
HAL Id: hal-03766726
https://hal.science/hal-03766726v1

Submitted on 1 Sep 2022 (v1), last revised 24 Aug 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal error analysis of the spectral element method
for the 2D homogeneous wave equation

Ziad Aldirany, Régis Cottereau, Marc Laforest, Serge Prudhomme

To cite this version:
Ziad Aldirany, Régis Cottereau, Marc Laforest, Serge Prudhomme. Optimal error analysis of the
spectral element method for the 2D homogeneous wave equation. Computers & Mathematics with
Applications, 2022, 119, pp.241-256. �10.1016/j.camwa.2022.05.038�. �hal-03766726v1�

https://hal.science/hal-03766726v1
https://hal.archives-ouvertes.fr


Convergence of the spectral element method for the wave equation1

Ziad Aldirany1, Régis Cottereau2, Marc Laforest1, and Serge Prudhomme12
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1 Introduction12

In seismology the resolution of the acoustic wave equation, with high accuracy and in complex geometries,13

has always been of great interest in order to conduct accurate and efficient seismic modeling in earth-like14

domains. The spectral element method (SEM), first introduced in Patera [14], is widely considered as a one15

of the most competitive methods for the approximate resolution of the wave equation [15, 12, 11, 7]. This16

method is very similar to the h− p finite element method, the only difference lies in the choice of the bases17

and the quadrature rule for the resolution of the integrals. The Gauss-Lobatto-Legendre (GLL) quadrature18

has been broadly employed for the solution of the acoustic wave equation due to mass-lumping [8], i.e. the19

mass matrix approximation is diagonal, so the resolution time is greatly reduced.20

The error analysis of the GLL-SEM has been conducted in Zampieri and Pavarino [18] and Rong and21

Xu [17] in the L2 norm for the homogeneous acoustic wave equation, while Oliveira and Leite [13] extended22

these results to the heterogeneous case. Durufle, Grob and Joly [9] obtained the error bound in the H1 norm23

for non-affine elements. In [18, 17, 13] the authors treated the fully discretized problem, where the time24

discretization is based on Newmark’s schemes, while in [9] they restricted the study to the semi-discretized25

problem. The numerical experiments for the homogeneous fully discretized problem produced in [18, 17, 13]26

suggest that the L2 error bounds demonstrated in citation are not optimal.27

In this paper, a detailed error analysis is carried in the H1 norm for the fully discretized problem using the28

GLL-SEM which confirms mathematically the numerically observed orders of convergence. For simplicity,29

the study will focus solely on the homogeneous acoustic wave equation in 2D with homogeneous Dirichlet30

boundary condition. The time discretization is the leap-frog model, a second order accurate Newmark’s31

scheme. The bound of the H1 error will depend on the element size h, polynomial degree p, the time step32

∆t, and the smoothness of the data. The study is organized as in [13], from which we will use several33

preliminary results. Then our results will be verified by numerical experiments for smooth and non-smooth34

solutions.35
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The outline of the paper is as follow:36

2 Model problem and notations37

The purpose of this section is to review the strong and weak formulation of the linear wave equation. A38

more thorough treatment can be found in Cohen’s textbook [8].39

Let Ω be an open, convex, polygonal domain in R2, with a piecewise smooth boundary ∂Ω. The homo-40

geneous acoustic wave equation subjected to Dirichlet boundary conditions is: given f(x, t), u0(x), u1(x),41

g0(x, t) and T > 0 find u(x, t), such that42

∂2u

∂t2
(x, t)−∆u(x, t) = f(x, t), ∀(x, t) ∈ Ω× (0, T ), (1)

with the initial conditions43

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), ∀x ∈ Ω, (2)

and boundary conditions44

u(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0, T ). (3)

In order to define the variational problem, we consider the Hilbert space L2(Ω) equipped with the inner45

product and norm46

(u, v) =

∫
Ω

u(x) v(x) dx, ‖u‖0 = (u, u)1/2.

Given a non-negative integer s, we recall the Hilbert space47

Hs(Ω) =
{
u ∈ L2(Ω);

∂|α|u

∂xα
∈ L2(Ω), α ∈ N2, |α| ≤ s

}
,

equipped with the norm48

‖u‖s =

( ∑
|α|≤s

∥∥∥∥∂|α|u∂xα

∥∥∥∥2

0

)1/2

.

Let u|∂Ω be the trace of u on ∂Ω [1]. We define the closed subspace V of H1(Ω)49

V := H1
0 (Ω) =

{
u ∈ H1(Ω); u|∂Ω = 0

}
.

Poincaré’s inequality implies that the symmetric and continuous bilinear form50

a(u, v) = (∇u,∇v) (4)

defines a norm over V that is equivalent to ‖ · ‖1. We also introduce the space L2(0, T ;Hs(Ω)) that consists51

of all functions u : (0, T )→ Hs(Ω) with norm52

‖u‖L2(Hs) =

(∫ T

0

‖u(t)‖2s dt

)1/2

.

Let u(l) = ∂lu/∂tl. We also define the space Cm(0, T ;Hs(Ω)) of all functions u(x, t) such that the map53

u(l) : (0, T )→ Hs(Ω) is continuous for all 0 ≤ l ≤ m and54

‖u‖Cm(Hs) = max
0≤l≤m

(
sup

0≤t≤T
‖u(l)(t)‖s

)
<∞. (5)
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Under the assumptions f ∈ L2(0, T ;L2(Ω)), u0 ∈ V , and u1 ∈ L2(Ω), a variational formulation of55

Problem (1) can be stated as:56

Find u : (0, T )→ V , such that u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), ∀x ∈ Ω, and(

∂2u

∂t2
, v

)
+ a(u, v) = (f, v), ∀v ∈ V,

(6)

As demonstrated in [16], the fact that a(·, ·) is a symmetric, continuous, and coercive bilinear form implies57

that Problem (6) has a unique solution u ∈ C0(0, T ;V ) ∩ C1
(
0, T ;L2(Ω)

)
, satisfying the following stability58

estimate59 ∥∥∥∥∂u∂t (t)

∥∥∥∥2

0

+ a(u(t), u(t)) ≤ ‖u1‖20 + a(u0, u0) +

∫ t

0

‖f(τ)‖20 dτ, ∀t ∈ [0, T ].

3 The spectral element method60

In this section, we describe the discretization of the wave equation by the spectral element method (SEM).61

The spectral element method distinguishes itself from other finite element methods because the degrees of62

freedom are borne by the nodes of the Gauss-Lobatto-Legendre (GLL) quadrature and the spatial integrals63

in the variational formulation are evaluated using that GLL quadrature. This naturally leads to a diagonal64

mass matrix.65

Assume that for each h > 0, we have a regular, quasi-uniform triangulation Th of the closure Ω̄ such that66

the largest diameter of the subdomains K ∈ Th is bounded above by h; see [4] for details. Furthermore,67

assume that each subdomain K ∈ Th of a triangulation can be characterized by an affine bijective mapping68

FK : K̂ → K such that K = FK(K̂) where K̂ = [−1, 1]× [−1, 1] is referred to as the reference element. For69

each positive integer p, let Qp(K) be the space of polynomials of degree at most p in each variable over the70

subdomain K. If H denotes the couple (h, p), we then define the space of piecewise polynomial functions as71

VH =
{
φ ∈ C(Ω̄) : φ|K ∈ Qp(K), ∀K ∈ Th, φ = 0 on ∂Ω

}
. (7)

Integrals appearing in the weak form will be estimated using the tensor product of the 1D GLL quadrature.72

Over [−1, 1], the nodes of the GLL quadrature are the two end points ξ0 = −1 and ξp = 1 as well as the73

p − 1 roots of the derivatives of the Legendre polynomials [5], denoted by {ξi}i=1,...,p−1. The weights ωi74

associated with the nodes ξi can be selected to recover a quadrature that will be exact for all polynomials75

of degree less than 2p− 1. In 2D, the GLL quadrature of f over K̂ will be76

IGLL
K̂

f =

p∑
i,j=0

ωi ωjf(ξi, ξj).

