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Abstract. Community ecologists usually consider the Euclidean distance inappropriate to explore 11 

the multivariate structure of species abundance data. This is because the Euclidean distance may 12 

lead to the counter-intuitive result for which two sample plots with no species in common may be 13 

more similar to each other than two plots that share the same species list. To overcome this 14 

paradoxical situation, the species abundances need to be normalized in some way. Among the many 15 

coefficients used by ecologists for the analysis of assemblage data, the Bray-Curtis dissimilarity is 16 

certainly the most commonly used. This measure entails normalization of species-wise differences 17 

between two plots by the total species abundance in both plots. By highlighting the relationship 18 

between the Bray-Curtis dissimilarity and the Euclidean distance, we propose a parametric 19 

dissimilarity measure that is appropriate for handling data on community composition. We also 20 

show how the new parametric measure can be generalized to the measurement of functional 21 

dissimilarity between two plots. A small dataset on the species functional turnover along a 22 

chronosequence on Alpine grasslands is used to illustrate the behavior of the proposed measure. 23 

 24 

Keywords: Branching requirement; Complementarity; Dissimilarity profile; Species abundances; 25 

Species commonness. 26 

 27 
1. Introduction 28 

Ecologists frequently use multivariate dissimilarity measures between pairs of sampling units (or 29 

plots, quadrats, sites, etc.) for investigating the ecological processes that drive community 30 

assembly. Many authors have proposed a set of guidelines to help navigate the multitude of existing 31 

dissimilarity coefficients for the analysis of ecological data (e.g. Gower and Legendre 1986; Podani 32 

2000; Legendre and De Cáceres 2013; Lengyel and Botta-Dukát 2021). However, selecting an 33 

appropriate question-specific coefficient is not always a simple operation. 34 

In this framework, the Euclidean distance is a natural benchmark for assessing any other 35 

dissimilarity coefficient because it corresponds to the standard notion of distance in our everyday 36 
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physical world (Podani 2000). Given two plots U and V, let Ujx  and Vjx  be the abundances of 37 

species j ( 1, 2,..., )j N  in both plots. The Euclidean distance between U and V is defined as: 38 

 39 

 
2

1

N

Uj Vj

j

E x x


                           (1) 40 

 41 

Note that in this paper we generally use the term distance for all measures that have metric 42 

properties; otherwise, the term dissimilarity is used (see Gower and Legendre 1986). 43 

In multivariate analysis of assemblage data, a well-known limitation of the Euclidean distance, 44 

which is usually known as the ‘Orlóci paradox’, is that two plots with no species in common may 45 

result more similar than two plots which share the same species (Orlóci 1978). This counter-46 

intuitive situation occurs because with the Euclidean distance differences in species abundances are 47 

much more relevant than agreement in species presences and absences (Ricotta and Podani 2017). 48 

Accordingly, an important prerequisite for any meaningful measure of community dissimilarity is 49 

what Clarke et al. (2006) have termed ‘complementarity’. This means that the measure reaches its 50 

maximum value when two plots have no species in common. 51 

To overcome the ‘Orlóci paradox’ we need to normalize the species abundances in some way. The 52 

dissimilarity coefficient of Bray and Curtis (1957), one of the most popular measures of 53 

multivariate dissimilarity in community ecology, entails normalization of species-wise differences 54 

in U and V by the total species abundance in both plots: 55 
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 58 

The Bray-Curtis dissimilarity thus calculates the fraction of the total species abundances in which 59 

the two plots differ. 60 

The aim of this paper is twofold: first, by highlighting the relationship between the Euclidean 61 

distance and the Bray-Curtis dissimilarity, we propose a parametric formulation of Eq. 2 that is 62 

adequate for handling species absolute abundances. Next, we will show how this new parametric 63 

measure can be further generalized to summarize the functional dissimilarity between two plots. A 64 

worked example with data on the species functional turnover along a chronosequence on Alpine 65 

grasslands is used to show the behavior of this new measure. 66 
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2. Methods 67 

