
THE RISE OF THE LOTTERY HEROES: WHY ZERO-SHOT PRUNING IS HARD

Enzo Tartaglione
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ABSTRACT

Recent advances in deep learning optimization showed that
just a subset of parameters are really necessary to successfully
train a model. Potentially, such a discovery has broad impact
from the theory to application; however, it is known that find-
ing these trainable sub-network is a typically costly process.
This inhibits practical applications: can the learned sub-graph
structures in deep learning models be found at training time?
In this work we explore such a possibility, observing and mo-
tivating why common approaches typically fail in the extreme
scenarios of interest, and proposing an approach which poten-
tially enables training with reduced computational effort. The
experiments on either challenging architectures and datasets
suggest the algorithmic accessibility over such a computa-
tional gain, and in particular a trade-off between accuracy
achieved and training complexity deployed emerges.

Index Terms— The lottery ticket hypothesis, pruning,
computational complexity, deep learning

1. THE ELEPHANT IN THE ROOM

Artificial neural networks (ANNs) are nowadays one of the
most studied algorithms used to solve a huge variety of tasks.
Their success comes from their ability to learn from exam-
ples, not requiring any specific expertise and using very gen-
eral learning strategies. However, deep models share a com-
mon obstacle: the large number of parameters, which allows
their successful training [1, 2], determines high training costs
in terms of computation. For example, a ResNet-18 trained
on ILSVRC’12 with a standard learning policy [3], requires
operations in the orders of hundreds of PFLOPs for back-
propagation, or even efficient architectures like MobileNet-
v3 [4] on smaller datasets like CIFAR-10 with an efficient
learning policy [5], require order of hundreds of TFLOPs for
back-propagation! Despite an increasingly broad availability
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Vanilla training

Fig. 1: A subset of parameters, sufficient to reach good gener-
alization, is typically determined in an iterative fashion. Can
they be determined earlier, during a normal vanilla training?

of powerful hardware to deploy training, energetic end effi-
ciency issues still need to be addressed.
Some approaches have been proposed in order to reduce the
computational complexity for deep neural networks. The act
of removing parameters (or entire units) from a deep neural
network is named pruning. Despite the first works have been
proposed many decades ago [6], pruning became popular just
a few years ago, targeting the reduction of the model’s size at
deployment time and making inference more efficient [7, 8,
9, 10, 11].
A recent work, the lottery ticket hypothesis [12], suggests that
the fate of a parameter, namely whether it is useful for training
(winner at the lottery of initialization) or if it can be removed
from the architecture, is decided already at the initialization
step. Frankle and Carbin propose experiments showing that,
with an a-posteriori knowledge of the training over the full
model, it is possible to identify these parameters, and that it
is possible to successfully perform a full training just with
them, matching the performance of the full model. However,
in order to identify these winners, a costly iterative pruning
strategy is deployed, meaning that the complexity of finding
the lottery winners is larger than training the full model. Is it
possible to deploy a zero-shot strategy, where we identify the
lottery winners before, or during, the training of the model
itself, to get a real computational advantage?
In this work we ground the lottery ticket hypothesis, moti-
vating why the originally proposed strategy, despite showing
the existence of the lottery tickets, is computationally sub-
optimal. We leverage over experiments on CIFAR-10 and
ILSVRC’12, qualitatively and quantitatively, analyzing the
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Fig. 2: Example of distribution of the eigenvalues of the Hessian matrix calculated on the CIFAR-10 training set for ResNet-32
along different rewound epochs (k) retaining the 10% of the parameters (a), the 25% (b) the 50% (c) and all the parameters (d).
Here I = 1. The represented scenario is qualitatively matched for different initialization of the model.

loss landscape evolution and proposing a strategy which
opens the road to the design of optimization strategies which
can effectively save computational power at training time.
The lottery tickets are not evident in the first epochs, but
they rise when the model’s parameters have reached a spe-
cific subspace, and that iterative pruning strategies, which
are necessary for traditional lottery ticket approaches, are
not necessary to identify the lottery winners (Fig. 1). We
observe the feasibility of having a pruning strategy on-going
at training time, and that, in very high compression regimes,
the performance is mainly bound by the computational com-
plexity budget we are willing to deploy.

2. THE LOTTERY OF THE INITIALIZATION

The lottery ticket hypothesis. It is a known fact that deep
neural networks are typically over-parametrized and, after
training, a part of the parameters can be removed without
harming the performance, or even slightly improving the
performance in small pruning regimes [7, 13]. However,
an interesting question rises: is it possible to train a sub-
network, still achieving the same performance as training
the full model? In their famous paper, Frankle and Carbin
provide a method to identify, from a the set of initialized pa-
rameters, a subset W of the parameters which are sufficient,
when trained in isolation, to achieve the same performance of
the full model [12]. From a practical perspective, this means
that all the parameters not in W (hence in W) are pruned
from the model, or more concretely, their value is locked to
zero. Let us say that a trained model has N parameters: we
define a mask M ∈ {0; 1}N of the same dimensionality of
the original model’s parameters W ∈ RN and we say that a
parameter wi ∈ W ⇔ mi = 1|mi ∈ M.1 Alg. 1 reports
the algorithm to find the lottery winners, which involves an

1we index the parameters of the models along a unique vector for sim-
plicity.