Again, this quadrature is exact for all f ∈ Q2p−1(K̂). For a function f : Ω → R, the GLL quadrature can77

be extended by mapping the GLL nodes to each subdomain K ∈ Th as xKi,j = FK(ξi, ξj) and computing78

IGLL
H f =

∑
K∈Th

p∑
i,j=0

ωi ωjf
(
xKi,j

)
JK
(
xKi,j

)
,

where JK is the determinant of the Jacobian of FK . We note that the numbering of the vertices in the79

reference element and each element K is taken counterclockwise so that the determinant JK is always80

positive.81
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Critical to the definition of the spectral element method are the discrete inner product82

(φ, ψ)H = IGLL
H φψ (8)

and the discrete analogue of (4) defined as83

aH(φ, ψ) = (∇φ,∇ψ)H = IGLL
H ∇φ · ∇ψ (9)

We will see later in Lemma 4.1 that (·, ·)H is equivalent to the usual L2 inner product over VH, and hence,84

‖u‖H = (u, u)
1/2
H

is a well-defined norm over VH. We also note that if φ and ψ ∈ Qp(K), then ∇φ · ∇ψ ∈ Q2p(K) and85

aH(φ, ψ) is not equal to a(φ, ψ). As mentioned earlier, an important advantage of SEM is mass-lumping.86

This is achieved by defining the degrees of freedom on Qp(K̂) in terms of the GLL points, i.e.87

Σ̂ =
{
σ̂i,j : Qp(K̂)→ R, i, j = 0, . . . , p; σ̂i,j(v̂) = v̂(ξi, ξj), ∀v̂ ∈ Qp(K̂)

}
.

The spectral element discretization problem is then defined as:

Find uH(t) ∈ VH, for all t ∈ [0, T ], such that:(
∂2uH
∂t2

, vH

)
H

+ aH
(
uH, vH

)
=
(
f, vH

)
H, ∀vH ∈ VH, ∀t ∈ (0, T ) (10a)(

uH(0), vH
)
H =

(
u0, vH

)
H, ∀vH ∈ VH, (10b)(

∂uH
∂t

(0), vH

)
H

=
(
u1, vH

)
H, ∀vH ∈ VH. (10c)

We now discretize the above problem with respect to time. We partition the time domain [0, T ] into NT

uniform subintervals of size ∆T = T/NT and approximate the semi-discrete Problem (10) by the leap-frog

scheme. We thus obtain the fully discrete problem:

Find unH ∈ VH, for n = 0, . . . , NT , such that:(
δ2unH, vH

)
H + aH

(
unH, vH

)
=
(
f(tn), vH

)
H, ∀vH ∈ VH, n = 1, . . . , NT − 1 (11a)(

u0
H, vH

)
H =

(
u0, vH

)
H, ∀vH ∈ VH, (11b)(

z0
H, vH

)
H =

(
u1, vH

)
H, ∀vH ∈ VH, (11c)

2

∆t2
(
u1
H − u0

H −∆tz0
H, vH

)
H + aH

(
u0
H, vH

)
=
(
f(t0), vH

)
H, ∀vH ∈ VH, (11d)

where δ2 represents the central finite difference operator88

δ2unH =
un+1
H − 2unH + un−1

H
∆t2

.

Finally, the restrictions of the inner products (·, ·) and (·, ·)H to an element K are denoted by (·, ·)K and89

(·, ·)H,K , respectively, and similarly, the restricted norms will be written as ‖ · ‖K , ‖ · ‖s,K , and ‖ · ‖H,K . We90

also introduce the broken Sobolev space associated with a triangulation Th of Ω̄91

Hs(Ω, Th) =
{
v ∈ L2(Ω); v|K ∈ Hs(K), ∀K ∈ Th

}
,

where v|K is the restriction of v to K, equipped with the norm92

‖v‖s,Th =

( ∑
K∈Th

‖v‖2s,K

)1/2

.
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A complete discussion of broken Sobolev spaces can be found in [], but for our purposes it suffices to observe93

that Hs(Ω, Th) is a Hilbert space and that Hs(Ω) ⊂ Hs(Ω, Th). In the same vein, we will also be using the94

finite-dimensional broken space95

VH,Th =
{
φ ∈ L2(Ω) : φ|K ∈ Qp(K), ∀K ∈ Th, φ = 0 on ∂Ω

}
. (12)

I would suggest to simply define the counterpart of above when you introduce the broken Sobolev space96

below. Should I introduce the definitions above with respect to a Banach space X equipped with the norm97

‖ · ‖X , i.e. Cm(X) because later we take X as a broken Sobolev space.98

4 Interpolation and Projection Estimates99

We present in this section some preliminary results for the h-p finite element and spectral methods, including100

interpolation and projection error estimates, that will be necessary for the derivation of the a priori error101

estimates of Section 5. The results presented in this section are either identical or slight improvements102

to those found in [13, 17, 18]. When identical, the proofs can be found in the references given for each103

result. In the remainder of the paper, we will consider C and Cp as generic positive constants such that C is104

independent of h and p, while Cp is independent of h but may depend on p. These constants may nonetheless105

depend on the regularity and quasi-uniformity of the underlying family of triangulations {Th}h>0. Do we106

emphasize here that s is an integer?107

Lemma 4.1 ([6], Lemma 3.2). The L2 norm ‖ · ‖0 and the discrete norm ‖ · ‖H are equivalent in VH,Th , i.e.108

there exists C > 0 such that109

‖v‖0 ≤ ‖v‖H ≤ C‖v‖0, ∀v ∈ VH,Th .

From this lemma, we can deduce the coercivity of aH over VH. The previous estimate shows that110

‖∇vH‖20 ≤ ‖∇vH‖2H = aH(vH, vH), while Poincaré’s inequality implies the existence of a constant C such111

that112

C‖vH‖21 ≤ aH(vH, vH), ∀ vH ∈ VH. (13)

Lemma 4.2 ([3], Lemma 4.5). For s ≥ 0 and p ≥ 1, there exists a constant C such that for any element113

K ∈ Th and any v ∈ Hs(K), there exists vK ∈ Qp(K), satisfying114

‖v − vK‖q,K ≤ C
hmin(p+1,s)−q

ps−q
‖v‖s,K , 0 ≤ q ≤ s.

Definition 4.1 (Interpolation Operator). For a positive integer p, the GLL interpolation operator Ih,p :115

C(Ω)→ VH is uniquely defined such that, for v ∈ C(Ω),116 (
Ih,pv

)
(xKi,j) = v(xKi,j), ∀i, j = 0, . . . , p,

where the points xKi,j are the images of the GLL points by FK . This operator can be restricted to a single117

element K ∈ Th, say IKh,p : C(K)→ Qp(K), such that, for v ∈ C(K),118 (
IKh,pv

)
(xKi,j) = v(xKi,j), ∀i, j = 0, . . . , p.

