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Community ecologists usually consider the Euclidean distance inappropriate to explore the multivariate structure of species abundance data. This is because the Euclidean distance may lead to the counter-intuitive result for which two sample plots with no species in common may be more similar to each other than two plots that share the same species list. To overcome this paradoxical situation, the species abundances need to be normalized in some way. Among the many coefficients used by ecologists for the analysis of assemblage data, the Bray-Curtis dissimilarity is certainly the most commonly used. This measure entails normalization of species-wise differences between two plots by the total species abundance in both plots. By highlighting the relationship between the Bray-Curtis dissimilarity and the Euclidean distance, we propose a parametric dissimilarity measure that is appropriate for handling data on community composition. We also show how the new parametric measure can be generalized to the measurement of functional dissimilarity between two plots. A small dataset on the species functional turnover along a chronosequence on Alpine grasslands is used to illustrate the behavior of the proposed measure.

Introduction

Ecologists frequently use multivariate dissimilarity measures between pairs of sampling units (or plots, quadrats, sites, etc.) for investigating the ecological processes that drive community assembly. Many authors have proposed a set of guidelines to help navigate the multitude of existing dissimilarity coefficients for the analysis of ecological data (e.g. [START_REF] Gower | Metric and Euclidean properties of dissimilarity coefficients[END_REF][START_REF] Podani | Introduction to the Exploration of Multivariate Biological Data[END_REF][START_REF] Legendre | Beta diversity as the variance of community data: dissimilarity coefficients and partitioning[END_REF][START_REF] Lengyel | Review and performance evaluation of trait-based betweencommunity dissimilarity measures[END_REF]. However, selecting an appropriate question-specific coefficient is not always a simple operation.

In this framework, the Euclidean distance is a natural benchmark for assessing any other dissimilarity coefficient because it corresponds to the standard notion of distance in our everyday physical world [START_REF] Podani | Introduction to the Exploration of Multivariate Biological Data[END_REF]. Given two plots U and V, let Uj

x and Vj x be the abundances of species j ( 1, 2,..., ) jN  in both plots. The Euclidean distance between U and V is defined as:

  2 1 N Uj Vj j E x x    (1) 
Note that in this paper we generally use the term distance for all measures that have metric properties; otherwise, the term dissimilarity is used (see [START_REF] Gower | Metric and Euclidean properties of dissimilarity coefficients[END_REF].

In multivariate analysis of assemblage data, a well-known limitation of the Euclidean distance, which is usually known as the 'Orlóci paradox', is that two plots with no species in common may result more similar than two plots which share the same species [START_REF] Orlóci | Multivariate Analysis in Vegetation Research[END_REF]. This counterintuitive situation occurs because with the Euclidean distance differences in species abundances are much more relevant than agreement in species presences and absences [START_REF] Ricotta | On some properties of the Bray-Curtis dissimilarity and their ecological meaning[END_REF].

Accordingly, an important prerequisite for any meaningful measure of community dissimilarity is what [START_REF] Clarke | On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages[END_REF] have termed 'complementarity'. This means that the measure reaches its maximum value when two plots have no species in common.

To overcome the 'Orlóci paradox' we need to normalize the species abundances in some way. The dissimilarity coefficient of [START_REF] Bray | An ordination of the upland forest communities in southern Wisconsin[END_REF], one of the most popular measures of multivariate dissimilarity in community ecology, entails normalization of species-wise differences in U and V by the total species abundance in both plots:

  1 1 N Uj Vj j N Uj Vj j xx D xx        (2) 
The Bray-Curtis dissimilarity thus calculates the fraction of the total species abundances in which the two plots differ.

The aim of this paper is twofold: first, by highlighting the relationship between the Euclidean distance and the Bray-Curtis dissimilarity, we propose a parametric formulation of Eq. 2 that is adequate for handling species absolute abundances. Next, we will show how this new parametric measure can be further generalized to summarize the functional dissimilarity between two plots. A worked example with data on the species functional turnover along a chronosequence on Alpine grasslands is used to show the behavior of this new measure.

