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Abstract9

Optimal a priori error bounds are theoretically derived, and numerically verified, for approximate10

solutions to the 2D homogeneous wave equation obtained by the spectral element method. To be precise,11

the spectral element method studied here takes advantage of the Gauss-Lobatto-Legendre quadrature,12

thus resulting in under-integrated elements but a diagonal mass matrix. The approximation error in H1
13

is shown to be of order O(hp) with respect to the element size h and of order O(p−q) with respect to14

the degree p, where q is the spatial regularity of the solution. These results improve on past estimates in15

the L2 norm, particularly with respect to h. Specific assumptions on the discretization by the spectral16

element method are the use of a triangulation by quadrilaterals constructed via affine transformations17

from a reference square element and of a second order discretization in time by the leap-frog scheme.18

Keywords: spectral element method, wave equation, a priori error estimation, Gauss-Lobatto-Legendre19

quadrature, leap-frog scheme.20

1 Introduction21

The accurate solution of the acoustic wave equation has been of great importance in many fields of science22

and engineering. The spectral element method (SEM), first introduced by Patera [27] for fluid dynamics23

applications, is now widely considered as one of the most efficient methods in computational seismology [34,24

32, 13, 33, 25, 35, 22, 8]. The method has many similarities with the h-p finite element method, the25

main differences being in the choice of the bases and of the quadrature rules for the computation of the26

integrals [28, 20, 18, 7]. In particular, the Gauss-Lobatto-Legendre (GLL) nodes can be used to construct27

the Lagrange polynomial shape functions and the GLL quadrature can be employed to approximate the28

integrals appearing in the weak formulation. These two features induce a diagonal mass matrix, which29

makes the approach very effective when combined with explicit schemes that are typically used in large scale30

parallel computations. Although implementations of SEM on triangles and tetrahedra are possible [24], most31

implementations use quadrilaterals and hexahedra in order to take advantage of their tensorial structure for32

faster matrix-vector products [14]. The SEM is now the basis of many High Performance Computing software33

packages [19, 12, 23, 2] and is being run on the largest computers in the world up to date [17]. Moreover, it34

is at the core of exascale initiatives such as the one established by the European Union Center of Excellence35

for Solid Earth [9]. Maday and Rønquist [21] conducted the error analysis of the GLL-SEM for the diffusion36
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equation with non-constant coefficients, where they derived the error bound as a function of the polynomial37

degree p. The h-p analysis for the homogeneous acoustic wave equation of the GLL-SEM was carried out38

in the L2 norm in Zampieri and Pavarino [36] and Rong and Xu [31]. Oliveira and Leite [26] extended39

these results to the heterogeneous case. Durufle, Grob, and Joly [15] obtained an error bound in the H1
40

norm for non-affine elements. The authors in [36, 31, 26] treated the fully discretized problem, where the41

time discretization is based on Newmark schemes, while the authors in [15] restricted the study to the42

semi-discretized problem. The numerical experiments for the fully discretized problem shown in [36, 31, 26]43

suggest that the L2 error bounds that they established are not optimal in h.44

The main result of the paper is an optimal error analysis in the H1 norm in space for the fully discretized45

wave equation using GLL-SEM. The new error estimates improve on past results by considering the H1
46

norm for the fully discretized problem and by obtaining optimal rates of convergence in h and p, which47

coincide with those observed numerically. The use of the GLL quadrature in GLL-SEM produces integrals48

that are under-integrated, which might introduce a quadrature error that could potentially affect the rates49

of convergence. However, our results confirm that the convergence rates do not suffer from under-integration50

when solving the homogeneous wave equation. The effectiveness of the method is therefore not compromised.51

For the sake of simplicity, the present study solely focuses on the 2D homogeneous acoustic wave equation52

with homogeneous Dirichlet boundary conditions but could be extended to more complex cases. The wave53

equation is integrated in time here by the leap-frog method, which is a second-order accurate Newmark54

scheme. We establish in particular two error bounds in the H1 norm: the h-p version expressed in terms of55

the element size h, the polynomial degree p, the time step ∆t, and the regularity of the solution and data,56

and the h version given with respect to the same parameters as before except for the polynomial degree p. We57

also present several numerical examples using smooth and non smooth solutions to confirm our theoretical58

results. We have deliberately chosen to follow the same structure for the presentation of the analysis as the59

one found in [26] since we will be using some of their preliminary results.60

The outline of the paper is as follows: Section 2 introduces the strong and weak formulations of the61

homogeneous wave equation problem. The spatial discretization of the problem by the spectral element62

method based on the GLL quadrature is described in Section 3. In Section 4, we present some preliminary63

results that will be useful for the derivation of the a priori error estimates in the H1 norm provided in64

Section 5. The numerical experiments are described in Section 6 and are followed by conclusions and65

perspectives in Section 7.66

2 Model problem and notations67

The purpose of this section is to review the strong and weak formulation of the linear wave equation. A68

more thorough treatment can be found in Cohen’s textbook [11].69

Let Ω be an open, convex, polygonal domain in R2, with a piecewise smooth boundary ∂Ω. The homo-70

geneous acoustic wave equation subjected to Dirichlet boundary conditions is: given f(x, t), u0(x), u1(x)71

and T > 0 find u(x, t), such that72

∂2u

∂t2
(x, t)−∆u(x, t) = f(x, t), ∀(x, t) ∈ Ω× (0, T ), (1)

with the initial conditions73

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), ∀x ∈ Ω, (2)
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and boundary conditions74

u(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0, T ). (3)

In order to define the variational problem, we consider the Hilbert space L2(Ω) equipped with the inner75

product and norm76

(u, v) =

∫
Ω

u(x) v(x) dx, ∥u∥0 = (u, u)1/2.

Given a non-negative integer s, we recall the Hilbert space77

Hs(Ω) =
{
u ∈ L2(Ω);

∂|α|u

∂xα
∈ L2(Ω), α ∈ N2, |α| ≤ s

}
,

equipped with the norm78

∥u∥s =

( ∑
|α|≤s

∥∥∥∥∂|α|u∂xα

∥∥∥∥2
0

)1/2

.