Remark 4.1. Assuming that u0 ∈ V ∩ C(Ω) and u1 ∈ L2(Ω) ∩ C(Ω) so that their interpolants are well-119

defined, then the definition of the inner product (·, ·)H makes it clear that the functions u0
H and z0

H in (11b)120

and (11c) in fact satisfy u0
H = Ih,pu0 and z0

H = Ih,pu1.121
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The next lemma follows from estimates in Section 4.4 of [4].122

Lemma 4.3. Consider an integer s ≥ 2. Then there exists a constant Cp such that for all 0 ≤ q ≤ s,123

‖v − Ih,pv‖q,Th ≤ Cphmin(p+1,s)−q‖v‖s,Th , ∀ v ∈ Hs(Ω, Th) ∩H1(Ω).

The following lemma is the counterpart to Lemma 4.5 in the case of the local interpolation operator on124

an element K ∈ Th125

Lemma 4.4. Consider an integer s ≥ 2. Then there exists a constant C such that for q = 0 or 1, for any126

K ∈ Th, we have127 ∥∥v − IKh,pv∥∥q,K ≤ Chmin(p+1,s)−q

ps−q
‖v‖s,K , ∀ v ∈ Hs(K).

Lemma 4.5 ([13], Lemma 3.3). Consider an integer s ≥ 2. Then there exists a constant C such that for128

q = 0 or 1, we have129

‖v − Ih,pv‖q ≤ C
hmin(p+1,s)−q

ps−q
‖v‖s,Th , ∀ v ∈ Hs(Ω, Th) ∩H1(Ω).

The next lemma improves the term p1−s in Lemma 3.4 of [13] to a term p−s. Although the improvement130

was first described in [17] for the usual Sobolev spaces, we extend it here for broken Sobolev spaces, as we131

will need it, and include its proof for the sake of completeness.132

Lemma 4.6. Let s ≥ 2 and p ≥ 2. If v ∈ Hs(Ω, Th) and vH ∈ VH,Th , then133

(v, vH)− (v, vH)H ≤ C
hmin(p,s)

ps
‖v‖s,Th‖vH‖0.

134

Proof. From the definition of the interpolant IKh,p, we have

(v, vH)H,K = (IKh,pv, vH)H,K .

Since the GLL quadrature is of precision 2p− 1, we also get

(IKh,p−1v, vH)H,K = (IKh,p−1v, vH)K .

Using the results above and Lemma 4.1, we have135

(v, vH)K − (v, vH)H,K = (v, vH)K − (IKh,p−1v, vH)K + (IKh,p−1v, vH)H,K − (IKh,pv, vH)H,K

= (v − IKh,p−1v, vH)K + (IKh,p−1v − IKh,pv, vH)H,K

≤ ‖v − IKh,p−1v‖0,K‖vH‖0,K + ‖IKh,p−1v − IKh,pv‖H,K‖vH‖H,K
≤ ‖v − IKh,p−1v‖0,K‖vH‖0,K + C‖IKh,p−1v − IKh,pv‖0,K‖vH‖0,K .

Using the triangle inequality, one obtains136

‖IKh,p−1v − IKh,pv‖0,K = ‖IKh,p−1v − v + v − IKh,pv‖0,K ≤ ‖v − IKh,p−1‖0,K + ‖v − IKh,pv‖0,K ,

so that137

(v, vH)K − (v, vH)H,K ≤ C
(
‖v − IKh,p−1v‖0,K + ‖v − IKh,pv‖0,K

)
‖vH‖0,K .

Combining this result with Lemma 4.4 implies138

(v, vH)K − (v, vH)H,K ≤ C
hmin(p,s)

(p− 1)s
‖v‖s,K‖vH‖0

and summing the above equation for all K ∈ Th completes the proof since p/(p− 1) ≤ 2 for p ≥ 2.139
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Lemma 4.7 ([13], Lemma 3.6). There exists a positive constant Ca independent of h and p such that140

aH(vH, vH) ≤ Cah−2p4‖vH‖2H, ∀ vH ∈ VH.

In Section 5, we will show that the constant Ca is directly related to the stability of the scheme.141

Definition 4.2 (Projection Operator). The projection operator ΠH : V → VH associates to each v ∈ V142

the solution ΠHv to the problem:143

Find ΠHv ∈ VH such that: aH(ΠHv, vH) = a(v, vH), ∀vH ∈ VH.

The next result improves the error bound on v − ΠHv, established in [18] and [17], stating that the144

inequality ‖v − ΠHv‖1 ≤ Chmin(p,s)−1p1−s‖v‖s holds for any v ∈ Hs(Ω). We show below that it is actually145

possible to recover the same rate of convergence as in Lemma 4.2.146

Lemma 4.8. Suppose that s > 2 and p ≥ 2. Then there exists a constant C such that147

‖v −ΠHv‖1 ≤ C
hmin(p,s−1)

ps−1
‖v‖s,Th , ∀ v ∈ Hs(Ω, Th) ∩H1(Ω).

Proof. The proof begins with the same analysis as in Lemma 1 of [18], but which results only in an estimate148

of order hmin(p,s)−1. The second part of the proof introduces some new ideas to obtain a bound of the desired149

order.150

For any vH ∈ VH, the triangle inequality leads to151

‖v −ΠHv‖1 ≤ ‖v − vH‖1 + ‖ΠHv − vH‖1. (14)

Let wH = ΠHv − vH. We show that the term ‖wH‖1 can be bounded using the ellipticity of aH and the152

definition of the projection ΠH, that is,153

C‖wH‖21 = C‖ΠHv − vH‖21 ≤ aH(ΠHv − vH, wH)

= a(v, wH)− aH(vH, wH)

= a(v, wH)− a(vH, wH) + a(vH, wH)− aH(vH, wH)

= a(v − vH, wH) +
[
a(vH, wH)− aH(vH, wH)

]
≤ ‖v − vH‖1‖wH‖1 +

[
a(vH, wH)− aH(vH, wH)

]
,

which yields154

C‖ΠHv − vH‖1 ≤ ‖v − vH‖1 + sup
zH∈VH

a(vH, zH)− aH(vH, zH)

‖zH‖1
.

Injecting the bound on ‖wH‖1 = ‖ΠHv − vH‖1 into (14) gives155

‖v −ΠHv‖1 ≤ C
[
‖v − vH‖1 + sup

wH∈VH

a(vH, wH)− aH(vH, wH)

‖wH‖1

]
. (15)

As suggested in [18], if we take vH = Ih,p−1v, the last term in (15) vanishes since ∇vH ·∇wH is a polynomial156

of degree 2p− 1. Then, using Lemma 4.5 with q = 1 and the fact that p/(p− 1) ≤ 2 for p ≥ 2, we obtain157

‖v −ΠHv‖1 ≤ C‖v − Ih,p−1v‖1 ≤ Chmin(p,s)−1p1−s‖v‖s,Th .
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We now improve the order in h. We shall find a bound on the term a(vH, wH) − aH(vH, wH) rather than158

making it vanish by invoking Ih,p−1v. We emphasize here that the constant Cp may depend on p in what159

follows. Using Lemma 4.6, we have for any r > 1160

a(vH, wH)− aH(vH, wH) = (∇vH,∇wH)− (∇vH,∇wH)H

≤ Cphmin(p,r)‖∇vH‖r,Th‖∇wH‖0
≤ Cphmin(p,r)‖vH‖r+1,Th‖wH‖1.

