intuitively want to spend time in the MILP-based large
neighborhoods and perturbations. The routing local search may be quickly stuck in local minima. Second,
we would like to know if each subroutine of our LNS is indeed useful to find good solutions. Last, we would
like to know if our algorithms scale to a more general setting of long routes.

7.1 Experimental Setting
Available instances. Thanks to various interactions with Renault’s operations research and machine
learning team, we build 71 IRP instances, at the European scale and over roughly 20 days each. They
correspond to the same industrial use case but to different periods. We show the instances’ number of
depots, number of customers and number of commodities on Figure 6. The maximum number of stops is
Smax = 3 to comply with the car manufacturer requirements.

11 12 13 14 15 16 17 18 19

Number of depots |D|
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f i
ns

ta
nc

es

500 550 600 650 700 750

Number of customers |C|
0

5

10

15

20

25

Nu
m

be
r o

f i
ns

ta
nc

es

29 30

Number of commodities |M|
0

10

20

30

40

Nu
m

be
r o

f i
ns

ta
nc

es

Figure 6: Histograms of the dimensions of the extracted instances.

We present results for a greater maximum number of stops Smax = 10 to know if the algorithms scale to
a more general framework.

Our code is in the Julia language (Bezanson et al. 2017). We use Gurobi optimizer (Gurobi Optimization,
LLC 2021) to solve linear programs and MILPs, JuMP (Dunning, Huchette, and Lubin 2017) to model
mathematical programs, and Graphs.jl (Fairbanks et al. 2021) to define graph structures. Both code and
instances are publicly available.

7.2 Cost Results
The cost of the IRP solution after our LNS is the first natural metric we consider in order to evaluate our
approach. We can compare it with the cost after the route-based matheuristic defined in Section 3. To do
so, we run both the LNS and the route-based matheuristic over the European-scale instances illustrated by
Figure 6 with a time limit of 90 minutes. On Figure 7, we show the box plots of the cost due to the depots’
inventory, the customers’ inventory, the customers’ shortage, the vehicles, the stops and the kilometers.
The orange lines indicate the median over the instances, the ends of the boxes the extreme quartiles (Q1
andQ3), and the whiskers the range [Q1 − 1.5(Q3 − Q1), Q3 + 1.5(Q3 − Q1)]. Outlier points correspond
to data outside of the whiskers. The average total cost over the instances solved by the initialization +
local search algorithm is 2.82M€, compared with 2.48M€ after the route-based matheuristic, and 2.14M€
after the LNS. We thus manage to get better IRP solutions with the LNS, inducing 11.8M€ saving per
year compared with the initialization + local search algorithm, and 5.89M€ compared with the route-based
matheuristic. On Figure 7 we notice not only one aspect of the cost is lower: the shortage costs, as well
as the routing costs (vehicles costs, stop costs and kilometer costs) have quartiles corresponding to smaller
values after the LNS. We thus emphasize the LNS manages to alter several key axes of an IRP solution,
which is the aim of the different neighborhoods and perturbations we design.

20

Depots inventory costs

Customers inventory costs

Customers shortage costs
Vehicles costs Stops costs

Kilometers costs

0.0

0.5

1.0

1.5

2.0
Co

st
 in

 e
ur

os

1e6 Cost distribution over instances
Route-based matheuristic
Large neighborhood search

Figure 7: Box plots of the distribution of the solution cost per origin over instances.
Green rectangles are related to the route-based matheuristic, blue ones to the LNS.

