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Abstract 20 

It is generally assumed that functional richness, diversity and evenness are complementary and, 21 

taken together, describe different facets of the distribution of species and their abundances in 22 

functional space. However, although these three primary components of community structure are 23 

commonly accepted by most community ecologists, measures of functional evenness usually fail to 24 

properly capture the regularity of species abundances in functional space. In this paper we will use 25 

an underexplored decomposition of Rao’s index of functional diversity to introduce the notion of 26 

functional imbalance, an indicator of the strength of interaction between species abundances and 27 

their functional dissimilarities. Functional diversity always increases with increasing functional 28 

imbalance. Therefore, functional imbalance seems a more appropriate indicator of this facet of 29 

community structure than functional evenness. A worked example aimed at evaluating the influence 30 

of grazing on plant community structure showed that all proposed measures of functional imbalance 31 

were able to highlight the main functional changes of a dry calcareous grassland in Tuscany (Italy) 32 

following grazing exclusion. 33 

 34 

Keywords: Community structure; Diversity decomposition; Functional regularity; Functional space; 35 

Rao’s quadratic diversity. 36 

 37 
1. Introduction 38 

Ecologists have developed a multitude of diversity measures to explore the relationships between 39 

community structure and ecosystem functions, such as productivity, carbon storage and cycling, or 40 

responses to global changes (Pielou, 1966; Hill, 1973; Peet, 1974; Patil & Taillie, 1982). Although 41 

diversity appears as a simple and unambiguous notion, when we look for a suitable numerical 42 

definition, we find that no single index adequately summarizes all facets of such a wide-ranging 43 

aspect of community structure. Therefore, according to Sarkar & Margules (2002), its measurement 44 

remains ‘capricious’. Many traditional diversity measures, among which the most popular are the 45 
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Shannon (1948) entropy and the Simpson (1949) index, are basically measures of uncertainty in 46 

predicting the relative abundance of species in a given assemblage. As such, most of them combine 47 

in non-standard way the two components of species richness (the number of species in the 48 

assemblage) and their relative abundance distribution (called variously evenness or equitability). 49 

High species richness and evenness, which occurs when species tend to be equal or nearly equal in 50 

abundance, are both associated to high diversity (Patil & Taillie, 1982). Taken together, these three 51 

components of community structure: species richness, evenness and diversity describe different 52 

facets of the distribution of species and their abundances (Mouchet et al., 2010). 53 

This classical approach to the quantification of community structure requires a number of 54 

assumptions on the data to be analyzed, the foremost of which is that all species are considered 55 

equally distinct. Therefore, standard measures of richness, evenness and diversity have to be 56 

assessed only based on the number of species and their abundance distribution (Peet, 1974; 57 

Mouchet et al., 2010). However, it is well known that the species ecological strategies are related to 58 

their functional traits (Díaz & Cabido, 2001). Therefore, the dominant functional traits in plant or 59 

animal assemblages usually provide a better ecological characterization of the local environmental 60 

conditions and ecosystem functioning than the mere occurrence of species. As a result, in the last 61 

decades a number of functional diversity measures which incorporate information on functional 62 

differences among species have been proposed (Rao, 1982; Walker et al., 1999; Petchey & Gaston, 63 

2002; Mason et al., 2003; Mouillot et al., 2005; Schmera et al., 2009; Laliberté & Legendre, 2010; 64 

Guiasu & Guiasu, 2012; Chao et al., 2014). Such measures are expected to correlate more strongly 65 

with ecosystem processes, as species directly or indirectly influence these processes via their traits 66 

(Mason & de Bello, 2013). 67 

Like for classical abundance-based measures, Mason et al. (2005) proposed to classify the 68 

functional aspects of community structure into three primary components: functional richness, 69 

functional divergence and functional evenness. For single traits, Mason et al. (2005) defined these 70 

components as “the amount of niche space filled by species in the community” (functional 71 

richness), “the evenness of abundance distribution in filled niche space” (functional evenness), and 72 

“the degree to which abundance distribution in niche space maximizes divergence in functional 73 

characters within the community” (functional divergence). When multiple traits are considered, 74 