(16)

Since the above inequality is verified for any r > 1, then if we let r = min(p, s− 1) we obtain161

a(vH, wH)− aH(vH, wH) ≤ Cphmin(p,s−1)‖vH‖min(p+1,s),Th‖wH‖1. (17)

Setting q = min(p+ 1, s) in Lemma 4.3 we can show that162

‖Ih,pv‖min(p+1,s),Th ≤ ‖v − Ih,pv‖min(p+1,s),Th + ‖v‖min(p+1,s),Th ≤ Cp‖v‖s,Th . (18)

Taking vH = Ih,pv and using (17) and (18), Equation (15) becomes163

‖v −ΠHv‖1 ≤ Cp(‖v − vH‖1 + hmin(p,s−1)‖v‖s,Th) ≤ Cphmin(p,s−1)‖v‖s,Th , (19)

which completes the proof. Is the last inequality so obvious ?164

I am still not totally sure if I can combine the results of h and p from different proofs.165

The last result is an immediate consequence of applying Aubin-Nitsche’s Lemma to the previous lemma.166

Corollary 4.9. For s > 2 and p ≥ 2, there exists a constant C such that167

‖v −ΠHv‖0 ≤ C
hmin(p+1,s)

ps
‖v‖s,Th , ∀v ∈ Hs(Ω, Th) ∩H1(Ω).

5 A priori error estimates168

In this section we will carry a priori error estimation for the fully discrete Problem (11) in the H1 norm.169

Similar error estimations are presented with the L2 norm in [17, 18] for the homogeneous problem and in [13]170

for the heterogeneous case. The following analysis is studied for p ≥ 2 and under the following regularities171

for Problem (6): u ∈ C2
(
0, T ;Hs(Ω, Th)∩H1

0 (Ω)
)
∩C4

(
0, T ;L2(Ω)

)
with s > 2, and f ∈ C0

(
0, T ;Hd(Ω, Th)

)
172

with d > 1.173

We should include a precise existence statement in Hs(Ω) for Problem (6). I added the space of existence174

after Problem (6) is it enough?175

First we introduce some notation that will be convenient throughout the remainder of this section :

φn = ΠHu(tn)− unH, n = 0, . . . , NT ,

rn = δ2ΠHu(tn)− ü(tn), n = 1, . . . , NT ,

qn(vnH) = (f(tn)− ü(tn), vnH)− (f(tn)− ü(tn), vnH)H, n = 1, . . . , NT ,

with the exceptional cases r0 = q0 = 0.176

The proofs of the lemmas below are found in the Appendix.177
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Lemma 5.1. For m = 0, . . . , NT − 1, we have178

C‖φm+1 − φm‖2H ≤ ‖φ1 − φ0‖2H +∆t2aH(φ0, φ1) +∆t2
m∑
n=0

(rn, φn+1 − φn−1)H + qn(φn+1 − φn−1),

under the stability condition179

∆t <
h

p2
√
Ca

. (20)

180

The next two estimates will provide bounds on the terms on the right hand side of Lemma 5.1. The181

following lemma is similar to Lemma 4.2 in [13].182

Lemma 5.2. The functions φ0 and φ1 verify the following bound183

‖φ1 − φ0‖2H +∆t2aH(φ0, φ1) ≤ C
[
∆thmin(p,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th)) +∆t3‖u(3)‖C0(0,T ;L2(Ω))

+∆t2hmin(p,d)p−d‖f(t0)‖d,Th +∆thmin(p,s−1)p1−s‖u0‖s,Th
]2

.

Lemma 5.3. For any sequence of functions vnH ∈ VH, n = 0, . . . , NT − 1, and for any m = 0, . . . , NT − 1184

we have185

m∑
n=0

(rn, vnH)H + qn(vnH) ≤ CNT
[
hmin(p,d)p−d‖f‖C0(0,T ;Hd(Ω,Th)) + hmin(p,s)p1−s‖ü‖C0(0,T ;Hs(Ω,Th))

+∆t2‖u(4)‖C0(0,T ;L2(Ω))

]
max

1≤n≤m
‖vnH‖H.

The next lemma is an intermediate step combining Lemmas 5.1-5.3 whose proof will also be considered186

only in the Appendix.187

Lemma 5.4. Assuming the stability condition (20) holds, then the error en = u(tn)−unH for n = 0, . . . , NT188

satisfies189

max
0≤n≤NT−1

‖en+1 − en‖0 ≤ C∆t
[
hmin(p,s−1)p1−s‖u0‖s,Th + hmin(p,d)p−d‖f‖C0(0,T ;Hd(Ω,Th))

+ hmin(p,s)p1−s‖u‖C2(0,T ;Hs(Ω,Th)) +∆t2‖u‖C4(0,T ;L2(Ω))

]
.

The main theorem of this paper is the following.190

Theorem 5.5. Assuming the stability condition (20) holds, then the error en = u(tn)−unH, n = 0, . . . , NT−1191

satisfies192

max
0≤n≤NT−1

‖en‖1 ≤ C
[
hmin(p,s−1)p1−s‖u‖C0(0,T ;Hs(Ω,Th)) + hmin(p,d)p−d‖f‖C0(0,T ;Hd(Ω,Th))

+ hmin(p,s)p1−s‖u‖C2(0,T ;Hs(Ω,Th)) +∆t2‖u‖C4(0,T ;L2(Ω))

]
.

Proof. We begin with an application of the triangle inequality,193

max
0≤n≤NT−1

‖en‖1 ≤ max
0≤n≤NT−1

‖u(tn)−ΠHu(tn)‖1 + max
0≤n≤NT−1

‖φn‖1. (21)
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The first term in equation (21) is bounded by Lemma 4.8194

‖u(tn)−ΠHu(tn)‖1 ≤ Chmin(p,s−1)p1−s‖u‖C0(0,T ;Hs(Ω,Th)). (22)

The rest of the proof will focus on the second term in (21). Subtracting (11a) from (6), we have for any

vnH ∈ VH and n = 1, . . . , NT − 1,

−(δ2unH, v
n
H)H − aH(unH, v

n
H) + a(u(tn), vnH) = −(ü(tn), vnH)− (f(tn), vnH)H + (f(tn), vnH)

⇒(δ2(ΠHu(tn)− unH), vnH)H + aH(ΠHu(tn)− unH, vnH)

= (δ2ΠHu(tn), vnH)H − (ü(tn), vnH)− (f(tn), vnH)H + (f(tn), vnH),

⇒(δ2φn, vnH)H + aH(φn, vnH) = (δ2ΠHu(tn), vnH)H − (ü(tn), vnH)− (f(tn), vnH)H + (f(tn), vnH).

With the notation for rn and qn, we conclude that for any vnH ∈ VH and n = 1, . . . , NT − 1195

(δ2φn, vnH)H + aH(φn, vnH) = (rn, vnH)H + qn(vnH). (23)

We sum from n = 1 to n = m, while m itself is bounded above by NT − 1, to find196

m∑
n=1

(δ2φn, vnH)H +

m∑
n=1

aH(φn, vnH) =

m∑
n=1

(rn, vnH)H + qn(vnH). (24)

Now we set vnH = φn+1 − φn−1 for 1 ≤ n ≤ m− 1 and vmH = φm − φm−1, then rewrite the first term on the197

left-hand side of (24) as198

∆t2
(m−1∑
n=1

(δ2φn, φn+1−φn−1)H + (δ2φm, φm − φm−1)H

)
= 2(φ1, φ0)H − (φ0, φ0)H − (φ1, φ1)H

+ (φm−1, φm−1)H + (φm, φm)H − 2(φm−1, φm)H

+ (φm+1, φm)H − 2(φm, φm)H + (φm−1, φm)H

− (φm+1, φm−1)H + 2(φm, φm−1)H − (φm−1, φm−1)H

= (φm+1, φm)H − (φm, φm)H + (φm−1, φm)H − (φm+1, φm−1)H − ‖φ1 − φ0‖2H.