2.1. A new parametric measure of dissimilarity 68 

We start by observing that the Euclidean distance is the second order ( 2)   of the Minkowski 69 

parametric distance: 70 

 71 
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 73 

Unlike the Euclidean and the Bray-Curtis coefficients which are single-point pictures of community 74 

dissimilarity, the Minkowski distance provides a vector description of the differences in species 75 

abundance between U and V. For 1  , the Minkowski distance is a metric, thus conforming to the 76 

triangle inequality (see Gower and Legendre 1986). 77 

In the formulation of the Minkowski distance, the parameter α is related to the distinctness between 78 

sampling units, such that increasing the value of α increases the relevance of large differences in 79 

species abundances between U and V compared to small differences. For α tending to infinity, M  80 

tends to max Uj Vjx x . As a result, parametric dissimilarity can be thought of as a scaling process 81 

that occurs in abstract data space of species abundances (Podani 1992). 82 

By setting 1   in Eq. 3, we obtain the Manhattan (or city-block) distance: 83 
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 86 

which is the sum of absolute differences in species abundances between U and V. 87 

From Eq. 2 and 4, it follows that the Bray-Curtis dissimilarity is nothing else than the Manhattan 88 

distance normalized by the total abundance of all species in both plots: 89 

 90 
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 92 

This provides a direct connection between the Bray-Curtis dissimilarity and the Minkowski 93 

parametric family. For species abundance data Ujx , the observation that the Bray-Curtis 94 

dissimilarity is essentially a normalized version of the first order Minkowski distance can be 95 

generalized to the entire parametric family in one of two ways: 96 
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 103 

For 1  , Eq. 6a and 6b both recover the Bray-Curtis dissimilarity, while for 2   we obtain two 104 

equally admissible normalized versions of the classical Euclidean distance: 105 
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respectively. Eq. 6a and 6b thus represent two normalized expressions of the Minkowski distance in 107 

the range  0,1  that conform to the complementarity requirement. If U and V have no species in 108 

common D  and   are both equal to 1, whereas if for all N species Uj Vjx x , we have 109 

0D    . 110 

Note that the so-called Minkowski inequality: 
1 1 1


   

  
    

N N N

Uj Vj Uj Vjj j j
x x x x  could also 111 

be used to construct a parametric family of normalized dissimilarities 112 
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 115 

This measure has been previously proposed by Yuan et al. (2016) to quantify the biodiversity 116 

turnover from species relative abundances. However, unlike D or  , Eq. 6c does not always 117 

assign maximum dissimilarity (i.e. 1 L ) to a pair of completely distinct assemblages with no 118 

species in common. 119 
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2.2. Extending the measure to functional differences between plots 120 

Functional differences between species are usually represented by a N N matrix of pairwise 121 

dissimilarities ijd  between species i and j such that ij jid d  and 0iid  . If ijd  is bounded in the 122 

range  0,1 , a corresponding functional similarity coefficient can be easily derived as the 123 

complement of ijd  (i.e. 1ij ijs d  ). 124 

According to Leinster and Cobbold (2012), the functional abundance/commonness of species j in 125 

plot U can be defined as the abundance of all species in U that are functionally similar to j 126 

(including j itself): 127 

 128 
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 130 

Therefore, assuming that species with similar traits are likely to support similar functions (Villéger 131 

et al. 2013), Ujc  summarizes the abundance of all individuals in plot U that support the functions 132 

associated with species j. For details, see Pavoine and Ricotta (2019). If all species in U are 133 

maximally dissimilar from j such that 0ijs   for all i j , we have Uj Ujc x , meaning that the 134 

abundance of all species similar to j cannot be less than the abundance of j itself. At the other 135 

extreme, if all species are functionally identical to j such that 1ijs  , we have 
1

N

Uj Ujj
c x


  (i.e. 136 

the total species abundance in plot U). 137 

In principle, we can thus derive a family of parametric measures of functional dissimilarity between 138 

plots by substituting in Eq. 6a and 6b the species abundances Ujx  with their commonness Ujc : 139 