Let u|∂Ω be the trace of u on ∂Ω [1]. We define the closed subspace V of H1(Ω)79

V := H1
0 (Ω) =

{
u ∈ H1(Ω); u|∂Ω = 0

}
.

Poincaré’s inequality implies that the symmetric and continuous bilinear form80

a(u, v) = (∇u,∇v) (4)

defines a norm over V that is equivalent to ∥ · ∥1. We also introduce the space L2(0, T ;Hs(Ω)) that consists81

of all functions u : (0, T ) → Hs(Ω) with norm82

∥u∥L2(Hs) =

(∫ T

0

∥u(t)∥2s dt
)1/2

.

Let u(l) = ∂lu/∂tl. We also define the space Cm(0, T ;Hs(Ω)) of all functions u(x, t) such that the map83

u(l) : (0, T ) → Hs(Ω) is continuous for all 0 ≤ l ≤ m and84

∥u∥Cm(Hs) = max
0≤l≤m

(
sup

0≤t≤T
∥u(l)(t)∥s

)
<∞. (5)

Under the assumptions f ∈ L2(0, T ;L2(Ω)), u0 ∈ V , and u1 ∈ L2(Ω), a variational formulation of85

Problem (1) can be stated as:86

Find u : (0, T ) → V , such that u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), ∀x ∈ Ω, and(

∂2u

∂t2
, v

)
+ a(u, v) = (f, v), ∀v ∈ V.

(6)

As demonstrated in [29], the fact that a(·, ·) is a symmetric, continuous, and coercive bilinear form implies87

that Problem (6) has a unique solution u ∈ C0(0, T ;V ) ∩ C1
(
0, T ;L2(Ω)

)
, satisfying the following stability88

estimate89 ∥∥∥∥∂u∂t (t)
∥∥∥∥2
0

+ a(u(t), u(t)) ≤ ∥u1∥20 + a(u0, u0) +

∫ t

0

∥f(τ)∥20 dτ, ∀t ∈ [0, T ].
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3 The spectral element method90

In this section, we describe the discretization of the wave equation by the spectral element method using91

here the Gauss-Lobatto-Legendre points (GLL-SEM). Hence, GLL-SEM distinguishes itself from other finite92

element methods because the degrees of freedom are borne by the nodes of the GLL quadrature and the93

spatial integrals in the variational formulation are evaluated using that GLL quadrature. This naturally94

leads to a diagonal mass matrix.95

Assume that for each h > 0, we have a regular, quasi-uniform triangulation Th of the closure Ω̄ such that96

the largest diameter of the subdomains K ∈ Th is bounded above by h; see [4] for details. Furthermore,97

assume that each subdomain K ∈ Th of a triangulation can be characterized by an affine bijective mapping98

FK : K̂ → K such that K = FK(K̂) where K̂ = [−1, 1]× [−1, 1] is referred to as the reference element. For99

each positive integer p, let Qp(K) be the space of polynomials of degree at most p in each variable over the100

subdomain K. If H denotes the couple (h, p), we then define the space of piecewise polynomial functions as101

VH =
{
ϕ ∈ C(Ω̄) : ϕ |K∈ Qp(K), ∀K ∈ Th, ϕ = 0 on ∂Ω

}
. (7)

Integrals appearing in the weak form will be estimated using the tensor product of the 1D GLL quadrature.102

Over [−1, 1], the nodes of the GLL quadrature are the two end points ξ0 = −1 and ξp = 1 as well as the103

p − 1 roots of the derivatives of the Legendre polynomials [5], denoted by {ξi}i=1,...,p−1. The weights ωi104

associated with the nodes ξi can be selected to recover a quadrature that will be exact for all polynomials105

of degree less than or equal to 2p− 1. In 2D, the GLL quadrature of f over K̂ will be106

IGLL
K̂

f =

p∑
i,j=0

ωi ωjf(ξi, ξj).

Again, this quadrature is exact for all f ∈ Q2p−1(K̂). For a function f : Ω → R, the GLL quadrature can107

be extended by mapping the GLL nodes to each subdomain K ∈ Th as xK
i,j = FK(ξi, ξj) and computing108

IGLL
H f =

∑
K∈Th

p∑
i,j=0

ωi ωjf
(
xK
i,j

)
JK
(
xK
i,j

)
,

where JK is the determinant of the Jacobian of FK . We note that the numbering of the vertices in the109

reference element and each element K is taken counterclockwise so that the determinant JK is always110

positive.111

Critical to the definition of the spectral element method are the discrete inner product112

(ϕ, ψ)H = IGLL
H ϕψ (8)

and the discrete analogue of (4) defined as113

aH(ϕ, ψ) = (∇ϕ,∇ψ)H = IGLL
H ∇ϕ · ∇ψ. (9)

The discrete inner product induces the discrete norm114

∥u∥H = (u, u)
1/2
H ,

which is a well defined norm over VH, since it is equivalent to the usual L2 norm over VH as we will see later115

in Lemma 4.1. We also note that if ϕ|K and ψ|K ∈ Qp(K), then ∇ϕ|K ·∇ψ|K ∈ Q2p(K) and aH(ϕ, ψ) is not116
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equal to a(ϕ, ψ). As mentioned earlier, an important advantage of SEM is mass-lumping. This is achieved117

by defining the degrees of freedom on Qp(K̂) in terms of the GLL points, i.e.118

Σ̂ =
{
σ̂i,j : Qp(K̂) → R, i, j = 0, . . . , p; σ̂i,j(v̂) = v̂(ξi, ξj), ∀v̂ ∈ Qp(K̂)

}
.