= (φm+1 − φm, φm − φm−1)H − ‖φ1 − φ0‖2H.

Simplifying now the second term on the left hand side of (24), we find199

m−1∑
n=1

aH(φn, φn+1 − φn−1) + aH(φm, φm − φm−1) =aH(φm−1, φm)− aH(φ0, φ1) + aH(φm, φm − φm−1)

=aH(φm, φm)− aH(φ0, φ1).

Substituting the last two identities into the left hand side of (24), using our proposed values of vnH, and200

simplifying, we compute201

aH(φm, φm) =
1

∆t2
(φm − φm+1, φm − φm−1)H +

1

∆t2
‖φ1 − φ0‖2H + aH(φ0, φ1)

+

m−1∑
n=1

[
(rn, φn+1 − φn−1)H + qn(φn+1 − φn−1)

]
+ (rm, φm − φm−1)H + qm(φm − φm−1).

(25)

10



The coercivity of aH implies that for all 0 ≤ m ≤ NT − 1,202

C‖φm‖21 ≤
1

∆t2
max

0≤n≤m
‖φn+1 − φn‖2H +

1

∆t2
‖φ1 − φ0‖2H + aH(φ0, φ1)

+

m−1∑
n=1

[
(rn, φn+1 − φn−1)H + qn(φn+1 − φn−1)

]
+ (rm, φm − φm−1)H + qm(φm − φm−1).

(26)

Then, by combining Lemma 5.2 and Lemma 5.3, and using the Peter-Paul inequality 2ab ≤ εa2 + b2/ε with

ε = ∆t2, we obtain the following bound

‖φm‖21 ≤
1

∆t2
max

0≤n≤m
‖φn+1 − φn‖2H

+ C

[
hmin(p,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th)) +∆t2‖u(3)‖C0(0,T ;L2(Ω))

+∆thmin(p,d)p−d‖f(t0)‖d,Th + hmin(p,s−1)p1−s‖u0‖s,Th
]2

+
C2

2
N2
T∆t

2
[
hmin(p,d)p−d‖f‖C0(0,T ;Hd(Ω,Th)) + hmin(p,s)p1−s‖ü‖C0(0,T ;Hs(Ω,Th))

+∆t2‖u(4)‖C0(0,T ;L2(Ω))

]2
+

1

2∆t2

[
max

1≤n≤m−1
‖φn+1 − φn−1‖H + ‖φm − φm−1‖H

]2
.

To handle the last term in the estimate above, we combine the triangular inequality203

max
1≤n≤m−1

‖φn+1 − φn−1‖H ≤ 2 max
0≤n≤m−1

‖φn+1 − φn‖H,

and the estimate (51), which is the last step in the proof of Lemma 5.4, to derive

‖φm‖21 ≤C2

[
hmin(p,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th)) +∆t2‖u(3)‖C0(0,T ;L2(Ω))

+ hmin(p,s−1)p1−s‖u0‖s,Th + hmin(p,d)p−d‖f‖C0(0,T ;Hd(Ω,Th))

+ hmin(p,s)p1−s‖ü‖C0(0,T ;Hs(Ω,Th)) +∆t2‖u(4)‖C0(0,T ;L2(Ω))

]2

+ C

[
hmin(p,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th)) +∆t2‖u(3)‖C0(0,T ;L2(Ω))

+∆thmin(p,d)p−d‖f(t0)‖d,Th + hmin(p,s−1)p1−s‖u0‖s,Th
]2

+
C2

2
T 2
[
hmin(p,d)p−d‖f‖C0(0,T ;Hd(Ω,Th)) + hmin(p,s)p1−s‖ü‖C0(0,T ;Hs(Ω,Th))

+∆t2‖u(4)‖C0(0,T ;L2(Ω))

]2
.

Combining the terms and remarking that ∆t < T , we deduce204

max
1≤n≤NT−1

‖φn‖1 ≤ C
[
hmin(p,s)p1−s‖u̇‖C0(0,T ;Hs(Ω,Th)) +∆t2‖u(3)‖C0(0,T ;L2(Ω))

+ hmin(p,s−1)p1−s‖u0‖s,Th + hmin(p,d)p−d‖f‖C0(0,T ;Hd(Ω,Th))

+ hmin(p,s)p1−s‖ü‖C0(0,T ;Hs(Ω,Th)) +∆t2‖u(4)‖C0(0,T ;L2(Ω))

]
.

(27)

Using equation (44), we can extend equation (27) to all 0 ≤ n ≤ NT − 1. Finally, replacing (22) and (27)205

in (21) we complete the proof.206
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6 Numerical Examples207

In this section we will validate the theoretical findings in the previous section with numerical experiments.208

Although in Theorem 5.5 we bound the error in the H1 norm, but we will also compute the L2 error. The209

norms are computed using GLL quadrature with 20×20 integration points on each element in order to avoid210

the integration error. In all the following experiments the spatial domain is Ω = [−1, 1] × [−1, 1] and the211

error is computed at T = 1. In order to address the dependence of the convergence and the smoothness of212

the data, we will consider regular and non regular solutions.213

All the numerical experiments were performed using the open-source MATLAB code developed by Jean-214

Paul Ampuero [2]. The code is limited to 2D but can handle structured rectangular meshes with GLL215

quadrature for an order smaller than 20, and given the extreme precision required by the numerical experi-216

ments below, was found to be accurate and reliable.217

6.1 Regular solution218

First we will reinvestigate the example given in [18] and [13], then we will define the source term f and the219

initial data u0 and u1 so that the exact solution be220

u(x, y, t) = sin(πx) sin(πy)(x2 − 1)(y2 − 1) exp(−t2).

The source term f , the solution u(·, t) and all its temporal derivatives are in C∞(Ω). In Figure 1, we present221

the error in the L2 and H1 norms while decreasing the elements size. The error in the H1 norm seems to222

converge with an order O(hp), which coincides with the theoretical results presented in Theorem 5.5 since223

u and f are smooth. We also observe that the L2 error behaves as O(hp+1) which is similar to what was224

observed by [18, 17, 13]. We note that [18] and [17] presented a theoretical analysis in which the predicted225

order of convergence in the L2 norm is O(hp) for smooth funcitons.226

The dependence of the error on p is presented in Figure 2. As predicted by our theoretical study we observe227

an exponential convergence for the H1 and L2 errors before the plateau region for small h. It is also shown228

in Figure 2 that decreasing ∆t from 10−2 to 10−3 lowers the plateaus by 2 orders in both norms which229

validates the second-order precision in time.230

6.2 Non regular solution231

In order to investigate the effects of the smoothness of the solution on the convergence, we consider a solution232

for the wave equation on [−1, 1]× [−1, 1] that presents a non regularity at x = 0. Hence the initial conditions233

and the source term are chosen so that234

u(x, y, t) =

{
sin(πx) sin(πy)(xq − xq+1)(yq − yq+2) exp(−0.1t2), x > 0,

0, x ≤ 0.