 140 
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where the summation is taken over all species that are actually present in at least one of the two 147 

plots (i.e. over all species for which 0Uj Vjx x  ). 148 

Eq. 8a and 8b provide a parametric version of the Bray-Curtis dissimilarity that includes functional 149 

differences between species. However, this solution is not entirely satisfactory for two main 150 

reasons: first, most researchers usually try to assess how the species functional strategies are 151 

apportioned within the plots, irrespective of the species absolute abundances in each plot (Ricotta et 152 

al. 2021a). This aspect can be adjusted by calculating functional dissimilarity from the species 153 

relative abundances Ujp  instead of absolute abundances Ujx . In this case, species commonness 154 

becomes: 155 

 156 
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 158 

thus representing the relative abundance of all species in plot U that are functionally similar to j 159 

with 
1

 
N

Uj Ui Uii
p x x  and 0 1Uj  . 160 

Second, Eq. 8a and 8b do not conform to the requirement that dissimilarity remains unchanged if 161 

two species that are functionally identical in every way are merged into a single species (Leinster 162 

and Cobbold 2012; Pavoine and Ricotta 2019). The essence of this branching requirement is that a 163 

measure of functional dissimilarity should be able to highlight differences in ecosystem functioning 164 

between sampling units regardless of the species that sustain these functions. For throughout 165 

discussion of this aspect, see Leinster and Cobbold (2012); Botta-Dukát (2018); Ricotta et al. 166 

(2021a). 167 

According to Pavoine and Ricotta (2019), this additional aspect can be fixed by multiplying all 168 

terms of the summations in Eq. 8a and 8b by a species-specific weighting factor 169 
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 172 

which represents the pooled abundance of species j in U and V relative to the total species 173 

abundance in both plots. 174 

Therefore, by substituting the species absolute abundances Ujx  with their relative abundances Ujp  175 

and by introducing the weighting factors j  in the calculation of parametric dissimilarity, we can 176 
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derive two parametric measures that conform to our intuitive notion of functional dissimilarity 177 

better than the previous ones: 178 

 179 
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 185 

Both measures conform to the requirement that the functional dissimilarity between U and V 186 

remains unchanged if two species in U or V that are functionally identical in every way are merged 187 

into a single species. In addition, if 0ijs   for all i j  and 1 j N  for all N species in the 188 

assemblage, Eq. 11a and 11b recover their abundance-based versions D  and  , respectively. 189 

 190 

3. Worked example 191 

In this paper, data on Alpine vegetation sampled by Caccianiga et al. (2006) along a 192 

chronosequence at the foreland of the Rutor glacier (northern Italy) were used. The same data were 193 

also used by Ricotta et al. (2021a) to investigate the behavior of a different parametric measure of 194 

functional dissimilarity. This allows us to compare our results with those of Ricotta et al. (2021a). 195 

The data set (available in Ricotta et al. 2016: Appendix S2) is composed of a community 196 

composition matrix with the abundances of 45 species collected in 59 plots. The size of each plot 197 

was approximately 25 m2; all species abundances were measured with a five-point ordinal scale 198 

transformed to ranks. Based on the age of the moraine ridges, plots were assigned to three distinct 199 

successional stages: early successional vegetation (ESV, 17 plots), mid successional vegetation 200 

(MSV, 32 plots), and late successional vegetation (LSV, 10 plots). 201 

Six functional traits available in Caccianiga et al. (2006) related to the species global spectrum of 202 

form and function (Diaz et al. 2016) were used: leaf dry matter content (LDMC; %), leaf dry weight 203 