Villéger et al. (2008) reformulated these concepts as follows: functional richness summarizes the 75 

volume of the functional space filled by the community, functional evenness or regularity 76 

summarizes how regularly species abundances are distributed in functional space, while functional 77 

divergence “relates to how abundance is distributed within the volume of functional trait space 78 

occupied by species”. 79 
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Tucker et al. (2017) proposed a more specific definition of divergence as the average 80 

(abundance-weighted or not) dissimilarity between species. This allowed them to conceptualize the 81 

three components richness, evenness and divergence as different aspects of community structure 82 

which refer to three complementary questions: How much? How regular? How different? (Tucker 83 

et al., 2017). Although Tucker et al. (2017) developed their framework in a phylogenetic context, 84 

the same approach can apply to functional data. 85 

Unfortunately, in spite of the elegance of this approach, in this paper we will first show that 86 

measures of functional evenness usually fail to properly capture the regularity of species 87 

abundances in functional space. Next, we will use a decomposition of Rao’s index of functional 88 

diversity proposed by Shimatani (2001) to introduce the notion of functional imbalance, an 89 

indicator of the strength of interaction between species abundances and their functional 90 

dissimilarities. A worked example on functional changes in plant community structure following 91 

grazing exclusion of a dry calcareous grassland in Tuscany (Italy) is then used to show the behavior 92 

of three newly proposed imbalance measures in practice. Note that in this paper, the term functional 93 

diversity is used as a synonym of functional divergence sensu Tucker et al. (2017). By contrast, we 94 

will use the term community structure to refer indifferently to any aspect of the species dispersion 95 

in (functional) space (see Gregorius & Kosman, 2017). 96 

 97 

2. Methods 98 

2.1. A short overview of functional evenness 99 

The degree to which abundances are evenly divided among species is considered a fundamental 100 

property of any biological community. Given an assemblage composed of N species with relative 101 

abundances ( 1, 2,..., )ip i N  where 0 1 ip  and 
1

1



N

ii
p , evenness measures quantify the 102 

equality of the relative abundances of the N species. 103 

In ecology, an endless number of evenness measures with a variety of different properties has 104 

been proposed (Taillie, 1979; Smith & Wilson, 1996; Ricotta, 2003; Jost, 2010; Tuomisto, 2012; 105 

Kvålseth, 2015; Chao & Ricotta, 2019) reflecting a certain degree of disagreement on the concept 106 

of evenness itself and its basic properties (Chao & Ricotta, 2019). The main requirement on which 107 

all authors agree is probably that maximum evenness should correspond to an equiprobable species 108 

distribution, and the more the relative abundances of species differ the lower the evenness is. 109 

Accordingly, most evenness measures are basically normalizations of diversity measures in the 110 

range [0, 1] relative to the maximum and minimum possible for a fixed number of species (Jost, 111 

2010). 112 

Pielou’s (1966) evenness J, which is by far the most widely used measure of evenness in the 113 

ecological literature is shown to be such a measure: 114 
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 117 

where  
1

log 1



N

i ii
H p p  is the well-known Shannon diversity and log N is the maximum value 118 

of H for a given number of species. Accordingly, Pielou’s evenness tells us the amount of the 119 

Shannon diversity relative to the maximum possible for a given richness, which is obtained if all N 120 

species have equal abundance (i.e. if 1 i jp p N  for all i j ). 121 

Given a square matrix of functional dissimilarities between species ( , 1,2,..., )ijd i j N  such that 122 

0iid  and ij jid d , Villéger et al. (2008) proposed to calculate functional evenness (FEve) based 123 

on the minimum spanning tree (MST) which links the N species in multidimensional functional 124 

space such that the total length of its 1N  branches is minimized. Next, for each branch of the 125 

minimum spanning tree, its length 
ijd  is divided by the sum of the abundances of the two species i 126 

and j linked by that branch:  ij i jd p p . Functional evenness is then computed as the regularity 127 

with which the quantities  ij i jd p p  transformed to a finite probability space are distributed 128 

along the tree. For details, see Villéger et al. (2008). 129 

Although Villéger et al. (2008) stated that “FEve decreases either when abundance is less evenly 130 

distributed among species or when functional distances among species are less regular”, Legras & 131 