In this problem the function u ∈ Cq(Ω) and the source term f ∈ Cq−2(Ω). If the number of elements in235

the x direction is even then the functions u and f are in Hs(Ω, Th) for all s ≥ 0, and we conclude from236

Theorem 5.5 that the convergence should have a similar behavior to the smooth case. But if the number237

of elements in the x direction is odd then the discontinuity is no longer on the border of the elements but238

passes through them, hence we expect that the convergence of the calculated solution would be limited by239

the smoothness of u.240
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Figure 1: The error plot in the L2 norm (Left) and in the H1 norm (Right) as a function of 1/h of the
problem with regular solution for different p with ∆t = 10−4.

Figure 2: The error plot in the L2 norm (Left) and in the H1 norm (Right) as a function of p of the problem
with regular solution for different ∆t with h = 0.5.

6.2.1 Odd number of elements241

First we will investigate the case where x = 0 passes through the elements of the chosen triangulaiton.242

Hence in Figures 3, 4 and 5 the element size is chosen such that we have an odd number of elemets in the x243

direction. In Figures 3 and 4 we present the errors in the H1 and L2 norms as a function of 1/h for q = 2244

and q = 4 respectively. We find that for different p both the H1 and the L2 errors seem to converge with a245
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rate O(hq).246

In Figure 5 the errors in the H1 and L2 norms are shown with a variable polynomial degree p for q = 2247

and q = 4, and we fix h = 1/3. In this figure the polynomial degree p is presented on a logarithmic scale to248

better interpretate the asymptotic behavior of the errors which is observed to behave as O(p−q). We note249

that u ∈ Hq+1(Ω) and the source term f ∈ Hq−1(Ω), then from Theorem 5.5 we expect the convergence to250

be O(hq−1) while varying the element size and O(p1−q) while varying the polynomial degree due to the non251

regularity of the source term. While the terms in u predicts a convergence of O(hq) and O(p−q), which has252

the same rate of the experimental results.253

Figure 3: The error plot in the L2 norm (Left) and in the H1 norm (Right) as a function of 1/h of the
problem with non regular solution for different p with ∆t = 10−3 and q = 2. The points shown correspond
to a discretization with an odd number of elements in the x direction.

6.2.2 Even number of elements254

Finally we consider the case where the discontinuity coincides with border of the elements. Figure 6 concludes255

that the error in the H1 and L2 norms have the same asymptotic behaviour as the smooth function problem.256

The reason is that the bound presented in Theorem 5.5 depends on the smoothness of the solution and the257

source term in the broken norm. Thus solving the homogeneous wave equation on a triangulation for which258

the discontinuities appear only on the borders of the elements would not deteriorate the convergence.259

7 Conclusions260
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Figure 4: The error plot in the L2 norm (Left) and in the H1 norm (Right) as a function of 1/h of the
problem with non regular solution for different p with ∆t = 10−3 and q = 4. The points shown correspond
to a discretization with an odd number of elements in the x direction.

Figure 5: The error plot in the L2 norm (Left) and in the H1 norm (Right) as a function of p of the problem
with non regular solution for different ∆t with h = 1/3.

Appendix266

The proof in this section are largely identical to those found in [18, 17, 13]. By keeping the novel elements267

of the paper in Sections 4-5, but relegating some of the repetitive algebraic manipulations to the Appendix,268

we hope to have made both complete for those new to the topic and compact for those already familiar.269
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Figure 6: The error plot in the L2 norm (Left) and in the H1 norm (Right) as a function of 1/h of the
problem with non regular solution for different p with ∆t = 10−3 and q = 2. The points shown correspond
to a discretization with an even number of elements in the x direction.

Proof of Lemma 5.1. The first step of this proof, to obtain the identity (28), was already presented in270

the proof of Theorem 5.5 but is repeated for the sake of completeness. Subtracting (11a) from (6), we have271

for any vnH ∈ VH and n = 1, . . . , NT − 1,272

−(δ2unH, v
n
H)H − aH(unH, v

n
H) + a(u(tn), vnH) = −(ü(tn), vnH)− (f(tn), vnH)H + (f(tn), vnH)

273

⇒ (δ2(ΠHu(tn)− unH), vnH)H + aH(ΠHu(tn)− unH, vnH) =

(δ2ΠHu(tn), vnH)H − (ü(tn), vnH)− (f(tn), vnH)H + (f(tn), vnH),
274

⇒ (δ2φn, vnH)H + aH(φn, vnH) = (δ2ΠHu(tn), vnH)H − (ü(tn), vnH)− (f(tn), vnH)H + (f(tn), vnH).

For any vnH ∈ VH and n = 1, . . . , NT − 1, we have shown that275

(δ2φn, vnH)H + aH(φn, vnH) = (rn, vnH)H + qn(vnH), (28)

where rn = δ2ΠHu(tn)− ü(tn) and qn(vnH) = (f(tn)− ü(tn), vnH)− (f(tn)− ü(tn), vnH)H. In contrast to the276

manipulations following (28), we use the same definition of vnH = φn+1 − φn−1 for all n, and then sum from277

n = 1 to m, with 1 ≤ m ≤ NT − 1,278

m∑
n=1

(δ2φn, φn+1 − φn−1)H +

m∑
n=1

aH(φn, φn+1 − φn−1) =

m∑
n=1

(rn, φn+1 − φn−1)H + qn(φn+1 − φn−1). (29)

16



The first term in (29) can be rewritten as279

∆t2
m∑
n=1

(δ2φn, φn+1 − φn−1)H =

m∑
n=1

(φn+1, φn+1 − φn−1)H − 2

m∑
n=1

(φn, φn+1 − φn−1)H +

m∑
n=1

(φn−1, φn+1 − φn−1)H

=

m∑
n=1

(φn+1, φn+1)H − 2

m∑
n=1

(φn, φn+1 − φn−1)H +

m∑
n=1

(φn−1,−φn−1)H

=

m+1∑
n=2

(φn, φn)H − 2

m∑
n=1

(φn, φn+1)H + 2

m−1∑
n=0

(φn+1, φn)H −
m−1∑
n=0

(φn, φn)H

=(φm+1, φm+1)H + (φm, φm)H − 2(φm, φm+1)H + 2(φ1, φ0)H − (φ0, φ0)H − (φ1, φ1)H

=‖φm+1 − φm‖2H − ‖φ1 − φ0‖2H.

Similarly, it can be demonstrated that280

m∑
n=1

aH(φn, φn+1 − φn−1) = aH(φm, φm+1)− aH(φ0, φ1).

Substituting these last two identities into equation (29), we find281

1

∆t2
‖φm+1 − φm‖2H + aH(φm, φm+1) =

1

∆t2
‖φ1 − φ0‖2H + aH(φ0, φ1)

+

m∑
n=1

(rn, φn+1 − φn−1)H + qn(φn+1 − φn−1).
(30)

The above equation can be extended to m = 0 if we define r0 = 0 and q0 = 0.282

Similar to Grote and Schötzau [10], we remark that283

aH(φm, φm+1) = aH

(
φm + φm+1

2
,
φm + φm+1

2

)
− aH

(
φm − φm+1

2
,
φm − φm+1

2

)
≥ −1

4
aH(φm − φm+1, φm − φm+1)

.

Then using Lemma 4.7 we have284

aH(φm, φm+1) ≥ −1

4
Cah

−2p4‖φm − φm+1‖2H

Replacing in (30) we obtain285 (
1

∆t2
− 1

4
Cah

−2p4

)
‖φm+1 − φm‖2H ≤

1

∆t2
‖φ1 − φ0‖2H + aH(φ0, φ1)

+

m∑
n=0

(rn, φn+1 − φn−1)H + qn(φn+1 − φn−1).