The spectral element discretization problem is then defined as:

Find uH(t) ∈ VH, for all t ∈ [0, T ], such that:(
∂2uH
∂t2

, vH

)
H
+ aH

(
uH, vH

)
=
(
f, vH

)
H, ∀vH ∈ VH, ∀t ∈ (0, T ) (10a)(

uH(0), vH
)
H =

(
u0, vH

)
H, ∀vH ∈ VH, (10b)(

∂uH
∂t

(0), vH

)
H

=
(
u1, vH

)
H, ∀vH ∈ VH. (10c)

We now discretize the above problem with respect to time. We partition the time domain [0, T ] into NT

uniform subintervals of size ∆t = T/NT and approximate the semi-discrete Problem (10) by the leap-frog

scheme. We thus obtain the fully discrete problem:

Find unH ∈ VH, for n = 0, . . . , NT , such that:(
δ2unH, vH

)
H + aH

(
unH, vH

)
=
(
f(tn), vH

)
H, ∀vH ∈ VH, n = 1, . . . , NT − 1 (11a)(

u0H, vH
)
H =

(
u0, vH

)
H, ∀vH ∈ VH, (11b)(

z0H, vH
)
H =

(
u1, vH

)
H, ∀vH ∈ VH, (11c)

2

∆t2
(
u1H − u0H −∆tz0H, vH

)
H + aH

(
u0H, vH

)
=
(
f(t0), vH

)
H, ∀vH ∈ VH, (11d)

where δ2 represents the central finite difference operator119

δ2unH =
un+1
H − 2unH + un−1

H
∆t2

.

Finally, the restrictions of the inner products (·, ·) and (·, ·)H to an element K are denoted by (·, ·)K and120

(·, ·)H,K , respectively, and similarly, the restricted norms will be written as ∥ · ∥K , ∥ · ∥s,K , and ∥ · ∥H,K . We121

also introduce the broken Sobolev space associated with a triangulation Th of Ω̄122

Hs(Ω, Th) =
{
v ∈ L2(Ω); v|K ∈ Hs(K), ∀K ∈ Th

}
,

where v|K is the restriction of v to K, equipped with the norm123

∥v∥s,Th
=

( ∑
K∈Th

∥v∥2s,K
)1/2

.

Similar to (5) we define the norm of the space Cm(0, T ;Hs(Ω, Th)) as

∥u∥Cm(Hs(Th)) = max
0≤l≤m

(
sup

0≤t≤T
∥u(l)(t)∥s,Th

)
.

A complete discussion of broken Sobolev spaces can be found in [30], but for our purposes it suffices to124

observe that Hs(Ω, Th) is a Hilbert space and that Hs(Ω) ⊂ Hs(Ω, Th). In the same vein, we will also be125

using the finite-dimensional broken space126

VH,Th
=
{
ϕ ∈ L2(Ω) : ϕ|K ∈ Qp(K), ∀K ∈ Th, ϕ = 0 on ∂Ω

}
. (12)
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4 Interpolation and projection estimates127

We present in this section some preliminary results for the spectral element method and the h and h-p128

versions of the finite element method, including interpolation and projection error estimates, that will be129

needed for the derivation of the a priori error estimates of Section 5. The results presented in this section130

either are identical or include slight improvements to those found in [26, 31, 36]. When identical, the proofs131

can be found in the references given for each result. In the remainder of the paper, we will consider C and132

Cp as generic positive constants such that C is independent of h and p, while Cp is independent of h but133

may depend on p. These constants may nonetheless depend on the regularity and quasi-uniformity of the134

underlying family of triangulations {Th}h>0. Moreover, we emphasize here that the parameter s will always135

be chosen as a non-negative integer in the remainder of the paper.136

Lemma 4.1 ([6], Lemma 3.2). The L2 norm ∥ · ∥0 and the discrete norm ∥ · ∥H are equivalent in VH,Th
, i.e.137

there exists C > 0 such that138

∥v∥0 ≤ ∥v∥H ≤ C∥v∥0, ∀v ∈ VH,Th
.

From this lemma, we can deduce the coercivity of aH over VH. The previous estimate shows that139

∥∇vH∥20 ≤ ∥∇vH∥2H = aH(vH, vH) while Poincaré’s inequality implies the existence of a constant C such140

that141

C∥vH∥21 ≤ aH(vH, vH), ∀vH ∈ VH. (13)

Definition 4.1 (Interpolation Operator). For a positive integer p, the GLL interpolation operator Ih,p :142

C(Ω) → VH is uniquely defined such that, for v ∈ C(Ω),143 (
Ih,pv

)
(xK

i,j) = v(xK
i,j), ∀i, j = 0, . . . , p,

where the points xK
i,j are the images of the GLL points by FK . This operator can be restricted to a single144

element K ∈ Th, say IKh,p : C(K) → Qp(K), such that, for v ∈ C(K),145 (
IKh,pv

)
(xK

i,j) = v(xK
i,j), ∀i, j = 0, . . . , p.

Remark 4.1. Assuming that u0 ∈ V ∩ C(Ω) and u1 ∈ L2(Ω) ∩ C(Ω) so that their interpolants are well-146

defined, then the definition of the inner product (·, ·)H makes it clear that the functions u0H and z0H in (11b)147

and (11c) actually satisfy u0H = Ih,pu0 and z0H = Ih,pu1.148

Lemma 4.2 ([26], Lemma 3.3). Consider an integer s ≥ 2. Then there exists a constant C such that for149

q = 0 or 1, we have150

∥v − Ih,pv∥q ≤ C
hmin(p+1,s)−q

ps−q
∥v∥s,Th

, ∀ v ∈ Hs(Ω, Th) ∩H1(Ω).

The next lemma improves the term p1−s in Lemma 3.4 of [26] to a term p−s. Although the improvement151

was first described in [31] for the usual Sobolev spaces, we extend it here for broken Sobolev spaces, as we152

will need it, and include its proof for the sake of completeness.153

Lemma 4.3. Let s ≥ 2 and p ≥ 2. If v ∈ Hs(Ω, Th) and vH ∈ VH,Th
, then154

(v, vH)− (v, vH)H ≤ C
hmin(p,s)

ps
∥v∥s,Th

∥vH∥0.
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Proof. From the definition of the interpolant IKh,p, we have

(v, vH)H,K = (IKh,pv, vH)H,K .

Since the GLL quadrature is of precision 2p− 1, we also get

(IKh,p−1v, vH)H,K = (IKh,p−1v, vH)K .