Gaertner (2018) and Kosman et al. (2021) observed that this is not the case. By definition, FEve is 132 

high when the summed abundance of two neighbor species in the MST is proportional to the 133 

functional distance between them (length of MST edge): high functional evenness occurs when long 134 

edges in the MST are supported by abundant species and short branches by rare species. We can 135 

thus claim that FEve does not summarize the regularity of the distribution of functional trait values 136 

among species but the consistency between the (ir)regularity of the distribution of functional trait 137 

values with that of the abundance value (see Legras & Gaertner, 2018). 138 

Alternative measures of functional evenness based on different combinations of species 139 

abundances and interspecies dissimilarities can be found in Mouillot et al. (2005), Ricotta et al. 140 

(2014), Tucker et al. (2017), or Kosman et al. (2021). However, there are at least two good reasons 141 

for considering functional evenness not fully appropriate for describing the regularity of species 142 

abundances in functional space: 143 

 144 
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1. Irrespective of how functional evenness is calculated, increasing the regularity of species 145 

abundances and/or dissimilarities does not automatically increase functional diversity (Ricotta et al., 146 

2021). Therefore, the traditional assumption that diversity is maximized for a perfectly regular 147 

distribution of species abundances and dissimilarities (or for a combination of both of them) does 148 

not necessarily hold for functional diversity measures (Pavoine & Bonsall, 2009). 149 

 150 

2. Like for classical evenness, the concept of functional evenness has been defined in many 151 

different and sometimes conflicting ways. Therefore, in the ecological literature, there is a general 152 

inconsistency and lack of justification as to whether functional evenness should be high if either 153 

species abundances or functional dissimilarities are even (as originally proposed by Mason et al., 154 

2005), if abundances and functional dissimilarities are positively linked so that the values of 155 

 ij i jd p p  are even (as in Villéger et al., 2008), or, on the contrary, if abundances and functional 156 

dissimilarities are negatively linked, as in Ricotta et al. (2014) and Kosman et al. (2021). 157 

 158 

Accordingly, the notion of functional evenness fails to appropriately capture the homogeneity of 159 

species abundances and the regularity of interspecies distances (Legras & Gaertner, 2018). In the 160 

following paragraphs, in the wake of Shimatani (2001) and Pavoine et al. (2013), we will show that 161 

functional imbalance may represent a more appropriate indicator of the (ir)regularity in the 162 

distribution of species abundance in functional trait space. 163 

 164 

2.2. Introducing functional imbalance 165 

Rao (1982) first proposed a diversity index which incorporates a measure of the pairwise 166 

(functional) differences between species. This index, which is usually called quadratic diversity Q, 167 

is defined as the expected dissimilarity between two individuals drawn at random with replacement 168 

from the assemblage: 169 

 170 

, 1


N

i j ij

i j

Q p p d                           (2) 171 

 172 

As such, it is a suitable index of functional divergence sensu Tucker et al. (2017). For simplicity, 173 

in this paper we assume that the interspecies dissimilarities ijd  in Eq. (2) are bounded in the range 174 

[0, 1]. The properties of quadratic diversity have been studied extensively by many previous authors 175 

(Shimatani, 2001; Champely & Chessel, 2002; Rao, 2010; Pavoine, 2012). A relevant point here is 176 

that if all species in the assemblage are treated as maximally dissimilar from each other (i.e. 1ijd  177 
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for any i j ), quadratic diversity reduces to the classical (abundance-only) Simpson diversity 178 

2

1
1 2

 
    

N N

i i ji i j
S p p p . 179 

Shimatani (2001) further showed that Rao’s quadratic diversity can be decomposed as 180 

 181 

  ijQ S d B                           (3) 182 

 183 

where S is the Simpson diversity, ijd  is the mean dissimilarity between all species in the 184 

assemblage 
1

( 1) 2 





N

ij iji j
d d

N N
, and B is a covariance-like (im)balance factor between the 185 

abundances of species pairs i jp p  and their functional dissimilarities 
ijd : 186 

 2
( 1)

 
    

 


N

ij ij i ji j

S
B d d p p

N N
. 187 

B is positive if the functional dissimilarities are positively correlated to species abundances such 188 

that the highest values of 
ijd  mainly correspond to the highest values of i jp p . In the opposite 189 

case, B is negative if the values of 
ijd  are negatively correlated to the values of i jp p . 190 