We start by observing that the Euclidean distance is the second order ( 2)

  of the Minkowski parametric distance:

1

N Uj Vj j M x x       (3)
Unlike the Euclidean and the Bray-Curtis coefficients which are single-point pictures of community dissimilarity, the Minkowski distance provides a vector description of the differences in species abundance between U and V. For 1   , the Minkowski distance is a metric, thus conforming to the triangle inequality (see [START_REF] Gower | Metric and Euclidean properties of dissimilarity coefficients[END_REF]).

In the formulation of the Minkowski distance, the parameter α is related to the distinctness between sampling units, such that increasing the value of α increases the relevance of large differences in species abundances between U and V compared to small differences. For α tending to infinity,  M tends to max  Uj Vj xx . As a result, parametric dissimilarity can be thought of as a scaling process that occurs in abstract data space of species abundances [START_REF] Podani | Space series analysis: processes reconsidered[END_REF].

By setting 1

  in Eq. 3, we obtain the Manhattan (or city-block) distance:

1 1 N Uj Vj j M x x    (4)
which is the sum of absolute differences in species abundances between U and V.

From Eq. 2 and 4, it follows that the Bray-Curtis dissimilarity is nothing else than the Manhattan distance normalized by the total abundance of all species in both plots:

    1 1 1 1 N Uj Vj j N N Uj Vj Uj Vj j j xx M D x x x x         (5)
This provides a direct connection between the Bray-Curtis dissimilarity and the Minkowski parametric family. For species abundance data

Uj

x , the observation that the Bray-Curtis dissimilarity is essentially a normalized version of the first order Minkowski distance can be generalized to the entire parametric family in one of two ways:

    1 1 1 1 N N Uj Vj Uj Vj j j N N Uj Vj j Uj Vj j xx xx D xx xx                       (6a) or, since   1 1 1 N N N Uj Vj Uj Vj j j j x x x x          1 1 1 1 1 1 N N Uj Vj Uj Vj j j N N N N Uj Vj j j Uj Vj j j xx xx xx xx                (6b) For 1
  , Eq. 6a and 6b both recover the Bray-Curtis dissimilarity, while for 2   we obtain two equally admissible normalized versions of the classical Euclidean distance:

    22 2 22 11      NN Uj Vj Uj Vj jj D x x x x and   2 2 2 2 2 2 1 1 1           N N N Uj Vj Uj Vj j j j x x x x ,
respectively. Eq. 6a and 6b thus represent two normalized expressions of the Minkowski distance in the range   0,1 that conform to the complementarity requirement. If U and V have no species in common D  and   are both equal to 1, whereas if for all N species Uj Vj xx  , we have

0 D     .
Note that the so-called Minkowski inequality:

1 1 1              N N N Uj Vj Uj Vj j j j x x x
x could also be used to construct a parametric family of normalized dissimilarities

1 11             N Uj Vj j NN Uj Vj jj xx L xx (6c)
This measure has been previously proposed by [START_REF] Yuan | Using Species Proportions to Quantify Turnover in Biodiversity[END_REF] to quantify the biodiversity turnover from species relative abundances. However, unlike  D or   , Eq. 6c does not always assign maximum dissimilarity (i.e. 1   L

) to a pair of completely distinct assemblages with no species in common.

Extending the measure to functional differences between plots

Functional differences between species are usually represented by a NN  matrix of pairwise dissimilarities ij d between species i and j such that According to [START_REF] Leinster | Measuring diversity: the importance of species similarity[END_REF], the functional abundance/commonness of species j in plot U can be defined as the abundance of all species in U that are functionally similar to j (including j itself):

1    N Uj Ui ij i c x s (7)
Therefore, assuming that species with similar traits are likely to support similar functions [START_REF] Villéger | Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages[END_REF], Uj c summarizes the abundance of all individuals in plot U that support the functions associated with species j. For details, see [START_REF] Pavoine | Measuring functional dissimilarity among plots: Adapting old methods to new questions[END_REF]. If all species in U are maximally dissimilar from j such that 0 ij s  for all ij  , we have Uj Uj cx  , meaning that the abundance of all species similar to j cannot be less than the abundance of j itself. At the other extreme, if all species are functionally identical to j such that 1 ij s  , we have