Using the results above and Lemma 4.1, we have155

(v, vH)K − (v, vH)H,K = (v, vH)K − (IKh,p−1v, vH)K + (IKh,p−1v, vH)H,K − (IKh,pv, vH)H,K

= (v − IKh,p−1v, vH)K + (IKh,p−1v − IKh,pv, vH)H,K

≤ ∥v − IKh,p−1v∥0,K∥vH∥0,K + ∥IKh,p−1v − IKh,pv∥H,K∥vH∥H,K

≤ ∥v − IKh,p−1v∥0,K∥vH∥0,K + C∥IKh,p−1v − IKh,pv∥0,K∥vH∥0,K .

(14)

Using the triangle inequality, one obtains156

∥IKh,p−1v − IKh,pv∥0,K = ∥IKh,p−1v − v + v − IKh,pv∥0,K ≤ ∥v − IKh,p−1v∥0,K + ∥v − IKh,pv∥0,K ,

so that157

(v, vH)K − (v, vH)H,K ≤ C
(
∥v − IKh,p−1v∥0,K + ∥v − IKh,pv∥0,K

)
∥vH∥0,K . (15)

Since Lemma 4.2 can be restricted to a single element K with the local interpolation operator IKh,p, then its158

application to the above equation implies159

(v, vH)K − (v, vH)H,K ≤ C
hmin(p,s)

(p− 1)s
∥v∥s,K∥vH∥0

and summing the above equation for all K ∈ Th completes the proof since p/(p− 1) ≤ 2 for p ≥ 2.160

Lemma 4.4 ([26], Lemma 3.6). There exists a positive constant Ca independent of h and p such that161

aH(vH, vH) ≤ Cah
−2p4∥vH∥2H, ∀ vH ∈ VH.

In Section 5, we will discuss the relation of that constant Ca with the stability of the scheme.162

Definition 4.2 (Projection Operator). The projection operator ΠH : V → VH associates with each v ∈ V163

the solution ΠHv to the problem:164

Find ΠHv ∈ VH such that: aH(ΠHv, vH) = a(v, vH), ∀vH ∈ VH.

The next result presents the error bound on v − ΠHv. It was established in [36] and [31] for the usual165

Sobolev spaces, and is extended here for the broken Sobolev spaces.166

Lemma 4.5. Suppose that s ≥ 2 and p ≥ 2. Then there exists a constant C such that167

∥v −ΠHv∥1 ≤ C
hmin(p,s)−1

ps−1
∥v∥s,Th

, ∀ v ∈ Hs(Ω, Th) ∩H1(Ω).

Proof. We reproduce the proof of Lemma 1 of [36] while extending it to the broken Sobolev spaces. For any168

vH ∈ VH, the triangle inequality leads to169

∥v −ΠHv∥1 ≤ ∥v − vH∥1 + ∥ΠHv − vH∥1. (16)
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Let wH = ΠHv − vH. We show that the term ∥wH∥1 can be bounded using the ellipticity of aH and the170

definition of the projection ΠH, that is,171

C∥wH∥21 = C∥ΠHv − vH∥21 ≤ aH(ΠHv − vH, wH)

= a(v, wH)− aH(vH, wH)

= a(v, wH)− a(vH, wH) + a(vH, wH)− aH(vH, wH)

= a(v − vH, wH) +
[
a(vH, wH)− aH(vH, wH)

]
≤ ∥v − vH∥1∥wH∥1 +

[
a(vH, wH)− aH(vH, wH)

]
,

which yields172

C∥ΠHv − vH∥1 ≤ ∥v − vH∥1 + sup
zH∈VH

a(vH, zH)− aH(vH, zH)

∥zH∥1
.

Injecting the bound on ∥wH∥1 = ∥ΠHv − vH∥1 into (16) gives173

∥v −ΠHv∥1 ≤ C

[
∥v − vH∥1 + sup

zH∈VH

a(vH, zH)− aH(vH, zH)

∥zH∥1

]
. (17)

If we take vH = Ih,p−1v, the last term in (17) vanishes since ∇vH · ∇zH is a polynomial of degree 2p − 1.174

Then, using Lemma 4.2 with q = 1 and the fact that p/(p− 1) ≤ 2 for p ≥ 2, we obtain175

∥v −ΠHv∥1 ≤ C∥v − Ih,p−1v∥1 ≤ Chmin(p,s)−1p1−s∥v∥s,Th
,

which is the desired bound.176

The following result is an immediate consequence of applying Aubin-Nitsche’s Lemma [10] to the previous177

lemma.178

Corollary 4.6. For s ≥ 2 and p ≥ 2, there exists a constant C such that179

∥v −ΠHv∥0 ≤ C
hmin(p,s)

ps
∥v∥s,Th

, ∀v ∈ Hs(Ω, Th) ∩H1(Ω).

Since the error bound on v−ΠHv in Lemma 4.5 and its corollary are not optimal in h and p simultaneously,180

we show below that these results have an optimal rate of convergence in the variable h alone. We emphasize181

here that the constant Cp may depend on p in the following.182

Lemma 4.7. Suppose that s ≥ 3. Then there exists a constant Cp such that183

∥v −ΠHv∥1 ≤ Cph
min(p,s−1)∥v∥s,Th

, ∀ v ∈ Hs(Ω, Th) ∩H1(Ω).

Proof. We will proceed from Eq. (17) of the proof of Lemma 4.5. We shall find a bound on the term

a(vH, zH) − aH(vH, zH) rather than making it vanish by invoking Ih,p−1v. Using Lemma 4.3, we have for

any r ≥ 2
a(vH, zH)− aH(vH, zH) = (∇vH,∇zH)− (∇vH,∇zH)H

≤ Cph
min(p,r)∥∇vH∥r,Th

∥∇zH∥0
≤ Cph

min(p,r)∥vH∥r+1,Th
∥zH∥1.