Algorithm 1 Lottery winners in I iterations with R% remain-
ing parameters at every iteration (I-LOT-R).

1: procedure I-LOT-R(W 0 , R, I )
2: i← 0
3: M← 1 ▷ unit vector
4: while i < I do
5: W 0

LOT ←W 0 · M
6: W f

LOT ← TRAIN(W 0
LOT ,M) ▷ (1)

7: M←MAGNITUDE PRUNE(W f
LOT , R,M)

8: i← i+ 1
9: end while

10: returnM
11: end procedure

iterative magnitude pruning strategy (IMP, line 7): after every
training round (line 6) the lowest (100−R)% ∈ W having the
smallest magnitude will be removed fromW . The parameters
in W will then be rewound to their original values (line 5)
and a new training, just updatingW , will be performed:

wt+1
i =

{
wt

i − ut
i if wi ∈ W

0 if wi ∈ W,
(1)

where ui is some generic update term. In principle, the pa-
rameters in W are not in the model, and for instance they
should not be included in the computation anymore; however,
we still need to encode that are missing, producing an over-
head, as they are removed in an unstructured way [9].2

Limits. Despite achieving the purpose of showing that win-
ning tickets exist, there is a major, significant drawback of
the approach in Alg. 1: the complexity of the overall strat-
egy, namely the number of rewinds I to converge to the target
minimal subsetW , which depends on the amount of remain-
ing parameters R. Such a value can not be set to very high

2unless entire structures are not entirely removed from the model, but this
is not the general case.



Algorithm 2 Lottery winners with k epochs warm-up.

1: procedure I-LOT-R WITH WARM-UP(W 0, R, I , k)
2: e← 0
3: W e ←W 0

4: while e < k do
5: W e ← TRAIN ONE EPOCH(W e) ▷ Here all the

weights are trained, for one epoch only
6: e← e+ 1
7: end while
8: W k ←W e

9: M← I-LOT-R(W k , R, I )
10: returnM
11: end procedure

Algorithm 3 Rise of the lottery heroes with R% remaining
parameters (RISE-R).

1: procedure RISE-R(W k , R)
2: W f ← TRAIN(W k)
3: M←MAGNITUDE PRUNE(W f , R)
4: W f

RISE ← TRAIN(W k ,M) ▷ (2)
5: returnM
6: end procedure

values, as the approach fails. In order to improve this aspect,
more works have tried to address possible solutions. In partic-
ular, [14] shows that there is a region, at the very early stages
of learning, where the lottery tickets identified with iterative
pruning are not stable (if they are found, for different seeds
they are essentially different). The novelty here introduced is
an inspection over the epoch (or mini-batch iteration) where
to rewind: simply, we pass to Alg. 1 the parameters of a model
already trained for the first k epochs (Alg. 2). This is en-
dorsed also by other works, like [15, 16, 17, 18], while other
works reduce the overall complexity of the iterative training
by drawing early-bird tickets [19] (meaning that they learn
the lottery tickets when the model have not yet reached full
convergence) or even reducing the training data [20].
Preliminary experiment and analysis. The golden mine in
this context would be to address a strategy for zero-shot lot-
tery drafting, meaning that the lottery tickets are identified
before the training itself. In order to assess its feasibility, let
us define a companion model (ResNet-32) trained on CIFAR-
10 for 180 epochs, using SGD optimization with initial learn-
ing rate 0.1 and decayed by a factor 0.1 at milestones 80 and
120, with momentum 0.9, batch size 100 and weight decay
5 · 10−5, as in [21]. Fig. 2 reports the distribution of the
eigenvalues of the Hessian computed for the first 19 epochs
on W k

LOT = W k · M (Alg. 2) with I = 1, evaluated on the
full training set. We are interested in this specific one-shot
scenario as we explore the possibility of removing trained pa-
rameters during training towards computational complexity
saving, and in the one-shot scenario we remove them from

Lottery ticket

Rise of the lottery heroes

 

 

Fig. 3: LOT projects the parameters in the subspace W: for
low R the learning trajectory ΓLOT is very steep making the
optimization problem hard, compared to the trajectory Γ of
the full model. RISE, on the contrary, does not project the pa-
rameters, but constrains the optimization problem to the pa-
rameters identified byM.

the original, vanilla training trajectory. For this experiment,
the pyhessian library has been used [22], along with a
NVIDIA A40 GPU. We observe that, compared to the refer-
ence (namely, the distribution of the eigenvalues evaluated on
the full model - Fig. 2d) when R is low (R = 10% - Fig. 2a -
or R = 25% - Fig. 2b), the distribution changes significantly.
In particular, a peak to values close to zero is observed: lo-
cally, the loss landscape is flat. Contrarily, for a higher R
regime (Fig. 2c) the distribution is richer and similar to the
reference (Fig. 2d). When the loss landscape becomes flatter,
the optimization problem itself is harder. We observe indeed
that, with respect to a baseline performance of 92.92% on the
test set, with R = 10%, despite rewinding up to k = 20,
the achieved performance is never above 60%. Why does this
happen? In the next section we tackle this problem motivat-
ing why it is hard to evaluate the winning tickets when I = 1
(or simply, in a one-shot fashion).