7.3 Analysis of the LNS Components
7.3.1 Time per Operator

We proceed to a more detailed analysis of the resolution steps illustrated on Figure 1. We first compare
the total time spent in the initialization + local search algorithm, the routing local search, the fixed-path
routes large neighborhood, and the customer and commodity reinsertion perturbations. For the context,
after tuning the LNS parameters, we perform per outer step: one iteration of the routing local search, one
pass over each depot for the fixed-path routes large neighborhood, 200 customer reinsertion steps, and 15
commodity reinsertion steps. To set these values, we strike a balance between our different operators to
optimize the routing and inventory aspects of an IRP solution in the limited time we have. We emphasize
that if we just proceed to one pass over every neighborhood and perturbation without restricting the depots,
customers, or commodities considered for the MILP-based operators, we can barely do two outer iterations
of the LNS in 90 minutes. With the parameters we set we do 4.5 outer iterations of the LNS on average.
This is a major difficulty since most of the metaheuristic literature is based on the assumption that several
passes over the operators can be done, paving the way for adaptive LNS for instance (Gendreau and Potvin
2010). On the left of Figure 8 we show the initialization + local search algorithm is indeed fast, taking 3.76
minutes on average. The total time spent in the routing local search amounts to 9.96 minutes on average.
The fixed-path routes neighborhood, customer reinsertion and commodity reinsertion perturbations account
for roughly similar fractions of the total duration, respectively 29.6, 26.5 and 20.4 minutes. This is one of
our balancing criteria. Therefore, about 85% of the time is spent solving MILPs to modify the solution at
a large scale. This is interesting in terms of code performance since we rely on the efficiency of the Gurobi
solver (Gurobi Optimization, LLC 2021). We proceed to a warm start using the current solution for each
MILP, and we profile our Julia code. The main difficulty is inherent in the routing local search, Algorithm 4.
Indeed, as stated in Section 5, even a very local neighborhood involves substantial computations. Besides,
because of the bindings between routing and inventory costs, selecting promising neighborhoods a priori is
a challenge.

7.3.2 Cost Gain Over Time

On the right of Figure 8, we display the box plots of the cost gain per CPU time (in €/minute) of our
four main LNS components: the routing local search, fixed-path routes neighborhood, customer reinsertion,

21

Routing local seach

Initialization + local search
Customer reinsertion

Commodity reinsertion
Reload vehicles

0

10

20

30

40

50
Du

ra
tio

n
(m

in
)

Duration distribution per resolution step over instances

Routing local seach
Customer reinsertion

Commodity reinsertion
Reload vehicles

10000

0

10000

20000

30000

40000

50000

60000

70000

Ga
in

 p
er

 C
PU

 m
in

ut
e

(
/m

in
) Gain per CPU time over instances

Figure 8: Box plots of the time spent, and of the cost gain per CPU time per operator.

and commodity reinsertion. We highlight that the routing local search has the highest gain per CPU
time, 37.3k€/minute on average. Its large variance over the instances can be related to the balance between
routing and inventory costs that may vary from one instance to another, depending on the demand and release
profiles. The unit costs themselves do not change between instances. In spite of the difficulty mentioned in
the previous paragraph, those neighborhoods are efficient and crucial. It is partly due to the structure of our
perturbations: a customer or commodity reinsertion step creates new routes that are only direct. The reason
for this choice is to avoid spending too much time solving greater perturbation MILPs that only involve a
portion of the solution. It is therefore useful to combine them with routing neighborhoods that merge or
mix routes in different manners.

The fixed-path routes neighborhood, customer and commodity reinsertion perturbations alter both rout-
ing and inventory variables, with 10.7k€/minute,−6.33k€/minute and 4.40k€/minute ratios on average.
Therefore, most of the customer reinsertion perturbation steps, as well as some commodity reinsertion per-
turbation steps, increase the solution cost. They are designed to escape from local minima. While tuning
LNS parameters, we notice that when restricting the amount of commodities or customers considered per
outer LNS iteration, the descent neighborhoods get quicker stuck in local minima and the final solution cost
is greater. We show further details with ablation tests in Section 7.3.3. We emphasize that separating the
gains per operator is not totally obvious. It is indeed the mix between the axes of the IRP (from routes to
commodities and customers) that enables us to substantially reduce the cost in our LNS. The performance
of each operator alone is less crucial than the interactions between them.