1 N Uj Uj j cx    (i.e.
the total species abundance in plot U).

In principle, we can thus derive a family of parametric measures of functional dissimilarity between plots by substituting in Eq. 6a and 6b the species abundances Uj x with their commonness

Uj c :   1 1 N Uj Vj j N Uj Vj j cc F cc            (8a) and 1 1 1 N Uj Vj j N N Uj Vj j j cc cc              (8b)
where the summation is taken over all species that are actually present in at least one of the two plots (i.e. over all species for which 0

Uj Vj xx  ).
Eq. 8a and 8b provide a parametric version of the Bray-Curtis dissimilarity that includes functional differences between species. However, this solution is not entirely satisfactory for two main reasons: first, most researchers usually try to assess how the species functional strategies are apportioned within the plots, irrespective of the species absolute abundances in each plot (Ricotta et al. 2021a). This aspect can be adjusted by calculating functional dissimilarity from the species relative abundances Uj p instead of absolute abundances Uj x . In this case, species commonness becomes:

1     N Uj Ui ij i ps (9)
thus representing the relative abundance of all species in plot U that are functionally similar to j

with 1    N Uj Ui Ui i p x x and 01 Uj   .
Second, Eq. 8a and 8b do not conform to the requirement that dissimilarity remains unchanged if two species that are functionally identical in every way are merged into a single species [START_REF] Leinster | Measuring diversity: the importance of species similarity[END_REF][START_REF] Pavoine | Measuring functional dissimilarity among plots: Adapting old methods to new questions[END_REF]. The essence of this branching requirement is that a measure of functional dissimilarity should be able to highlight differences in ecosystem functioning between sampling units regardless of the species that sustain these functions. For throughout discussion of this aspect, see [START_REF] Leinster | Measuring diversity: the importance of species similarity[END_REF]; Botta-Dukát (2018); Ricotta et al.

(2021a).

According to [START_REF] Pavoine | Measuring functional dissimilarity among plots: Adapting old methods to new questions[END_REF], this additional aspect can be fixed by multiplying all terms of the summations in Eq. 8a and 8b by a species-specific weighting factor

      1 1 2 Uj Vj j Uj Vj N Uj Vj j pp pp pp         (10)
which represents the pooled abundance of species j in U and V relative to the total species abundance in both plots. Therefore, by substituting the species absolute abundances Uj x with their relative abundances Uj p and by introducing the weighting factors j  in the calculation of parametric dissimilarity, we can derive two parametric measures that conform to our intuitive notion of functional dissimilarity better than the previous ones:

  1 1 N j Uj Vj j N j Uj Vj j f                  (11a) and 1 1 1 φ N j Uj Vj j N N j Uj j Vj j j                     (11b)
Both measures conform to the requirement that the functional dissimilarity between U and V remains unchanged if two species in U or V that are functionally identical in every way are merged into a single species. In addition, if 0 ij s  for all ij  and 1   j N for all N species in the assemblage, Eq. 11a and 11b recover their abundance-based versions D  and   , respectively.

Worked example

In this paper, data on Alpine vegetation sampled by [START_REF] Caccianiga | The functional basis of a primary succession resolved by CSR classification[END_REF] To compute parametric dissimilarity, the species abundances of all plots within each stage were averaged and the species relative abundances within each stage were computed. The species relative abundances within each stage were then used, together with the functional distances, to compute the parametric dissimilarity between the three successional stages according to Eq. 11a and 11b. To this end, a new R script available in the Supporting information (Appendix 1 and 2) has been produced.

The dissimilarity profiles of  f vs. α for 0   among the three successional stages are shown in Figure 1. The profiles of φ  are very similar to those of  f . Therefore, they are shown in Appendix 1. [START_REF] Caccianiga | The functional basis of a primary succession resolved by CSR classification[END_REF] and [START_REF] Ricotta | From abundance-based to functional-based indicator species[END_REF] showed that the different successional stages of the chronosequence are characterized by a gradual substitution of ruderal species by stress tolerator species. From a functional viewpoint, this pattern is associated to a progressive reduction of leaf nitrogen content and specific leaf area and a corresponding increase of leaf carbon content and leaf dry matter.