(31)

For the system to be stable we choose ∆t, p and h such that286

1− ∆t2Cap
4

h2
= C∗ > 0 , (32)

after which equation (31) becomes287

C∗
1

∆t2
‖φm+1 − φm‖2H ≤

1

∆t2
‖φ1 − φ0‖2H + aH(φ0, φ1)

+

m∑
n=0

(rn, φn+1 − φn−1)H + qn(φn+1 − φn−1).
(33)

288
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Proof of Lemma 5.2. The proof is identical to that of Lemma 4.2 from [13] except that we take advantage289

of the improved estimates of Section 4.290

For every vH ∈ VH, we have the basic identity291

(φ1 − φ0, vH)H =

∫ t1

t0

(ΠHu̇(s)− u̇(s), vH)H ds+ (u(t1)− u(t0), vH)H − (u1
H − u0

H, vH)H. (34)

For an element K, the L2 projection operator PKp : L2(K)→ Qp(K) is defined such that for any v ∈ L2(K)292

we have293

(PKp v, vH) = (v, vH), ∀vH ∈ VH.

Let ξ(s) = ΠHu̇(s) − u̇(s) and let PKp−1 be the L2 projection operator in Qp−1(K). Following similar steps294

of the proof of Lemma 4.6 one can obtain295

(ξ(s), vH)H,K − (ξ(s), vH)K ≤ C
(
‖ξ(s)− IKh,pξ(s)‖0,K + ‖ξ(s)− PKp−1ξ(s)‖0,K

)
‖vH‖0,K .

Then summing the above inequality for all K ∈ Th we deduce that296

(ξ(s), vH)H − (ξ(s), vH) ≤ C

(
‖ξ(s)− Ih,pξ(s)‖0 +

∑
K∈Th

‖ξ(s)− PKp−1ξ(s)‖0,K

)
‖vH‖0. (35)

By the use of the definition of the L2 projector we have (ξ(s)− PKp−1ξ(s), P
K
p−1ξ(s))0.K = 0, then297

‖ξ(s)− PKp−1ξ(s)‖20,K = (ξ(s)− PKp−1ξ(s), ξ(s))0,K

≤ ‖ξ(s)− PKp−1ξ(s)‖0,K‖ξ(s)‖0,K .

Thus we have ‖ξ(s)− PKp−1ξ(s)‖0,K ≤ ‖ξ(s)‖0,K and since Ih,p(ΠHu̇) = ΠHu̇, equation (35) becomes298

(ξ(s), vH)H − (ξ(s), vH) ≤ C
(
‖u̇(s)− Ih,pu̇(s)‖0 + ‖u̇(s)−ΠHu̇(s)‖0

)
‖vH‖0.

Using Lemma 4.5 and Corollary 4.9 we obtain299

(ξ(s), vH)H − (ξ(s), vH) ≤ Chmin(p+1,s)p−s‖u̇(s)‖s,Th‖vH‖0.

Also from Corollary 4.9 we have300 ∫ t1

t0

(ξ(s), vH) ds ≤ C∆thmin(p+1,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th))‖vH‖0.

Hence we have301 ∫ t1

t0

(ΠHu̇(s)− u̇(s), vH)H ds ≤ C∆thmin(p+1,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th))‖vH‖0. (36)

To bound the first term in (34), we invoke Corollary 4.9 to find∫ t1

t0

(
ΠHu̇(s)− u̇(s), vH

)
H ds ≤

∫ t1

t0

∥∥ΠHu̇(s)− u̇(s)
∥∥

0
·
∥∥vH∥∥0

ds

≤C∆thmin(p+1,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th))‖vH‖0 . (37)

ZIAD: Need to verify explicitly that regularity conditions are satisfied when you invoke Corollary 4.9.302
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To bound the last term of (34), we begin by rewriting (11d) as303 (
u1
H − u0

H, vH
)
H =∆t

(
z0
H, vH

)
H +

∆t2

2
(f(t0), vH)− ∆t2

2
a(u(t0), vH)

+
∆t2

2

[
(f(t0), vH)H − (f(t0), vH) + a(u(t0), vH)− aH(u0

H, vH)
]
,

then we set use (6) at t = t0 to obtain(
u1
H − u0

H, vH
)
H =∆t

(
u1, vH

)
H +

∆t2

2
(ü(t0), vH)

+
∆t2

2

[
(f(t0), vH)H − (f(t0), vH) + a(u(t0), vH)− aH(u0

H, vH)
]

=∆t
(
u1, vH

)
H +

∆t2

2
(ü(t0), vH)

+
∆t2

2

[
(f(t0), vH)H − (f(t0), vH) + aH(φ0, vH)

]
. (38)

To treat the last term of (34), we first recall Taylor’s expansion304

u(t1) = u(t0) +∆tu̇(t0) +
∆t2

2!
ü(t0) +R3, (39)

where the remainder term R3 is given by305

R3 =
1

2

∫ t1

t0

(∆t− s)2u(3)(s) ds.

To derive an estimate for the two last terms in (34), we isolate the ∆t2 term in (39) and combine it with306

(38) to find307

(u(t1)− u(t0), vH)H − (u1
H − u0

H, vH)H = (u(t1)− u(t0), vH)H − (u(t1)− u(t0), vH)

+∆t(u1, vH)−∆t(u1, vH)H + (R3, vH)

− ∆t2

2

[
(f(t0), vH)H − (f(t0), vH) + aH(φ0, vH)

]
.

(40)

To bound the right-hand side of this last identity, we first observe that308

(u(t1)− u(t0), vH)H − (u(t1)− u(t0), vH) =

∫ t1

t0

(u̇(s), vH)H − (u̇(s), vH) ds,

and then apply Lemma 4.6 repeatedly to conclude309

(u(t1)− u(t0), vH)H − (u1
H − u0

H, vH)H ≤ C
[
∆thmin(p,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th))

+∆thmin(p,s)p−s‖u1‖s,Th +∆t3‖u(3)‖C0(0,T ;L2(Ω))

+∆t2hmin(p,d)p−d‖f(t0)‖d,Th
]
‖vH‖0

− ∆t2

2
aH(φ0, vH).

(41)

Since u1 = u̇(0), then from the definition of the Cm(0, T ;Hs(Ω, Th)) norm (5) the term ‖u1‖s,Th is bounded310

by ‖u̇‖C0(0,T ;Hs(Ω,Th)). We now return to our original expansion (34), substitute vH = φ1 − φ0, and use311

equations (36) and (41) to deduce312

‖φ1 − φ0‖2H +
∆t2

2
aH(φ0, φ1) ≤ C

[
∆thmin(p,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th)) +∆t3‖u(3)‖C0(0,T ;L2(Ω))

+∆t2hmin(p,d)p−d‖f(t0)‖d,Th
]
‖φ1 − φ0‖H +

∆t2

2
aH(φ0, φ0).

(42)
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Using 2ab ≤ a2 + b2, the previous inequality becomes313

‖φ1 − φ0‖2H +
∆t2

2
aH(φ0, φ1) ≤ 1

2
C2

[
∆thmin(p,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th)) +∆t3‖u(3)‖C0(0,T ;L2(Ω))

+∆t2hmin(p,d)p−d‖f(t0)‖d,Th
]2

+
1

2
‖φ1 − φ0‖2H

+
∆t2

2
aH(φ0, φ0).