Rao’s index thus depends on species diversity, on interspecies functional dissimilarities and on 191 

the interaction between species abundances and dissimilarities (B) such that for fixed values of S 192 

and ijd  quadratic diversity increases if dominant species are functionally distant and less abundant 193 

species are close to each other (Shimatani, 2001; Pavoine et al., 2013). Hence, unlike for classical 194 

measures for which diversity increases with increasing evenness, functional diversity increases with 195 

increasing ‘functional imbalance’. In other words, functional diversity is high if the distribution of 196 

species abundances positively correlates with that of functional distances. By contrast, functional 197 

diversity is low if the distribution of species abundances negatively correlates with that of 198 

functional distances. 199 

Note however that in Eq. (3) Shimatani’s covariance-like imbalance factor B represents the 200 

excess of diversity between Rao’s Q and the product of the Simpson diversity and mean species 201 

dissimilarity  ijS d . As such, the values of B are not free to vary independently, but are constrained 202 

by the values of  ijS d . Due to this dependence, it is not possible to compare the imbalance of 203 

communities with different values of  ijS d  (see Jost, 2007; Chao et al., 2012). Therefore, some 204 

kind of standardization should be performed to get a relative measure of imbalance that is 205 

independent of the other components of Rao’s diversity. In the next paragraphs we will thus present 206 

three standardized measures of functional imbalance that allow us to measure the sign and strength 207 
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of the interaction between species abundances and their functional dissimilarities in a more 208 

appropriate way. 209 

A first application of the Shimatani decomposition was used by Sol et al. (2020) to explore the 210 

impact of urbanization on avian functional diversity. To facilitate the interpretation of the imbalance 211 

factor, Sol et al. (2020) transformed B to a correlation coefficient: 212 

 213 

 

   

cov ,

var var


ij i j

B

ij i j

d p p
Cor

d p p
                      (4) 214 

 215 

where  var ijd  is the variance of the species functional dissimilarities 
ijd  for all i j ,  var i jp p  216 

is the variance of the product of the relative abundance of species i and j: i jp p  for all i j , and 217 

 cov ,ij i jd p p  is the covariance between 
ijd  and i jp p . For additional details on the calculation of 218 

BCor , see Appendix 1 (Supporting information). 219 

Two additional measures of functional imbalance are based on two distinct transformations of 220 

Rao’s quadratic diversity. In the first case, functional imbalance can be summarized as standardized 221 

effect size (SES; Collyer et al., 2022): 222 

 223 

( ) ( )

( )


B

Obs Q Mean Q
SES

SD Q
                      (5) 224 

 225 

where Obs(Q) is the observed value of Rao’s quadratic diversity for a given assemblage, Mean(Q) 226 

is the mean of the null distribution of Q in random assemblages obtained by permuting the relative 227 

abundances ip  among the N species (thus varying only the balance factor B and keeping S and ijd  228 

unchanged), and SD(Q) is the standard deviation of the null distribution. BSES  thus represents a 229 

measure of functional imbalance or irregularity in the distribution of species abundances in 230 

functional space which is expressed as the departure of the observed functional diversity from the 231 

mean of the null distribution in standard deviation units (Gotelli & McCabe, 2002). 232 

Finally, to measure functional imbalance, we can also use a normalized version of Q obtained as: 233 

 234 

( ) ( )

( ) ( )





B

Obs Q Min Q
Q

Max Q Min Q
                       (6) 235 

 236 
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where, like for BSES , Min(Q) and Max(Q) are the minimum and maximum values that quadratic 237 

diversity can assume by permuting the relative abundances ip  among the N species, and leaving 238 

everything else unchanged (i.e. S and ijd  do not vary with permutation). This latter measure of 239 

functional imbalance is obtained by normalizing a measure of diversity in the unit range, thus 240 

providing some sort of formal and conceptual continuity between classical (un)evenness and 241 

functional imbalance. 242 

 243 

3. Worked example 244 

3.1. Data and methods 245 

We conducted our study in a seminatural grassland located close to the summit of Monte Labbro, 246 

Tuscany (Italy), a predominantly calcareous massif of 1193m on the Uccellina-Monte Amiata ridge. 247 

The area has been grazed for centuries, mostly by sheep, with human traces dating back to the 248 

Bronze Age. From the 1960s onwards, the grazing pressure decreased, triggering the secondary 249 

succession of semi-natural grasslands into increasingly dense scrublands with Prunus spinosa, 250 