These functional differences are mirrored by the dissimilarity profiles of the three successional stages: in good agreement with Ricotta et al. (2021a), the dissimilarity profiles between the intermediate stages of the chronosequence (ESV vs. MSV and MSV vs. LSV) show less pronounced functional differences, whereas the largest functional differences are shown by the dissimilarity profile between the early and the late successional stages of the Alpine vegetation (ESV vs. LSV). By increasing the values of the parameter α, these differences tend to become increasingly larger, thus showing that the dominant species in the successional stages at the opposite ends of the chronosequence tend to be functionally well distinct from each other.

One of the criticisms sometimes levelled at the Minkowski parametric distance is that, for 2   , it is highly influenced by large species-wise differences, which is not always justified. However, in Figure 1 we can see that the dissimilarity profiles reach a plateau for values of α far beyond this threshold. Therefore, the dissimilarity values calculated for 2   carry an important amount of ecological information on the pattern of functional differences between the dominant species in different sampling units. This pattern would be overlooked if the calculation of the dissimilarity profiles were limited to lower values of α.

Discussion

In this paper, we introduced a new parametric measure of community dissimilarity that extends the normalization method inherent in the Bray-Curtis dissimilarity to the whole Minkowski parametric family. Parametric dissimilarity has been used in community ecology for a long time (e.g. [START_REF] Grassle | A similarity measure sensitive to the contribution of rare species and its use in investigation of variation in marine benthic communities[END_REF][START_REF] Jost | Partitioning diversity into independent alpha and beta components[END_REF][START_REF] Chao | Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers[END_REF][START_REF] Chao | Quantifying evenness and linking it to diversity, beta diversity, and similarity[END_REF]) and its use is due to the consciousness that no single index is able to adequately summarize all facets of the multivariate dissimilarity among sampling units. Therefore, one uses a parametric family of dissimilarity measures whose members have increasing sensitivities to large species-wise differences between plots for increasing values of the selected scale parameter. With parametric functions, such as  D

or   , dissimilarity can be plotted against the corresponding scale parameter and the resulting profiles can be compared for the various communities under study [START_REF] Taillie | Species equitability: a comparative approach[END_REF].

A desirable property of  D and   is that for both measures, a few characteristic values of the parameter α recover more traditional dissimilarity coefficients. For example, for 1   both parametric functions reduce to the Bray-Curtis dissimilarity, while for 2   , two normalized versions of the classical Euclidean distance, 2 D and 2  , are obtained. Therefore,  D and   are not just a mere addition to the dissimilarity measures already available in the ecologist's toolbox.

Rather, an interesting novelty of this work is that such measures provide an explicit relationship between the Bray-Curtis dissimilarity and the Minkowski family that can be further extended to the measurement of functional dissimilarity. Hence, by providing a unifying perspective for a number of seemingly unrelated dissimilarity coefficients, both parametric measures help organize different aspects of species resemblance into a higher-order coherent framework. For a detailed analysis of the relationships between the newly proposed parametric measures of community dissimilarity and a number of classical single-point measures of resemblance, see Appendix 3.

Note that the normalized Euclidean distances 2 D and 2  are both S-decomposable, meaning that their squared values can be additively decomposed into species-level contributions (Ricotta et al. 2021b). Accordingly, with 2 D and 2  we can decompose the within-and between-group components of distance-based multivariate ANOVA into additive species-level values. In this way, we are able to identify the species that contribute most to the compositional differentiation among the various groups of plots (Ricotta et al. 2021b).

By substituting the species abundances If the interspecies dissimilarities ij d are in the range [0,1] , the corresponding similarities

1 ij ij
sd  can be interpreted as the fuzzy degree of functional compatibility of species i with species j. Likewise, the commonness of species j,

1     N Uj Ui ij
i ps can be seen as the mean fuzzy compatibility of all species in U with species j (including j itself). Since most parametric and nonparametric functional dissimilarity and diversity measures are calculated from interspecies dissimilarities, this relationship opens the way for a more general mathematical description of biodiversity in terms of fuzzy set theory [START_REF] Cross | Similarity and Compatibility in Fuzzy Set Theory[END_REF][START_REF] Feoli | Classification of plant communities and fuzzy diversity of vegetation systems[END_REF].