(LDW; mg), specific leaf area (SLA; mm2 × mg−1), leaf carbon content (LCC; %), leaf nitrogen 204 

content (LNC; %), and canopy height (CH; mm). First, the traits were linearly rescaled to zero 205 

mean and unit standard deviation. Next, the scaled traits were used to calculate a matrix of 206 
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functional Euclidean distances ijd  between the 45 species in the data set. The Euclidean distances 207 

were finally normalized in the unit range by dividing each distance by the maximum value in the 208 

distance matrix. 209 

To compute parametric dissimilarity, the species abundances of all plots within each stage were 210 

averaged and the species relative abundances within each stage were computed. The species relative 211 

abundances within each stage were then used, together with the functional distances, to compute the 212 

parametric dissimilarity between the three successional stages according to Eq. 11a and 11b. To this 213 

end, a new R script available in the Supporting information (Appendix 1 and 2) has been produced. 214 

The dissimilarity profiles of 
f  vs. α for 0   among the three successional stages are shown in 215 

Figure 1. The profiles of φ are very similar to those of 
f . Therefore, they are shown in Appendix 216 

1. Caccianiga et al. (2006) and Ricotta et al. (2020) showed that the different successional stages of 217 

the chronosequence are characterized by a gradual substitution of ruderal species by stress tolerator 218 

species. From a functional viewpoint, this pattern is associated to a progressive reduction of leaf 219 

nitrogen content and specific leaf area and a corresponding increase of leaf carbon content and leaf 220 

dry matter. 221 

These functional differences are mirrored by the dissimilarity profiles of the three successional 222 

stages: in good agreement with Ricotta et al. (2021a), the dissimilarity profiles between the 223 

intermediate stages of the chronosequence (ESV vs. MSV and MSV vs. LSV) show less 224 

pronounced functional differences, whereas the largest functional differences are shown by the 225 

dissimilarity profile between the early and the late successional stages of the Alpine vegetation 226 

(ESV vs. LSV). By increasing the values of the parameter α, these differences tend to become 227 

increasingly larger, thus showing that the dominant species in the successional stages at the 228 

opposite ends of the chronosequence tend to be functionally well distinct from each other. 229 

One of the criticisms sometimes levelled at the Minkowski parametric distance is that, for 2  , it 230 

is highly influenced by large species-wise differences, which is not always justified. However, in 231 

Figure 1 we can see that the dissimilarity profiles reach a plateau for values of α far beyond this 232 

threshold. Therefore, the dissimilarity values calculated for 2   carry an important amount of 233 

ecological information on the pattern of functional differences between the dominant species in 234 

different sampling units. This pattern would be overlooked if the calculation of the dissimilarity 235 

profiles were limited to lower values of α. 236 

 237 

4. Discussion 238 

In this paper, we introduced a new parametric measure of community dissimilarity that extends the 239 

normalization method inherent in the Bray-Curtis dissimilarity to the whole Minkowski parametric 240 
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family. Parametric dissimilarity has been used in community ecology for a long time (e.g. Grassle 241 

and Smith 1976; Jost 2007; Chao et al. 2014; Chao and Ricotta 2019) and its use is due to the 242 

consciousness that no single index is able to adequately summarize all facets of the multivariate 243 

dissimilarity among sampling units. Therefore, one uses a parametric family of dissimilarity 244 

measures whose members have increasing sensitivities to large species-wise differences between 245 

plots for increasing values of the selected scale parameter. With parametric functions, such as D  246 

or  , dissimilarity can be plotted against the corresponding scale parameter and the resulting 247 

profiles can be compared for the various communities under study (Taillie 1979). 248 

A desirable property of D  and   is that for both measures, a few characteristic values of the 249 

parameter α recover more traditional dissimilarity coefficients. For example, for 1   both 250 

parametric functions reduce to the Bray-Curtis dissimilarity, while for 2  , two normalized 251 

versions of the classical Euclidean distance, 2D  and 2 , are obtained. Therefore, D  and  are 252 

not just a mere addition to the dissimilarity measures already available in the ecologist’s toolbox. 253 