7.3.3 Ablation Tests

In order to further highlight the role of the fixed-path routes large neighborhood and reinsertion perturba-
tions, we proceed to ablation tests. The reference is our LNS run during 90 minutes with the number of inner
steps per outer iteration described in Section 7.3.1. During ablation tests, we run it with the same parameters
and time limit, but without the customer reinsertion, commodity reinsertion or fixed-path routes neighbor-
hood respectively. We compare the results of the gaps on Figure 9 with plots of cumulative distributions over
instances with respect to the gap of the solutions. We must emphasize our lower bound derived in Section 4.1
is not tight, leading to high gaps by definition. It seems therefore relevant to use them as a relative metric to
compare the solution processes, and not as an absolute indicator on a solution quality. The first remark we
can make is that the route-based matheuristic (blue curve) performs better than our initialization + local
search algorithm (orange curve), but worse than the LNS, even when one of its components is removed. This
confirms the conclusion drawn from the cost analysis in Section 7.2, emphasizing the performance of our
LNS. Besides, we show that whatever is the component removed from the LNS, the resulting algorithm with
same time budget leads to worse solutions. Indeed, overall, the curve of the cumulative distribution of our
whole LNS (brown) is above any other curve. This is particularly true when removing the reload fixed-path
vehicles neighborhood (purple), but also for the customer (red) and commodity reinsertion (green) ablations
that lead to similar performance. Both perturbation ablations result in 5% additional average gap compared

22

to the whole LNS. We expect this trend to be accentuated when the time limit increases, since looping over
neighborhoods and perturbations is key to escape from local minima.

20 40 60 80 100 120 140

Gap (%)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

di
st

rib
ut

io
n

ov
er

 in
st

an
ce

s Comparison of gaps cumulative distributions over instances
Route-based matheuristic
Initialization + local search
Ablation commodity reinsertion
Ablation customer reinsertion
Ablation reload fixed-path vehicles
LNS

Figure 9: Cumulative distributions of the gap among instances solutions.

7.4 Results with Longer Routes
As stated above, limiting the routes to Smax = 3 stops maximum is restrictive, though this is an important
constraint in the current operations of Renault. Indeed, longer routes imply a huge additional workload for
the drivers.

To emphasize the benefits in terms of costs and gaps induced by longer routes, we solve the same instances
as previously, but with Smax = 10, a time limit of 180 minutes, and 100 customer reinsertion steps per LNS
outer iteration. Every other parameter remains the same. We summarize the average cost impact with
Table 6. We show that we can reach lower costs with each algorithm, with a large gain after the initialization
+ local search algorithm. We also demonstrate our LNS scales to this more general setting. To complete
the study, we display the gap cumulative distributions of our three algorithms on Figure 10. We observe
smaller gaps in this setting, which was expected since we relax the constraint of maximum number of stops
in a route.

We emphasize our LNS manages to significantly improve gaps compared with the route-based matheuristic
and initialization + local search algorithm, at the price of heavier computations. Indeed, although the time
limit is set equal for each solution process, the iterative LNS reaches it, and the two other methods stop
earlier.

The choice and size of the neighborhoods is therefore a key to adapt the route-based matheuristic and
the LNS to new instances. Since this study is motivated by an industrial context where the IRP is solved
every day, we can hint at some statistical ways to do so. A perspective for further research may be the use
of machine learning techniques, either for tuning our algorithms parameters, or to enhance their building
subroutines with structured prediction. Besides, additional computations could be useful to analyze in details
the influence of Smax, with intermediate values between 3 and 10.