Rubus ulmifolius and Cytisus scoparius (Maccherini et al., 2007). From late summer 2000 to early 251 

spring 2001, the area was subjected to a restoration project, which involved the cutting of shrubs on 252 

overgrown grasslands (see Maccherini et al., 2018). In 2001, we planned a before-after-control-253 

impact (BACI) study to evaluate the influence of grazing and sowing of native species on grassland 254 

restoration. We located the experimental plots in a cleared overgrown pasture (before cutting, 255 

Prunus spinosa covered 80%), grazed by donkeys, which were reintroduced into the area few years 256 

before restoration management; the site is occasionally grazed by sheep, hares and cattle. 257 

We established a randomized block design with four blocks and four 3×5m experimental plots in 258 

each block stratified on elevation. Individual plots in each block were randomly assigned to one of 259 

four treatments: no grazing or sowing; sowing without grazing; grazing without sowing; sowing and 260 

grazing. Ungrazed plots have been fenced off to protect them from livestock in spring 2002; sowing 261 

was carried out in October 2001. In previous studies, a very small effect of sowing compared to 262 

grazing was observed for this experiment (Maccherini & Santi, 2012; Maccherini et al., 2018). 263 

Given the reduced significance of sowing, in this paper, only the grazing factor was considered. 264 

During the project, one ungrazed plots was excluded from analysis. 265 

In late June 2019, the cover of all vascular plant species within each 1×2 m subplot at the center 266 

of the experimental plots was estimated using a point quadrant method with a density of 100 267 

pins/m
2
 (Moore & Chapman, 1986). All species touched by each pin were recorded so that the total 268 

species cover within each 1×2 m subplot can exceed 200 pins. Species present in a plot but not 269 

touched by any pin were recorded with an arbitrary cover of 0.5 pins. All species abundance data 270 

are available in Appendix 2. 271 



9 

 

A set of functional traits was measured for the most abundant species in both treatments (8 272 

grazed plots and 7 ungrazed plots). Collectively, these species account for ~70% of the total cover 273 

in each treatment. According to Grime’s (1998) mass-ratio hypothesis, these species are expected to 274 

make a substantial contribution to community structure and functioning. 275 

The following six leaf functional traits were measured (mean of three replicates for each species 276 

in each treatment): specific leaf area (SLA, mm
2
/mg), leaf dry matter content (LDMC, mg/g), 277 

nitrogen and carbon content (N% and C%) and nitrogen and carbon stable isotope composition 278 

(δ
15

N and δ
13

C, ‰). Stable isotope composition is calculated as the ratio of the rarest to commonest 279 

(heavy to light) isotope of carbon and nitrogen relative to an international accepted reference 280 

standard. For additional details, see Dawson et al. (2002). 281 

The selected traits are usually associated with the leaf economics spectrum (Wright et al., 2004), 282 

reflecting a possible trade-off between fast-growing acquisitive species versus slow-growing, more 283 

conservative species. Specifically, SLA and LDMC are considered soft morpho-anatomical traits 284 

correlated with relative growth rate, photosynthetic rate, and nutrient concentration. Higher SLA 285 

values are correlated with lower leaf span and higher photosynthetic rate. LDMC is related to the 286 

density of leaves; it has been demonstrated to scale negatively with the potential growth rate and 287 

positively with leaf lifespan (Cornelissen et al., 2003). N% and C% are considered as a proxy of 288 

photosynthetic rate, while δ
13

C reflects the photosynthetic water use efficiency (i.e., the amount of 289 

water used by plants per unit of plant material produced), with lower values reflecting a greater 290 

stomatal aperture. Finally, in sites that receive a high input of nitrogen from animals, δ
15

N can be 291 

used to trace the organic N enrichment within the plant community (Dawson et al., 2002). 292 

All traits were normalized to the unit range by their minimum and maximum values. To visualize 293 

plot-level differences in community functioning between the two treatments, we calculated the 294 

community-weighted mean values (CWM) of each trait at each plot: 
1 

 
N

i ii
CWM p T , where 295 

iT is the normalized value of trait T for species i in treatment τ. We next applied a principal 296 

component analysis (PCA) on the CWM values of all grazed and ungrazed plots. From the 297 

normalized trait values (available in Appendix 2), we calculated a matrix of functional Euclidean 298 

distances between all pairs of species within each treatment. These distances were then linearly 299 

rescaled by dividing each distance by the maximum value found in both matrices. We then used the 300 

scaled functional distances and the species relative abundances in each plot to calculate BCor , 301 