3. WINNING TICKETS IN HINDSIGHT: THE RISE
OF THE LOTTERY HEROES

The rise of the lottery heroes. Fig. 3 portraits the learn-
ing optimization constraint when pruning at initialization.
When sampling the tickets and then rewinding, the model
itself does not preserve the same initialization W k, but it will
be re-initialized a projection W k

LOT , and its optimization is
enforced in the subspaceW (light blue). Despite such an ap-
proach does not introduce big problems in high R regimes,3

3because the introduced perturbation ∆Wk in the initialization is small
or, when I grows, such perturbation is beneficially polarized towards remov-
ing parameters valuing approximately zero at the end of the training.
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ResNet-18 trained on ILSVRC’12

Fig. 4: Training results for ResNet-32 trained on CIFAR-10
(top), MobileNet-v3 small on CIFAR-10 (center) and ResNet-
18 on ILSVRC’12 (bottom).

in low R regimes the optimization problem is harder: the loss
landscape becomes locally flat (Fig. 2) and the optimization
problem can not be easily solved. However, we can “lock”
the non-winning parameters and let the potential winners to
rise and to evolve towards their final value, constraining the
optimization problem for the values determined by M and
freezing the others (light orange). Towards this end, we can
modify the update rule in (1) to

wt+1
i =

{
wt

i − ut
i if wi ∈ W

wk
i if wi ∈ W.

(2)

Using this approach, we will no longer incur in the same
obstacles as in Sec. 2, as we will optimize starting from the
exact same loss landscape (Alg. 3).
Experiments. In order to validate our approach, we run the
following experiments: i) ResNet-32 trained on CIFAR-10
with same setup as described in Sec. 2; ii)MobileNet-v3 small
in CIFAR-10 with training for 100 epochs with 5 epochs lin-
ear warm-up followed by cosine annealing (from learning
rate 0.35), optimized with SGD with momentum 0.9 weight
decay 6e-5 and batch size 128, learning rate tuning as in [5];
iii) ResNet-18 on ILSVRC’12 with training for 90 epochs
with initial learning rate 0.1 and decayed by a factor 0.1 at
milestones 30 and 60, optimized with SGD with momen-
tum 0.9 batch size 1024 and weight decay 5 · 10−5, same
setup as in [3]. All the results are reported in Fig. 4. On
the left the full results are displayed, on the right a zooming
on the mostly dense regions is proposed, in log-scale. The
continuous blue line is the reference training with the full
model. Back-propagation operations are evaluated on the
training complexity for one complete training. Every point
in every graph represents a complete full training: the final
performance achieved is reported. The multiple points with
same color/shape refer to different k value (refer to Alg. 2
- for RISE line 9 calls RISE-R): as k increases, the back-
propagation operations increase, as more training on the full
model is required.
Unsurprisingly, we observe low performance for 1-LOT with
low R, and despite different values of rewind, for low R val-
ues the performance is heavily sub-optimal (like for R = 25%
in ResNet-32/CIFAR-10). On the contrary, even with ex-
tremely low R regimes, we observe a progressive increment
in the performance as k increases. Notably, in the accuracy-
backpropagation complexity plane, a Pareto-like curve is
drawn by RISE: what emerges is that not the rewound epoch
k, nor R are really the metrics to determine the final perfor-
mance of the model, but the training complexity deployed
itself. Indeed, for low training complexity RISE achieves
similar performance regardless of R or k, under similar back-
propagation complexity.

4. FORECASTING THE RISE OF THE LOTTERY
HEROES?

In this work we have observed that traditional lottery ticket
approaches are likely to fail in extreme scenarios when just a
small subset of parameters is trained. However, locking the
“non-winning” parameters and allowing the winners to evolve
in the original loss landscape is a winning strategy. With such
an approach it is possible to target a desired training perfor-
mance training just a minimal portion of the entire model.
In particular, the governing metrics in extreme regimes is
the deployed training complexity. The results presented in
this work, validated on standard architectures (ResNet), on
already compact architectures trained with complex policies



(MobileNet-v3) and on state-of-the-art datasets (ILSVRC’12)
open the research towards the possibility of effectively de-
ploying heavy computational saving at training time, as just
a few directions are needed to train the model: the directions
where the lottery heroes rise. Next work includes the iden-
tification of these directions at training time, as this work
showed these exist and are algorithmically accessible.
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