23

Table 6: Comparison of the average costs over instances between Smax = 3, 10

Initialization + local search Matheuristic LNS Lower bound

Average cost Smax = 3 2.82M€ 2.48M€ 2.14M€ 1.35M€
Average cost Smax = 10 2.38M€ 2.20M€ 1.88M€ 1.35M€

20 40 60 80 100 120 140

Gap (%)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

di
st

rib
ut

io
n

ov
er

 in
st

an
ce

s Comparison of gaps cumulative distributions over instances

LNS
Route-based matheuristic
Initialization + local search

Figure 10: Cumulative distributions of the gap for Smax = 10 and 180 minutes time limit.

8 Conclusion
In this study motivated by an industrial partnership with Renault, we consider European-scale multi-
attribute IRP instances with route durations. This inherently hard problem has to be solved in a limited
time of 90 minutes every day. To do so, we design a large neighborhood search based on the generalization of
TSP and SDVRP neighborhoods Section 5, a large neighborhood Section 6.1 inspired by recent matheuristics
designed for the IRP (Bertazzi et al. 2019; Archetti, Boland, and Speranza 2017), and two new perturbations
Section 6.2 and Section 6.3 based on MILPs. We also derive an initialization + local search algorithm that
relies on flows Section 4.1. It allows us to quickly initialize our IRP instances with non-trivial solutions, and
to derive a lower bound. To the best of our knowledge, this lower bound is unknown in the IRP literature.
We extract and process a dataset of 71 European-scale multi-attribute IRP instances that we make available
publicly. Numerical experiments in Section 7 show the results of our LNS. We highlight that it outperforms
the route-based matheuristic, and that each component of the LNS brings useful contributions.

We also emphasize some limits and perspectives. The choice of the neighborhoods is hard to define
a priori, and we do not have time to browse the space of neighborhoods repeatedly. Parallel computing
and multi-threading could be some perspectives to consider, although even small changes imply inventory
dynamics over the whole time horizon, leading to overlaps between neighborhoods. Cache use would thus
be a challenge. Some techniques of machine learning for operations research could also be considered in this
direction, in a reinforcement learning (Wu et al. 2021) or structured learning (Parmentier 2022) paradigm
for example. Besides, we suffer from the poor quality of our lower bound to compute gaps. Deriving a better
relaxation for this multi-attribute IRP is a challenge that has not been addressed in the literature to the
best of our knowledge. We could add valid inequalities leveraging the research on exact solutions of smaller
problems (Manousakis et al. 2021; Desaulniers, Rakke, and Coelho 2015) to improve the quality of our
neighborhoods. When dealing with real data from Renault, solving the IRP in a rolling horizon framework
to prepare code industrialization, we face release and demand randomness. A stochastic IRP (Nolz, Absi,

24

and Feillet 2014; Coelho, Laporte, and Cordeau 2012) may be necessary over the large-scale instances to
enable robustness. We plan to explore those research paths in our future work.

Acknowledgments
We are grateful to the Renault supply-chain and IT teams for the partnership we have set and the industrial
motivation they provide us with, especially to Alain Nguyen, Thaddeus Leonard, Nicusor-Eugen Plescan,
Christian Serrano, Ludovic Doudard and Aimé-Frédéric Rosenzweig. We also would like to thank Vincent
Leclère for his advice on the form of the article.

References
Archetti, C., L. Bertazzi, G. Laporte, and M. G. Speranza (Aug. 2007). “A Branch-and-Cut Algorithm

for a Vendor-Managed Inventory-Routing Problem”. In: Transportation Science 41.3, pp. 382–391. issn:
0041-1655. doi: 10/b9kkm7 (cit. on p. 2).

Archetti, C., N. Boland, and M. G. Speranza (Apr. 2017). “A Matheuristic for the Multivehicle Inventory
Routing Problem”. In: INFORMS Journal on Computing 29.3, pp. 377–387. issn: 1091-9856. doi: 10/
gbsn75 (cit. on pp. 2, 7, 24).