(43)

We still have to bound the last term in the right hand side of (42). Then using Remark 4.1, Lemma 4.8 and314

Lemma 4.5, we have315

‖φ0‖1 = ‖ΠHu0 − u0
H‖1

≤ ‖ΠHu0 − u0‖1 + ‖u0 − Ih,pu0‖1
≤ Chmin(p,s−1)p1−s‖u0‖s,Th .

(44)

From the continuity of aH we conclude316

aH(φ0, φ0) ≤ Ch2 min(p,s−1)p2−2s‖u0‖2s,Th . (45)

Thus replacing the above inequality in equation (43) yields to the desired result.317

Proof of Lemma 5.3. Recall that for each n = 0, . . . , NT −1 we have an arbitrary vnH ∈ VH. Furthermore,318

we continue to assume that q0 = r0 = 0 and we select an integer m between 1 and NT −1. Using Lemma 4.6319

and Lemma 4.1, we can show320

m∑
n=1

qn(vnH) =

m∑
n=1

(f(tn)− ü(tn), vnH)− (f(tn)− ü(tn), vnH)H

≤C
m∑
n=1

hmin(p,d)p−d‖f(tn)‖d,Th‖vnH‖0 + hmin(p,s)p−s‖ü(tn)‖s,Th‖vnH‖0

≤CNT
[
hmin(p,d)p−d max

1≤n≤m
‖f(tn)‖d,Th + hmin(p,s)p−s max

1≤n≤m
‖ü(tn)‖s,Th

]
max

1≤n≤m
‖vnH‖0

≤CNT
[
hmin(p,d)p−d‖f‖C0(0,T ;Hd(Ω,Th)) + hmin(p,s)p−s‖ü‖C0(0,T ;Hs(Ω,Th))

]
max

1≤n≤m
‖vnH‖H .

(46)

The proof of Lemma 4.3 in [13] demonstrated321

‖rn‖H ≤C
(
hmin(p+1,s)p1−s‖ü(tn)‖s,Th

+
1

∆t

∫ tn+1

tn−1

‖ΠHü(s)− ü(s)‖0 ds+
∆t

6

∫ tn+1

tn−1

‖u(4)(s)‖0 ds

)
.

Applying Corollary 4.9 to this estimate, we find322

‖rn‖H ≤ C
(
hmin(p+1,s)p1−s‖ü‖C0(0,T ;Hs(Ω,Th)) +∆t2‖u(4)‖C0(0,T ;L2(Ω))

)
.

The previous estimate immediately leads to323

m∑
n=1

(rn, vnH)H ≤
m∑
n=1

‖rn‖H‖vnH‖H

≤CNT
(
hmin(p+1,s)p1−s‖ü‖C0(0,T ;Hs(Ω,Th)) +∆t2‖u(4)‖C0(0,T ;L2(Ω))

)
max

1≤n≤m
‖vnH‖H .

(47)

The result is deduced by combining (46) and (47).324
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Proof of Lemma 5.4. We begin with the triangle inequality325

max
0≤n≤NT−1

‖en+1 − en‖0 ≤ max
0≤n≤NT−1

‖u(tn+1)−ΠHu(tn+1)− u(tn) + ΠHu(tn)‖0 + max
0≤n≤NT−1

‖φn+1 − φn‖0.

(48)

To bound the first term in (48), we define g(tn) = u(tn) − ΠHu(tn) and use Corollary 4.9 in the following326

manner327

(g(tn+1)− g(tn), v) =

∫ tn+1

tn

(ġ(τ), v) dτ

≤
∫ tn+1

tn

‖ġ(τ)‖0‖v‖0 dτ

≤
∫ tn+1

tn

Chmin(p+1,s)p−s‖u̇(τ)‖s,Th‖v‖0 dτ

≤ C∆thmin(p+1,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th))‖v‖0 .

(49)

Substituting v = g(tn+1)− g(tn) into (49), we conclude that the first term in (48) is bounded as328

max
0≤n≤NT−1

‖g(tn+1)− g(tn)‖0 ≤ C∆thmin(p+1,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th)) . (50)

Now we will bound the second term in (48). Recall the estimate from Lemma 5.1329

C‖φm+1 − φm‖2H ≤ ‖φ1 − φ0‖2H +∆t2aH(φ0, φ1) +∆t2
m∑
n=0

(rn, φn+1 − φn−1)H + qn(φn+1 − φn−1),

which holds for m = 0, . . . , NT − 1. We bound the terms on the right hand side using Lemma 5.2 and330

Lemma 5.3.331

max
0≤n≤NT−1

‖φn+1 − φn‖2H ≤ C
[
∆thmin(p,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th)) +∆t3‖u(3)‖C0(0,T ;L2(Ω))

+∆t2hmin(p,d)p−d‖f(t0)‖d,Th +∆thmin(p,s−1)p1−s‖u0‖s,Th
]2

+CT∆t

[
hmin(p,d)p−d‖f‖C0(0,T ;Hd(Ω,Th)) + hmin(p,s)p1−s‖ü‖C0(0,T ;Hs(Ω,Th))

+∆t2‖u(4)‖C0(0,T ;L2(Ω))

]
max

1≤n≤NT−1
‖φn+1 − φn−1‖H

Using the Peter-Paul inequality 2ab ≤ εa2 + b2/ε with ε = 2, yields332

max
0≤n≤NT−1

‖φn+1 − φn‖2H ≤ C
[
∆thmin(p,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th)) +∆t3‖u(3)‖C0(0,T ;L2(Ω))

+∆t2hmin(p,d)p−d‖f(t0)‖d,Th +∆thmin(p,s−1)p1−s‖u0‖s,Th
]2

+C2T 2∆t2
[
hmin(p,d)p−d‖f‖C0(0,T ;Hd(Ω,Th)) + hmin(p,s)p1−s‖ü‖C0(0,T ;Hs(Ω,Th))

+∆t2‖u(4)‖C0(0,T ;L2(Ω))

]2

+
1

4
max

1≤n≤NT−1
‖φn+1 − φn−1‖2H.

With the help of the obvious bound333

max
1≤n≤NT−1

‖φn+1 − φn−1‖H ≤ 2 max
0≤n≤NT−1

‖φn+1 − φn‖H,
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we have334

max
0≤n≤NT−1

‖φn+1 − φn‖H ≤ C∆t
[
hmin(p,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th)) +∆t2‖u(3)‖C0(0,T ;L2(Ω))

+∆thmin(p,d)p−d‖f(t0)‖d,Th + hmin(p,s−1)p1−s‖u0‖s,Th
+ hmin(p,d)p−d‖f‖C0(0,T ;Hd(Ω,Th)) + hmin(p,s)p1−s‖ü‖C0(0,T ;Hs(Ω,Th))

+∆t2‖u(4)‖C0(0,T ;L2(Ω))

]
.

Remembering that ∆t < T , we obtain335

max
0≤n≤NT−1

‖φn+1 − φn‖H ≤ C∆t
[
hmin(p,s)p−s‖u̇‖C0(0,T ;Hs(Ω,Th)) +∆t2‖u(3)‖C0(0,T ;L2(Ω))

+ hmin(p,s−1)p1−s‖u0‖s,Th + hmin(p,d)p−d‖f‖C0(0,T ;Hd(Ω,Th))

+ hmin(p,s)p1−s‖ü‖C0(0,T ;Hs(Ω,Th)) +∆t2‖u(4)‖C0(0,T ;L2(Ω))

]
.

(51)

The proof is concluded by using Lemma 4.1 and replacing (50) and (51) into (48).336
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