To conclude, while how to summarize functional dissimilarity remains an open question, we think that the major advantage of parametric measures is that by comparing different pairs of plots by their dissimilarity profiles, it is possible to trace how dissimilarity changes as a function of the scale parameter α. This operation may help understanding the effects of large and small species-wise differences on ecological processes in a more general way than by simply using a scalar measure.

A familiar problem related to the differential weighting of large and small species-wise differences for different values of the parameter α is that two dissimilarity profiles can cross, such that we cannot unambiguously say which of the two profiles shows the largest functional differences (Ricotta et al. 2021a). In this paper, we used numerical simulations to show that this is also the case for the newly proposed parametric measures  f and   .

This potential inconsistency in the ordering of two parametric profiles was at the basis of [START_REF] Hurlbert | The nonconcept of species diversity: a critique and alternative parameters[END_REF] critique on the 'nonconcept' of diversity. However, as emphasized by [START_REF] Patil | Diversity as a concept and its measurement[END_REF] and [START_REF] Leinster | Measuring diversity: the importance of species similarity[END_REF], inconsistent ordering is a common problem in multivariate analysis and should not be the case for undue pessimism. On the contrary, when two dissimilarity profiles cross, the positions of the intersections provide relevant ecological information on the compositional and functional differences between the communities under scrutiny.

We thus hope that in spite of all its biological and statistical complexity, this work will help awaken some interest to parametric dissimilarity functions and their ecological applications.

  along a chronosequence at the foreland of the Rutor glacier (northern Italy) were used. The same data were also used byRicotta et al. (2021a) to investigate the behavior of a different parametric measure of functional dissimilarity. This allows us to compare our results with those ofRicotta et al. (2021a).The data set (available inRicotta et al. 2016: Appendix S2) is composed of a community composition matrix with the abundances of 45 species collected in 59 plots. The size of each plot was approximately 25 m 2 ; all species abundances were measured with a five-point ordinal scale transformed to ranks. Based on the age of the moraine ridges, plots were assigned to three distinct successional stages: early successional vegetation (ESV, 17 plots), mid successional vegetation (MSV, 32 plots), and late successional vegetation (LSV, 10 plots).Six functional traits available in[START_REF] Caccianiga | The functional basis of a primary succession resolved by CSR classification[END_REF] related to the species global spectrum of form and function(Diaz et al. 2016) were used: leaf dry matter content (LDMC; %), leaf dry weight (LDW; mg), specific leaf area (SLA; mm 2 × mg -1 ), leaf carbon content (LCC; %), leaf nitrogen content (LNC; %), and canopy height (CH; mm). First, the traits were linearly rescaled to zero mean and unit standard deviation. Next, the scaled traits were used to calculate a matrix of functional Euclidean distances ij d between the 45 species in the data set. The Euclidean distances were finally normalized in the unit range by dividing each distance by the maximum value in the distance matrix.

  

  [START_REF] Pavoine | Functional and phylogenetic similarity among communities[END_REF]. This high flexibility in the choice of the interspecies dissimilarity coefficients is a desirable aspect of the proposed framework.

	Uj x with their commonness  Uj , parametric dissimilarity
	can be generalized to account for functional differences among species. Unlike most of the
	functional dissimilarity measures published to date (e.g. Cardoso et al. 2014; Chao et al. 2014; Chiu
	and Chao 2014; Pavoine and Ricotta 2014), the resulting parametric measures  f and   are not

based on

[START_REF] Whittaker | Evolution and measurement of species diversity[END_REF] 

classical model of diversity decomposition into alpha, beta and gamma components. Therefore, they can be calculated from virtually any available interspecies dissimilarity measure without restrictions on their geometrical properties (for additional details, see e.g.

Appendix 2. R scripts in text format.

Appendix 3. On the relationship between the newly proposed parametric measures of community dissimilarity and a number of classical single-point measures of resemblance.
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