Archetti, C., G. Guastaroba, D. L. Huerta-Muñoz, and M. G. Speranza (Nov. 2021). “A Kernel Search
Heuristic for the Multivehicle Inventory Routing Problem”. In: International Transactions in Operational
Research 28.6, pp. 2984–3013. issn: 0969-6016, 1475-3995. doi: 10/gkzwqh (cit. on pp. 2, 7).

Archetti, C. and M. G. Speranza (2016). “The Inventory Routing Problem: The Value of Integration”. In:
International Transactions in Operational Research 23.3, pp. 393–407. issn: 1475-3995. doi: 10/gctq3d
(cit. on p. 1).

Archetti, C. and M. G. Speranza (2008). “The Split Delivery Vehicle Routing Problem: A Survey”. In: The
Vehicle Routing Problem: Latest Advances and New Challenges. Ed. by B. Golden, S. Raghavan, and E.
Wasil. Operations Research/Computer Science Interfaces. Boston, MA: Springer US, pp. 103–122. isbn:
978-0-387-77778-8. doi: 10.1007/978-0-387-77778-8_5 (cit. on p. 2).

Benoist, T., F. Gardi, A. Jeanjean, and B. Estellon (Mar. 2011). “Randomized Local Search for Real-Life
Inventory Routing”. In: Transportation Science 45.3, pp. 381–398. issn: 0041-1655. doi: 10.1287/trsc.
1100.0360 (cit. on p. 2).

Bertazzi, L., L. C. Coelho, A. De Maio, and D. Laganà (Feb. 2019). “A Matheuristic Algorithm for the Multi-
Depot Inventory Routing Problem”. In: Transportation Research Part E: Logistics and Transportation
Review 122, pp. 524–544. issn: 1366-5545. doi: 10/ggdvkf (cit. on pp. 2, 7, 24).

Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah (2017). “Julia: A fresh approach to numerical
computing”. In: SIAM Review 59.1, pp. 65–98. doi: 10.1137/141000671. url: https://epubs.siam.
org/doi/10.1137/141000671 (cit. on pp. 3, 20).

Campbell, A. M. and M. W. P. Savelsbergh (Nov. 2004). “A Decomposition Approach for the Inventory-
Routing Problem”. In: Transportation Science 38.4, pp. 488–502. issn: 0041-1655. doi: 10/fkn54g (cit. on
p. 2).

Coelho, L. C. and G. Laporte (Nov. 2013). “A Branch-and-Cut Algorithm for the Multi-Product Multi-Vehicle
Inventory-Routing Problem”. In: International Journal of Production Research 51.23-24, pp. 7156–7169.
issn: 0020-7543. doi: 10/gjvnnf (cit. on p. 2).

Coelho, L. C., A. De Maio, and D. Laganà (Dec. 2020). “A Variable MIP Neighborhood Descent for the Multi-
Attribute Inventory Routing Problem”. In: Transportation Research Part E: Logistics and Transportation
Review 144, p. 102137. issn: 13665545. doi: 10/gm954p (cit. on pp. 2, 7).

Coelho, L. C., G. Laporte, and J.-F. Cordeau (2012). Dynamic and Stochastic Inventory-Routing. Tech. rep.
CIRRELT-2012-37. CIRRELT Montreal (cit. on p. 25).

Cordeau, J.-F., D. Laganà, R. Musmanno, and F. Vocaturo (Mar. 2015). “A Decomposition-Based Heuristic
for the Multiple-Product Inventory-Routing Problem”. In: Computers & Operations Research 55, pp. 153–
166. issn: 03050548. doi: 10/f6w8pp (cit. on p. 2).