Setting vH = Ih,pv and r = s− 1 in the above equation, one gets184

a(Ih,pv, zH)− aH(Ih,pv, zH) ≤ Cph
min(p,s−1)∥Ih,pv∥s,Th

∥zH∥1. (18)
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Following Section 4.4 of [4], we have that for l ≥ 2 the interpolation operator has the following continuity185

property186

∥Ih,pv∥l,Th
≤ Cp∥v∥l,Th

, ∀ v ∈ H l(Ω, Th) ∩H1(Ω). (19)

Using (18) and (19), Eq. (17) becomes187

∥v −ΠHv∥1 ≤ Cp(∥v − Ih,pv∥1 + hmin(p,s−1)∥v∥s,Th
). (20)

The proof is completed by the application of Lemma 4.2 to the above equation.188

5 A priori error estimation189

In this section, we carry out the analysis of the a priori error estimates for the fully discrete Problem (11)

in the H1 norm. We shall see in the numerical experiments that the h-p error bound, established in the

upcoming Theorem 5.5, does not match the rate of convergence with respect to the mesh size h observed

numerically. Likewise, we present an h version of the error bound, which will be shown to be optimal in

h alone. Similar error estimates were presented in terms of the L2 norm in [31, 36] for the homogeneous

problem and in [26] for the heterogeneous case. The following analysis is studied for p ≥ 2 and under the

following regularity properties for Problem (6): u ∈ C2
(
0, T ;Hs(Ω, Th) ∩ H1

0 (Ω)
)
∩ C4

(
0, T ;L2(Ω)

)
with

s ≥ 2, and f ∈ C0
(
0, T ;Hd(Ω, Th)

)
with d ≥ 2. We first introduce some notation that will be convenient

throughout the remainder of this section:

ϕn = ΠHu(tn)− unH, n = 0, . . . , NT ,

rn = δ2ΠHu(tn)− ü(tn), n = 1, . . . , NT ,

qn(vnH) = (f(tn)− ü(tn), v
n
H)− (f(tn)− ü(tn), v

n
H)H, n = 1, . . . , NT ,

with the exceptional cases r0 = q0 = 0. The proofs of the following lemmas are found in the Appendix.190

Lemma 5.1. For m = 0, . . . , NT − 1, the following bound holds191

C∥ϕm+1 − ϕm∥2H ≤ ∥ϕ1 − ϕ0∥2H +∆t2aH(ϕ0, ϕ1) +∆t2
m∑

n=0

(rn, ϕn+1 − ϕn−1)H + qn(ϕn+1 − ϕn−1),

under the stability condition192

∆t <
2h

p2
√
Ca

, (21)

where Ca is the stability constant introduced in Lemma 4.4.193

The next two estimates will provide bounds on the terms on the right-hand side of Lemma 5.1. We note194

that the following lemma is similar to Lemma 4.2 in [26].195

Lemma 5.2. The functions ϕ0 and ϕ1 satisfy196

∥ϕ1 − ϕ0∥2H +∆t2aH(ϕ0, ϕ1) ≤ C

[
∆t

hmin(p,s)

ps
∥u̇∥C0(Hs(Th)) +∆t3∥u(3)∥C0(L2)

+∆t2
hmin(p,d)

pd
∥f(t0)∥d,Th

+∆t
hmin(p,s)−1

ps−1
∥u0∥s,Th

]2
.
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Lemma 5.3. For any sequence of functions vnH ∈ VH, n = 0, . . . , NT − 1, and for any m = 0, . . . , NT − 1,197

it holds198
m∑

n=0

(rn, vnH)H + qn(vnH) ≤ CNT

[
hmin(p,d)

pd
∥f∥C0(Hd(Th)) +

hmin(p,s)

ps−1
∥ü∥C0(Hs(Th))

+∆t2∥u(4)∥C0(L2)

]
max

1≤n≤m
∥vnH∥H.

The next lemma is an intermediate step combining Lemmas 5.1-5.3 and whose proof is provided in the199

Appendix.200

Lemma 5.4. Assuming the stability condition (21) is satisfied, then it holds for n = 0, . . . , NT − 1, that201

∥ϕn+1 − ϕn∥H ≤ C∆t

[
hmin(p,s)

ps
∥u̇∥C0(Hs(Th)) +∆t2∥u(3)∥C0(L2) +

hmin(p,s)−1

ps−1
∥u0∥s,Th

+
hmin(p,d)

pd
∥f∥C0(Hd(Th)) +

hmin(p,s)

ps−1
∥ü∥C0(Hs(Th)) +∆t2∥u(4)∥C0(L2)

]
.

The following theorem is the main result of the paper, in which we establish an error bound in the202

H1 norm for the numerical solution to Problem (11). We recall that a similar error bound is presented in203

the L2 norm in [31, 36, 26].204

Theorem 5.5 (h-p version). Assuming the stability condition (21) holds, then the error en = u(tn) −205

unH, n = 0, . . . , NT − 1, satisfies206

max
0≤n≤NT−1

∥en∥1 ≤ C

[
hmin(p,s)−1

ps−1
∥u∥C0(Hs(Th)) +

hmin(p,d)

pd
∥f∥C0(Hd(Th))

+
hmin(p,s)

ps−1
∥u∥C2(Hs(Th)) +∆t2∥u∥C4(L2)

]
.

Proof. We begin with the application of the triangle inequality,207

max
0≤n≤NT−1

∥en∥1 ≤ max
0≤n≤NT−1

∥u(tn)−ΠHu(tn)∥1 + max
0≤n≤NT−1

∥ϕn∥1. (22)

The first term in (22) is bounded by Lemma 4.5208

max
0≤n≤NT−1

∥u(tn)−ΠHu(tn)∥1 ≤ Chmin(p,s)−1p1−s∥u∥C0(Hs(Th)). (23)

The rest of the proof will focus on the second term in (22). Subtracting (11a) from (6), we have, for any

vnH ∈ VH and n = 1, . . . , NT − 1,

−(δ2unH, v
n
H)H − aH(unH, v

n
H) + a(u(tn), v

n
H) = −(ü(tn), v

n
H)− (f(tn), v

n
H)H + (f(tn), v

n
H)

so that

(δ2(ΠHu(tn)− unH), vnH)H + aH(ΠHu(tn)− unH, v
n
H)