BSES  and BQ . All calculations were performed with a new R function available in an electronic 302 

appendix to this paper (see Supplementary data, Appendix 3). Starting from version 2.1.2, the R 303 

function will be also available in package adiv (Pavoine, 2020): https://cran.r-304 

project.org/web/packages/adiv/index.html. 305 
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The values of BQ  were estimated based on 10000 random permutations, which is a manageable 306 

subset of the total number of !N  possible permutations. Additional work is ongoing to find an 307 

analytical or algorithmic solution to the exact calculation of BQ . The calculation of BSES  was 308 

performed using the same number of permutations used for BQ . For each plot, we also calculated 309 

species richness, the Rao quadratic diversity and its basic components S and ijd  (see Eq. 3), 310 

together with a traditional (abundance-only) index of evenness explicitly developed for the Simpson 311 

diversity (see Smith & Wilson, 1996): 312 

 313 

2

1
1

1 1 1 1




 
 


N

ii
p S

E
N N

                       (7)   314 

 315 

Like Pielou’s evenness, this index tells us the amount of Simpson’s diversity relative to the 316 

maximum possible for a given species richness. 317 

For all measures, the significance of differences between both treatments (grazed and ungrazed) 318 

was tested with ANOVA. P-values were obtained by 10000 random permutations of individual 319 

plots within the treatments. 320 

 321 

3.2. Results 322 

As expected, grazing has had a profound impact on community structure and functioning. 323 

Grazing disturbance acts as a filter, selecting for a higher number of ruderal species with more 324 

acquisitive, fast-growing strategies. In contrast, ungrazed plots host less rich and diverse 325 

communities, mainly composed of species with more conservative and slow-growing strategies. 326 

As shown by the PCA biplot in Figure 1, species in grazed plots exhibit on average higher values 327 

of SLA and lower LDMC, suggesting that these communities host species positioned on the 328 

acquisitive side of the leaf economics spectrum, minimizing leaf construction and maintenance 329 

costs while maximizing the capacity to acquire resources and proliferate rapidly (Díaz et al., 2016). 330 

In this study, acquisitive species are mainly perennial and annual forbs (e.g. Teucrium 331 

chamaedrys, Orlaya grandiflora and Xeranthemum cylindraceum) and N-fixer species, such as 332 

Trifolium incarnatum, which survives predominantly under grazing conditions. These species have 333 

a competitive advantage in grazed areas because of their capacity to acquire nutrients more rapidly 334 

and regrow after disturbance, generally displaying a higher resilience after stressful events 335 

(Herrero‐Jáuregui & Oesterheld, 2018; Busch et al., 2019; Ladouceur et al., 2019). 336 

Species in ungrazed plots show a shift toward more conservative growth strategies. Such species 337 

invest more resources in developing durable leaves (higher LDMC) being at the same time more 338 
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resistant to drought stress at the cost of reduced photosynthetic rate (lower %N) and carbon fixation 339 

(higher δ
13

C values). Due to the high input of nitrogen from animals, grazed plots also exhibited 340 

higher values of δ
15

N than ungrazed plots. 341 

In terms of diversity, ungrazed plots show a tendency towards a progressive decrease of all its 342 

components, such as species richness, Simpson’s diversity and evenness, mean functional 343 

dissimilarity, Rao’s quadratic diversity and all measures of functional imbalance BCor , BSES  and 344 

BQ  (Table 1). Hence, although the values of BCor  are always negative denoting an overall negative 345 

correlation in both treatments between species abundances and their functional dissimilarities, in 346 

ungrazed plots dominant species are on average more functionally similar to each other compared to 347 

grazed plots. Likewise, the negative values of the BSES  index imply that the observed values of 348 

Rao’s Q are generally lower than the null expectation in random assemblages, thus showing again 349 

that in both treatments dominant species tend to be more functionally similar to each other 350 

compared to less abundant ones. 351 

The higher functional homogenization of ungrazed plots is due to the increasing dominance of 352 