25

https://doi.org/10/b9kkm7
https://doi.org/10/gbsn75
https://doi.org/10/gbsn75
https://doi.org/10/gkzwqh
https://doi.org/10/gctq3d
https://doi.org/10.1007/978-0-387-77778-8_5
https://doi.org/10.1287/trsc.1100.0360
https://doi.org/10.1287/trsc.1100.0360
https://doi.org/10/ggdvkf
https://doi.org/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://doi.org/10/fkn54g
https://doi.org/10/gjvnnf
https://doi.org/10/gm954p
https://doi.org/10/f6w8pp

Desaulniers, G., J. G. Rakke, and L. C. Coelho (Oct. 2015). “A Branch-Price-and-Cut Algorithm for the
Inventory-Routing Problem”. In: Transportation Science 50.3, pp. 1060–1076. issn: 0041-1655. doi: 10/
f8zpgc (cit. on pp. 2, 24).

Dror, M. and P. Trudeau (1990). “Split Delivery Routing”. In: Naval Research Logistics (NRL) 37.3, pp. 383–
402. issn: 1520-6750. doi: 10.1002/nav.3800370304 (cit. on p. 2).

Dunning, I., J. Huchette, and M. Lubin (2017). “JuMP: A Modeling Language for Mathematical Optimiza-
tion”. In: SIAM Review 59.2, pp. 295–320. doi: 10.1137/15M1020575 (cit. on p. 20).

Fairbanks, J., M. Besançon, S. Simon, J. Hoffiman, N. Eubank, and S. Karpinski (2021). JuliaGraphs/Graphs.jl:
an optimized graphs package for the Julia programming language. url: https://github.com/JuliaGraphs/
Graphs.jl/ (cit. on p. 20).

Fischetti, M. and M. Fischetti (2016). “Matheuristics”. In: Handbook of Heuristics. Ed. by R. Martí, P. Panos,
and M. G. Resende. Cham: Springer International Publishing, pp. 1–33. isbn: 978-3-319-07153-4. doi:
10.1007/978-3-319-07153-4_14-1 (cit. on p. 2).

Gendreau, M. and J.-Y. Potvin, eds. (2010). Handbook of Metaheuristics. Vol. 146. International Series in
Operations Research & Management Science. Boston, MA: Springer US. isbn: 978-1-4419-1663-1 978-1-
4419-1665-5. doi: 10.1007/978-1-4419-1665-5 (cit. on p. 21).

Gurobi Optimization, LLC (2021). Gurobi Optimizer Reference Manual. url: https://www.gurobi.com
(cit. on pp. 20, 21).

Lagos, F., N. Boland, and M. Savelsbergh (Jan. 2020). “The Continuous-Time Inventory-Routing Problem”.
In: Transportation Science, trsc.2019.0902. issn: 0041-1655, 1526-5447. doi: 10.1287/trsc.2019.0902
(cit. on p. 1).

Manousakis, E., P. Repoussis, E. Zachariadis, and C. Tarantilis (May 2021). “Improved Branch-and-Cut for
the Inventory Routing Problem Based on a Two-Commodity Flow Formulation”. In: European Journal
of Operational Research 290.3, pp. 870–885. issn: 03772217. doi: 10.1016/j.ejor.2020.08.047 (cit. on
pp. 2, 24).

Nolz, P. C., N. Absi, and D. Feillet (Jan. 2014). “A Stochastic Inventory Routing Problem for Infectious
Medical Waste Collection”. In: Networks 63.1, pp. 82–95. issn: 00283045. doi: 10.1002/net.21523
(cit. on pp. 2, 24).

Parmentier, A. (Jan. 2022). “Learning to Approximate Industrial Problems by Operations Research Classic
Problems”. In: Operations Research 70.1, pp. 606–623. issn: 0030-364X, 1526-5463. doi: 10.1287/opre.
2020.2094 (cit. on p. 24).

Savelsbergh, M. and J.-H. Song (July 2008). “An Optimization Algorithm for the Inventory Routing Problem
with Continuous Moves”. In: Computers & Operations Research 35.7, pp. 2266–2282. issn: 03050548. doi:
10/ft9dtw (cit. on p. 1).