= (δ2ΠHu(tn), v
n
H)H − (ü(tn), v

n
H)− (f(tn), v

n
H)H + (f(tn), v

n
H),

and

(δ2ϕn, vnH)H + aH(ϕn, vnH) = (δ2ΠHu(tn), v
n
H)H − (ü(tn), v

n
H)− (f(tn), v

n
H)H + (f(tn), v

n
H).
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With the notation for rn and qn, we conclude that for any vnH ∈ VH and n = 1, . . . , NT − 1,209

(δ2ϕn, vnH)H + aH(ϕn, vnH) = (rn, vnH)H + qn(vnH). (24)

We sum from n = 1 to n = m, while m itself is bounded above by NT − 1, to find210

m∑
n=1

(δ2ϕn, vnH)H +

m∑
n=1

aH(ϕn, vnH) =

m∑
n=1

(rn, vnH)H + qn(vnH). (25)

Now we set vnH = ϕn+1 − ϕn−1, for 1 ≤ n ≤ m− 1 and vmH = ϕm − ϕm−1, and rewrite the first term on the211

left-hand side of (25) as212

∆t2
(m−1∑

n=1

(δ2ϕn, ϕn+1 − ϕn−1)H + (δ2ϕm, ϕm − ϕm−1)H

)
= 2(ϕ1, ϕ0)H − (ϕ0, ϕ0)H − (ϕ1, ϕ1)H

+ (ϕm−1, ϕm−1)H + (ϕm, ϕm)H − 2(ϕm−1, ϕm)H + (ϕm+1, ϕm)H − 2(ϕm, ϕm)H

+ (ϕm−1, ϕm)H − (ϕm+1, ϕm−1)H + 2(ϕm, ϕm−1)H − (ϕm−1, ϕm−1)H

= (ϕm+1, ϕm)H − (ϕm, ϕm)H + (ϕm−1, ϕm)H − (ϕm+1, ϕm−1)H − ∥ϕ1 − ϕ0∥2H.

= (ϕm+1 − ϕm, ϕm − ϕm−1)H − ∥ϕ1 − ϕ0∥2H.

Simplifying now the second term on the left-hand side of (25), we find213

m−1∑
n=1

aH(ϕn, ϕn+1 − ϕn−1) + aH(ϕm, ϕm − ϕm−1) = aH(ϕm−1, ϕm)− aH(ϕ0, ϕ1) + aH(ϕm, ϕm − ϕm−1)

= aH(ϕm, ϕm)− aH(ϕ0, ϕ1).

Substituting the last two identities into the left-hand side of (25), using our choices of vnH, and simplifying,214

we get215

aH(ϕm, ϕm) =
1

∆t2
(ϕm − ϕm+1, ϕm − ϕm−1)H +

1

∆t2
∥ϕ1 − ϕ0∥2H + aH(ϕ0, ϕ1)

+

m−1∑
n=1

[
(rn, ϕn+1 − ϕn−1)H + qn(ϕn+1 − ϕn−1)

]
+ (rm, ϕm − ϕm−1)H + qm(ϕm − ϕm−1).

(26)

For all 0 ≤ m ≤ NT − 1, the coercivity of aH implies that C∥ϕm∥21 ≤ aH(ϕm, ϕm) and the Cauchy-Schwarz216

inequality implies that (ϕm − ϕm+1, ϕm − ϕm−1)H ≤ max0≤n≤m ∥ϕn+1 − ϕn∥2H.217

Then, by combining Lemma 5.2 and Lemma 5.3, and using the Peter-Paul inequality 2ab ≤ εa2 + b2/ε

with ε = ∆t2, we obtain

∥ϕm∥21 ≤ 1

∆t2
max

0≤n≤m
∥ϕn+1 − ϕn∥2H

+ C
[
hmin(p,s)p−s∥u̇∥C0(Hs(Th)) +∆t2∥u(3)∥C0(L2)

+∆thmin(p,d)p−d∥f(t0)∥d,Th
+ hmin(p,s)−1p1−s∥u0∥s,Th

]2
+
C2

2
N2

T∆t
2
[
hmin(p,d)p−d∥f∥C0(Hd(Th)) + hmin(p,s)p1−s∥ü∥C0(Hs(Th)) +∆t2∥u(4)∥C0(L2)

]2
+

1

2∆t2

[
max

1≤n≤m−1
∥ϕn+1 − ϕn−1∥H + ∥ϕm − ϕm−1∥H

]2
.
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To handle the last term in the estimate above, we use the triangular inequality218

max
1≤n≤m−1

∥ϕn+1 − ϕn−1∥H ≤ 2 max
0≤n≤m−1

∥ϕn+1 − ϕn∥H,

and Lemma 5.4 to obtain

∥ϕm∥21 ≤ C2
[
hmin(p,s)p−s∥u̇∥C0(Hs(Th)) +∆t2∥u(3)∥C0(L2) + hmin(p,s)−1p1−s∥u0∥s,Th

+ hmin(p,d)p−d∥f∥C0(Hd(Th)) + hmin(p,s)p1−s∥ü∥C0(Hs(Th)) +∆t2∥u(4)∥C0(L2)

]2
+ C

[
hmin(p,s)p−s∥u̇∥C0(Hs(Th)) +∆t2∥u(3)∥C0(L2)

+∆t hmin(p,d)p−d∥f(t0)∥d,Th
+ hmin(p,s)−1p1−s∥u0∥s,Th

]2
+
C2

2
T 2
[
hmin(p,d)p−d∥f∥C0(Hd(Th)) + hmin(p,s)p1−s∥ü∥C0(Hs(Th)) +∆t2∥u(4)∥C0(L2)

]2
.

Combining the terms and using the fact that ∆t < T , we deduce219

max
1≤n≤NT−1

∥ϕn∥1 ≤ C
[
hmin(p,s)p−s∥u̇∥C0(Hs(Th)) +∆t2∥u(3)∥C0(L2) + hmin(p,s)−1p1−s∥u0∥s,Th

+ hmin(p,d)p−d∥f∥C0(Hd(Th)) + hmin(p,s)p1−s∥ü∥C0(Hs(Th)) +∆t2∥u(4)∥C0(L2)

]
.