Bromus erectus and the encroachment of functionally similar shrubs along the secondary 353 

succession. In contrast, in grazed plots, selective grazing and the patchy concentration of nutrients 354 

due to animal manure give rise to contrasting microsites which host an increased number of 355 

functionally diverse grazing-adapted species with different life histories (Pierce et al., 2007; 356 

Maccherini & Santi, 2012). Such higher spatial and temporal turnover in species composition 357 

reduces species dominance increasing at the same time functional imbalance. 358 

 359 

4. Discussion 360 

It is generally agreed that the (ir)regularity of the distribution of species abundances in functional 361 

space is a relevant component of the relationship between community composition and functioning 362 

(Mouillot et al., 2005; Mouchet et al., 2010). In this paper, we showed that functional imbalance is a 363 

more appropriate indicator of this facet of community structure than previous measures of 364 

functional evenness. We thus proposed three new measures which allow us to compare the strength 365 

of interaction between species abundances and their functional dissimilarities among communities 366 

with different species richness, abundance and dissimilarity distribution. Unlike most previous 367 

measures of functional evenness, for BCor , BSES  and BQ  functional diversity always increases with 368 

functional imbalance. That is, with the positive link between dissimilarity and abundance. 369 

As shown by our results, all proposed measures of functional imbalance were able to highlight 370 

the main changes in community structure following grazing exclusion of a dry calcareous grassland 371 

in Tuscany. Hence, looking simultaneously at various facets of functional diversity, it is possible to 372 
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recognize not only whether two communities are functionally different, but also why they are 373 

different. That is, which components take on higher/lower values in community A than in 374 

community B. This allows us to investigate in deeper detail the functional processes that shape 375 

community structure. 376 

Functional diversity increases when species abundance and dissimilarity are positively linked. 377 

This is because if functional differences among dominant species are high, the abundance-weighted 378 

variability in functional trait values is also high (e.g. Kondratyeva et al., 2019). On the other hand, 379 

the high amount of functional redundancy in a community where abundant species are more similar 380 

to each other reduces functional diversity. We have thus proposed an approach based on a 381 

covariance-like measure of functional imbalance which allows to distinguish positive links between 382 

species abundance and functional dissimilarity (where functional diversity is high) from negative 383 

links (where functional diversity is low). While it is generally assumed that functional differences 384 

among dominant species can have beneficial effects on ecosystem properties (Grime, 1998), 385 

negative links between abundance and functional dissimilarity usually reflect evenness in the 386 

species contribution to certain ecological functions within ecosystem (Hillebrant et al., 2008, 387 

Ricotta et al., 2014). Indeed a rare species might contribute disproportionately of its abundance to 388 

functional diversity and ecosystem processes if it has distinct functional traits (Dee et al., 2019). 389 

Both scenarios are thus worth studying and our framework allows to distinguish between them. 390 

Compared to BCor , which is expressed as a standard correlation coefficient in the range [-1, 1] 391 

between the product of species abundances i jp p  and their functional dissimilarities 
ijd , BSES  392 

and BQ  are normalized locally: that is, by keeping species abundances and interspecies 393 

dissimilarities unchanged and modifying only the interaction between them. Alternative ways for 394 

normalizing Rao with different biological meanings were studied e.g. by Pavoine & Bonsall (2009) 395 

or Ricotta et al. (2016), and the interested reader is addressed to these papers for additional details. 396 

This permutation procedure allows BSES  and BQ  to be independent of the other components of 397 

Rao’s diversity S and ijd . Here, independence or unrelatedness sensu Chao et al. (2012) means that 398 

knowing the values of S and ijd  would put no mathematical constraints on the range of values that 399 

the imbalance factor can take. In particular, Chao & Chiu (2016) proposed an intuitive condition to 400 

assure the unrelatedness of two measures: the range of values that a measure of functional 401 

imbalance can take should be a fixed interval (usually in the range 0–1) regardless of the values of S 402 

and ijd . While BSES  quantifies functional imbalance in standard deviation units, the index BQ  403 

conforms to this requirement. This ensures that the same magnitude of functional imbalance 404 

quantifies the same degree of irregularity of species abundance distribution in functional space, 405 



13 

 

even if the assemblages differ in their diversity or dissimilarity structure (see Chao & Ricotta, 406 