Rather, an interesting novelty of this work is that such measures provide an explicit relationship 254 

between the Bray-Curtis dissimilarity and the Minkowski family that can be further extended to the 255 

measurement of functional dissimilarity. Hence, by providing a unifying perspective for a number 256 

of seemingly unrelated dissimilarity coefficients, both parametric measures help organize different 257 

aspects of species resemblance into a higher-order coherent framework. For a detailed analysis of 258 

the relationships between the newly proposed parametric measures of community dissimilarity and 259 

a number of classical single-point measures of resemblance, see Appendix 3. 260 

Note that the normalized Euclidean distances 2D  and 2  are both S-decomposable, meaning that 261 

their squared values can be additively decomposed into species-level contributions (Ricotta et al. 262 

2021b). Accordingly, with 2D  and 2  we can decompose the within- and between-group 263 

components of distance-based multivariate ANOVA into additive species-level values. In this way, 264 

we are able to identify the species that contribute most to the compositional differentiation among 265 

the various groups of plots (Ricotta et al. 2021b). 266 

By substituting the species abundances Ujx  with their commonness Uj , parametric dissimilarity 267 

can be generalized to account for functional differences among species. Unlike most of the 268 

functional dissimilarity measures published to date (e.g. Cardoso et al. 2014; Chao et al. 2014; Chiu 269 

and Chao 2014; Pavoine and Ricotta 2014), the resulting parametric measures 
f  and 

  are not 270 

based on Whittaker’s (1972) classical model of diversity decomposition into alpha, beta and gamma 271 

components. Therefore, they can be calculated from virtually any available interspecies 272 

dissimilarity measure without restrictions on their geometrical properties (for additional details, see 273 
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e.g. Pavoine and Ricotta 2014). This high flexibility in the choice of the interspecies dissimilarity 274 

coefficients is a desirable aspect of the proposed framework. 275 

If the interspecies dissimilarities ijd  are in the range [0,1] , the corresponding similarities 276 

1ij ijs d   can be interpreted as the fuzzy degree of functional compatibility of species i with 277 

species j. Likewise, the commonness of species j, 
1





N

Uj Ui iji
p s  can be seen as the mean fuzzy 278 

compatibility of all species in U with species j (including j itself). Since most parametric and non-279 

parametric functional dissimilarity and diversity measures are calculated from interspecies 280 

dissimilarities, this relationship opens the way for a more general mathematical description of 281 

biodiversity in terms of fuzzy set theory (Cross and Sudkamp 2002; Feoli 2018). 282 

To conclude, while how to summarize functional dissimilarity remains an open question, we think 283 

that the major advantage of parametric measures is that by comparing different pairs of plots by 284 

their dissimilarity profiles, it is possible to trace how dissimilarity changes as a function of the scale 285 

parameter α. This operation may help understanding the effects of large and small species-wise 286 

differences on ecological processes in a more general way than by simply using a scalar measure. 287 

A familiar problem related to the differential weighting of large and small species-wise differences 288 

for different values of the parameter α is that two dissimilarity profiles can cross, such that we 289 

cannot unambiguously say which of the two profiles shows the largest functional differences 290 

(Ricotta et al. 2021a). In this paper, we used numerical simulations to show that this is also the case 291 

for the newly proposed parametric measures 
f  and 

 . 292 

This potential inconsistency in the ordering of two parametric profiles was at the basis of Hurlbert’s 293 

(1971) critique on the ‘nonconcept’ of diversity. However, as emphasized by Patil and Taillie 294 

(1982) and Leinster and Cobbold (2012), inconsistent ordering is a common problem in multivariate 295 

analysis and should not be the case for undue pessimism. On the contrary, when two dissimilarity 296 

profiles cross, the positions of the intersections provide relevant ecological information on the 297 

compositional and functional differences between the communities under scrutiny. 298 

We thus hope that in spite of all its biological and statistical complexity, this work will help awaken 299 

some interest to parametric dissimilarity functions and their ecological applications. 300 
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Figure 1. Functional dissimilarity profiles 
f  vs. α among the three successional stages of the Rutor 380 

chronosequence. ESV = early successional vegetation; MSV = mid successional vegetation; LSV = 381 
late successional vegetation. 382 
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