(27)

In order to extend Eq. (27) to n = 0, we deduce from Remark 4.1, Lemma 4.5, and Lemma 4.2 that220

∥ϕ0∥1 = ∥ΠHu0 − u0H∥1
≤ ∥ΠHu0 − u0∥1 + ∥u0 − Ih,pu0∥1
≤ Chmin(p,s)−1p1−s∥u0∥s,Th

.

(28)

Finally, replacing (23), (27), and (28) in (22) allows one to complete the proof.221

We will see in Section 6 that the numerical experiments show a higher convergence rate in h than that222

suggested by Theorem 5.5. Hence, in order to explain those results, we propose the h version of Theorem 5.5223

that shows an optimal order of convergence in h alone. For the following theorem we restrict the regularity224

of the solution for Problem (6) to u ∈ C2
(
0, T ;Hs(Ω, Th) ∩H1

0 (Ω)
)
∩ C4

(
0, T ;L2(Ω)

)
with s ≥ 3.225

Theorem 5.6 (h version). Assuming the stability condition (21) holds, then the error en = u(tn) − unH,226

for n = 0, . . . , NT − 1, satisfies227

max
0≤n≤NT−1

∥en∥1 ≤ Cp

[
hmin(p,s−1)∥u∥C0(Hs(Th)) + hmin(p,d)∥f∥C0(Hd(Th))

+ hmin(p,s)∥u∥C2(Hs(Th)) +∆t2∥u∥C4(L2)

]
,

where Cp is a constant that depends on p.228

Proof. The bound is obtained by following the same steps as those in the proof of Theorem 5.5, but using229

Lemma 4.7 instead of Lemma 4.5 to estimate the projection error in the H1 norm.230

6 Numerical examples231

In this section, we present a series of numerical experiments in order to verify the formal a priori estimates232

of the previous section. In addition to the error bounds in the H1 norm, we also provide numerical estimates233
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in the L2 error. We emphasize here that we will be varying h or p alone, and not simultaneously, so that234

we will refer to Theorem 5.6 when varying h and to Theorem 5.5 otherwise. The numerical experiments235

are performed using the open-source MATLAB code developed by Ampuero [3]. The code is limited to 2D236

but can handle structured rectangular meshes with GLL quadrature of order up to 20. Given the extreme237

precision required by the numerical experiments below, the code was found to be accurate and reliable. In238

all the examples, the spatial domain is chosen as Ω = [−1, 1] × [−1, 1] and the error is evaluated at T = 1.239

The norms are estimated using the GLL quadrature with 20×20 integration points on each element in order240

to neglect any integration error. Moreover, we consider problems with regular and non regular solutions to241

address the dependence of the convergence on the smoothness of the data.242

6.1 Regular solution243

We will consider the numerical example proposed in [36] and [26]. In that case, the source term f and the244

initial data u0 and u1 are defined such that the exact solution is245

u(x, y, t) = sin(πx) sin(πy)(x2 − 1)(y2 − 1) exp(−t2).

The source term f , the solution u(·, t), and all its temporal derivatives are in C∞(Ω). We show in Figure 1246

the convergence of the error in the L2 and H1 norms with respect to the mesh size h, for two values p = 2, 4247

of the polynomial degree. We observe that the error in the H1 norm converges with an order O(hp), which248

confirms the results established in Theorem 5.6 since u and f are smooth. We also remark that the L2 error249

behaves as O(hp+1), which is consistent with what was observed by [36, 31, 26]. In fact, the analysis presented250

in [36] and [31] proves that the order of convergence in the L2 norm can not be worse than O(hp) in the251

case of smooth functions. The dependence of the error on p is now presented in Figure 2. As anticipated252

by Theorem 5.5, we observe an exponential convergence for the H1 and L2 errors before reaching a plateau253

region for large p when time discretization errors start to dominate. Indeed, decreasing ∆t from 10−2 to254

10−3, as shown in Figure 2, lowers the plateaus by two orders of magnitude in both norms, which verifies255

the second-order accuracy in time.256

6.2 Non regular solution257

In order to investigate the effects of the smoothness of the solution on the convergence, we consider a258

manufactured solution of the wave equation on Ω = (−1, 1) × (−1, 1) that features a discontinuity in the259

derivative of order q + 1 at x = 0. The initial conditions and the source term are thus chosen here so that260

u(x, y, t) =

{
sin(πx) sin(πy)(xq − xq+1)(yq − yq+2) exp(−λt2), x > 0,

0, x ≤ 0,

with λ = 0.1. It follows that u ∈ Cq(Ω) and f ∈ Cq−2(Ω). On the one hand, if the number of elements in261

the x direction is even, then x = 0 coincides with the boundary of some elements in Th so that the functions262

u and f are in Hs(Ω, Th) for all s ≥ 0. In this case, the error estimates indicate that the convergence should263

have a behavior similar to that of the smooth case. On the other hand, if the number of elements in the x264

direction is odd, then the discontinuity occurs in the interior of some elements of the mesh, and we should265

expect that the convergence of the numerical solution would be limited by the smoothness of the data. The266

two scenarios are presented below.267
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Figure 1: Convergence of the error in the L2 norm (left) and in the H1 norm (right) as a function of 1/h for
the example of Section 6.1 with a regular solution using p = 2, 4 and ∆t = 10−4.

Figure 2: Convergence of the error in the L2 norm (left) and in the H1 norm (right) as a function of p for
the example of Section 6.1 with a regular solution using ∆t = 10−2 and ∆t = 10−3 but a fixed h = 1/2.