Su, Z., Z. Lü, Z. Wang, Y. Qi, and U. Benlic (Mar. 2020). “A Matheuristic Algorithm for the Inventory Rout-
ing Problem”. In: Transportation Science, trsc.2019.0930. issn: 0041-1655, 1526-5447. doi: 10/gm954w (cit.
on p. 2).

Wu, Y., W. Song, Z. Cao, and J. Zhang (2021). “Learning Large Neighborhood Search Policy for Integer
Programming”. In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. W. Vaughan. Vol. 34. Curran Associates, Inc., pp. 30075–30087.
url: https://proceedings.neurips.cc/paper/2021/file/fc9e62695def29ccdb9eb3fed5b4c8c8-
Paper.pdf (cit. on p. 24).

26

https://doi.org/10/f8zpgc
https://doi.org/10/f8zpgc
https://doi.org/10.1002/nav.3800370304
https://doi.org/10.1137/15M1020575
https://github.com/JuliaGraphs/Graphs.jl/
https://github.com/JuliaGraphs/Graphs.jl/
https://doi.org/10.1007/978-3-319-07153-4_14-1
https://doi.org/10.1007/978-1-4419-1665-5
https://www.gurobi.com
https://doi.org/10.1287/trsc.2019.0902
https://doi.org/10.1016/j.ejor.2020.08.047
https://doi.org/10.1002/net.21523
https://doi.org/10.1287/opre.2020.2094
https://doi.org/10.1287/opre.2020.2094
https://doi.org/10/ft9dtw
https://doi.org/10/gm954w
https://proceedings.neurips.cc/paper/2021/file/fc9e62695def29ccdb9eb3fed5b4c8c8-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/fc9e62695def29ccdb9eb3fed5b4c8c8-Paper.pdf

Table 7: Notations
Name Description

t Day
T Horizon
d Depot (facility)
D Set of depots
c Customer
C Set of customers
m Commodity
M Set of commodities
Mc Set of commodities used by customer c
Md Set of commodities used by depot d

I0md Initial inventory of m at d
I0mc Initial inventory of m at c
b+mdt Number of commodity m released on day t by d
b−mct Number of commodity m demanded on day t by c
κmdt Free inventory capacity of m at d on the evening of day t
κmct Free inventory capacity of m at c on the evening of day t

V Set D ∪ C of the vertices of the locations graph
v Node of V
A Arcs of the locations graph
a Arc
∆a Distance in kilometers corresponding to arc a
τa Duration in hours corresponding to arc a
P Path in the locations graph
Smax Maximum number of stops in a route
τmax Number of transport hours per day
`m Length of a commodity m
L Length of a vehicle (homogeneous)

cexcmd Unit excess inventory storage cost of m at d per night
cexcmc Unit excess inventory storage cost of m at c per night
cshortmc Unit shortage cost of m at c per day
ckm Per kilometer cost of the routes
cveh Unit cost for using a vehicle
cstop Unit cost for making a stop

A Notations
In Table 7, we recap the main concepts and notations the dimensions, the initial inventory, the demand and
release, the free inventory capacities, the locations graph, the commodities and vehicles lengths, and the unit
costs.

27

	Introduction
	Problem Description
	Notations and Data
	The Route Structure
	Inventory Routing Formulation

	Overview of the Algorithms and General Concepts
	Overview of the Algorithms
	Subroutines
	Algorithms

	Flow Graphs and Formulations

	Flow Relaxation + Bin Packing Subroutine
	Multiple Minimum Cost Flows and Relaxation
	Bin Packing

	Routing Local Search Subroutine
	The Neighborhoods
	Routing Local Search

	MILP-Based Neighborhoods and Perturbations
	Reload Fixed-Path Vehicles Subroutine
	Customer Reinsertion Subroutine
	Commodity Reinsertion Subroutine

	Computational Experiments
	Experimental Setting
	Cost Results
	Analysis of the LNS Components
	Time per Operator
	Cost Gain Over Time
	Ablation Tests

	Results with Longer Routes

	Conclusion
	References
	Notations