2019). Note that our proposal of calculating functional imbalance by normalizing an index of 407 

functional diversity is not confined to the Rao quadratic diversity. Rather, the same approach can be 408 

generalized to virtually any functional diversity index that is based on a combination of species 409 

abundances and their functional dissimilarities simply by permuting the relative abundances ip  410 

among the N species. The interpretation of the results will then depend case by case on the index 411 

formulation. 412 

An important limitation of BQ  is that to the best of our knowledge, the index calculation is 413 

computationally extremely intensive and, by using permutations, we will get rather crude estimates 414 

of Min(Q) and Max(Q). Nonetheless, even if suboptimal, the results of BQ  are coherent, both in sign 415 

and strength, with those obtained with BCor  and BSES . Therefore, it seems that the speed of current 416 

digital devices allows us to approximate the problem in a sufficiently short time to make this kind 417 

of measures operational for the analysis of community structure. 418 

In recent years there has been a renewed interest in a series of algorithmic measures of diversity 419 

and dissimilarity (e.g. Weitzman, 1992; Kosman, 1996) that could not be extensively used at the 420 

time of their proposal due to a lack of computing power. Thanks to their flexibility, these 421 

algorithmic measures could give new impulse to biodiversity theory from new perspectives and 422 

with new assumptions. Another field where advanced computational methods will possibly give 423 

new impulse to diversity analysis is the choice of an appropriate set of traits that maximize their 424 

association to the ecological process of interest (de Bello et al., 2021). As highlighted by Lavorel et 425 

al. (2008), the relevant traits for ecosystem functioning depend case by case on the analyzed 426 

process. In principle, increasing the dimensionality of functional spaces by the progressive use of a 427 

higher number of traits may lead to a stronger relationships between community structure and 428 

ecosystem functioning. However, such artificially enlarged functional spaces do not necessarily 429 

have a direct biological relationship to the ecological property of interest. Therefore, we need to 430 

select a suitable set of traits that are actually relevant for the property that we are attempting to 431 

estimate. We believe that advanced machine learning methods and artificial intelligence (Lucas, 432 

2020) will greatly contribute to the construction of such ‘tailored’ functional spaces (Ricotta et al., 433 

2021). 434 

To conclude, BCor , BSES  and BQ  constitute the vehicle for measuring functional imbalance. 435 

However, like for any other ecological problem, the way to go (i.e. how many and which traits to 436 

use, how to code them and the method for computing interspecies dissimilarities) should be 437 

assessed case by case based on the specific question at hand. We thus hope, this work will help to 438 
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build an increasingly conscious approach to the summarization of the many different facets of 439 

functional diversity and their relationship with ecosystem functioning. 440 
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Table 1 632 

Mean (SD) values of individual plots within each treatment (grazed and ungrazed) for species 633 

richness N, Simpson’s diversity S and evenness E, Rao’s quadratic diversity Q, mean functional 634 

dissimilarity ijd , and functional imbalance BCor , BSES  and BQ . Pairwise comparisons of index 635 

differences between the two treatments were performed with ANOVA. P-values were obtained by 636 

randomly permuting individual plots within the treatments (10000 permutations). Asterisks indicate 637 

significant values: * p < 0.05, ** p < 0.01. 638 

 639 

 640 

 641 

 642 

 643 

 
Grazed plots 

(8 plots) 
Ungrazed plots 

(7 plots) 

N* 17.25 (2.727) 12.857 (2.748) 

S** 0.849 (0.033) 0.651 (0.131) 

E** 0.902 (0.032) 0.707 (0.140) 

Q** 0.369 (0.019) 0.217 (0.053) 

dij** 0.444 (0.015)
 

0.415 (0.016)
 

CorB** -0.026 (0.066) -0.167 (0.093) 

SESB** -0.228 (0.547) -1.153 (0.434) 

QB** 0.465 (0.093) 0.221 (0.096) 

 644 
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Figure 1 645 

Biplot of the principal component analysis of 15 vegetation plots from a calcareous grassland in 646 

Tuscany (Italy) characterized by the community-weighted mean values (CWM) of six functional 647 

traits (SLA, LDMC, %C, %N, δ
13

C, δ
15

N). Convex hulls indicate groups of grazed and ungrazed 648 

plots. Numbers in brackets are the amount of variance associated with each principal component. 649 

Vectors represent the direction and the strength of the correlation between explanatory variables 650 

and the first two principal components. 651 
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