6.2.1 Odd number of elements268

We first investigate the case where x = 0 passes through some elements of the triangulation. Therefore, for269

the results of Figures 3, 4, and 5, the element size is chosen so that we have an odd number of elements in270

the x direction. We present in Figures 3 and 4 the errors in the H1 and L2 norms as a function of 1/h for271

q = 2 and q = 4, respectively. We observe that both the H1 and the L2 errors seem to converge with a rate272
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O(hq), independently of the values of p if chosen greater than q. We show in Figure 5 the errors in the H1
273

and L2 norms with respect to the polynomial degree p using q = 2 and q = 4 and fixing h = 2/3. Note that274

the polynomial degree p in this figure is presented on a logarithmic scale to better interpret the asymptotic275

behavior of the errors. We then observe that the errors behave as O(p−q). The solution u ∈ Hq+1(Ω) being276

more regular than the source term f ∈ Hq−1(Ω), we should expect from Theorem 5.5 that the order of277

convergence be limited by the source term, that is, it should be O(hq−1) when varying the element size and278

O(p1−q) when varying the polynomial degree. However, if one ignores the source term, the estimate based279

only on the regularity of u should predict a convergence of O(hq) and O(p−q). The numerical experiments280

actually exhibit the rates of convergence predicted by the regularity of the solution and do not seem to be281

affected by the regularity of the source term.282

Figure 3: The error plots in the L2 norm (left) and in theH1 norm (right) as a function of 1/h for the example
of Section 6.2 with a solution of limited regularity using p = 4, 6, ∆t = 10−3, q = 2, and a discretization
with an odd number of elements in the x direction.

6.2.2 Even number of elements283

We finally consider the case where the discontinuity coincides with some interfaces between elements. We284

can infer from Figure 6 that the errors in the H1 and L2 norms have the same asymptotic behavior as that285

in the case of the smooth function problem. The reason is that the error bound depends on the regularity286

of the solution and source term in the broken norm. Thus solving the homogeneous wave equation on a287

triangulation for which the discontinuities appear only at the interface between elements will not impact the288

order of convergence.289

7 Conclusions290

We have developed in this paper a priori error estimates in the H1 norm for numerical solutions to the291

homogeneous wave equation with Dirichlet boundary conditions, approximated by the spectral element292
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Figure 4: The error plots in the L2 norm (left) and in the H1 norm (right) as a function of 1/h for the
example of Section 6.2 with a solution of limited regularity using p = 6, 10, ∆t = 10−3, q = 4, and a
discretization with an odd number of elements in the x direction.

Figure 5: The error plots in the L2 norm (left) and in the H1 norm (right) as a function of p for the example
of Section 6.2 with a solution of limited regularity using q = 2, 4, ∆t = 10−3, and h = 2/3 (i.e. the mesh
consists of three elements in the x direction).

method with Gauss-Lobatto-Legendre quadrature points and a leap-frog discretization in time. This work293

is intended to be an extension of the work published in [31, 36, 26], where the authors carried out the error294

analysis in the L2 norm with sub-optimal results in h. We have also presented several numerical examples295

that confirmed that our estimates in both h and p are optimal.296
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Figure 6: The error plots in the L2 norm (left) and in the H1 norm (right) as a function of 1/h for the
example of Section 6.2 with a solution of limited regularity using p = 4, ∆t = 10−3, q = 2 and a discretization
with an even number of elements in the x direction.

One novelty of this study lies in the result of Lemma 4.7, where we establish that the error estimate297

for the projection operator ΠH is optimal when expressed with respect to h alone. By contrast, previous298

results [31, 36] provided a similar bound, but with the significant difference that the error estimate, which299

was simultaneously expressed in terms of h and p, was one order less in h.300

A second contribution is the estimation of the a priori error in the H1 norm for the fully discretized301

problem. We have presented two a priori error bounds: an h version and an h-p version. The h error302

estimates explicitly depend on the size of the elements, the time step, and the smoothness of the data, while303

the h-p version additionally depend on the polynomial degree of the basis functions. On the one hand, the304

h-p version of the error bound features an optimal exponential convergence in p, a second-order convergence305

in time, and an order of convergence p − 1 in h. The numerical examples have confirmed the predicted306

exponential convergence in p while indicating a slightly better rate of convergence with respect to h. On the307

other hand, the a priori error estimates provided by the h version have been shown to match those from the308

numerical examples. Finally, we have conducted additional numerical experiments in order to show the effect309

of the limited regularity in the data on the convergence. We were able to conclude that the convergence was310

not affected if the loss of regularity occurred at the interface of the elements, as predicted by our analysis.311

The proposed study could be extended to the heterogeneous wave equation in higher dimensions and312

to problems with mixed boundary conditions, involving for example Dirichlet and Neumann conditions.313

Moreover, similarly to the work in [15], where the authors presented the error analysis for the semi-discrete314

wave equation for non affine elements, our findings could be further investigated, both mathematically and315

numerically, in the case of triangulations with non affine local transformations.316
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Appendix: Proofs325

Several arguments in the following proofs are similar to those found in [26]. By keeping the novel aspects of326

the paper in Sections 4-5, but relegating some of the repetitive algebraic manipulations to the Appendix, we327

hope to have made the paper both comprehensive, for those new to the topic, and concise, for those already328

familiar with the challenging aspects of this work.329

Proof of Lemma 5.1. The first step of the proof, to obtain the identity (29), was already presented in the330

proof of Theorem 5.5 but is repeated here for the sake of completeness. Subtracting (11a) from (6), we have331

for any vnH ∈ VH and n = 1, . . . , NT − 1,332

−
(
δ2unH, v

n
H
)
H − aH

(
unH, v

n
H
)
+ a
(
u(tn), v

n
H
)
= −

(
ü(tn), v

n
H
)
−
(
f(tn), v

n
H
)
H +

(
f(tn), v

n
H
)
,

so that333 (
δ2(ΠHu(tn)− unH), vnH

)
H + aH

(
ΠHu(tn)− unH, v

n
H
)
=(

δ2ΠHu(tn), v
n
H
)
H −

(
ü(tn), v

n
H
)
−
(
f(tn), v

n
H
)
H +

(
f(tn), v

n
H
)
,

and334 (
δ2ϕn, vnH

)
H + aH

(
ϕn, vnH

)
=
(
δ2ΠHu(tn), v

n
H
)
H −

(
ü(tn), v

n
H
)
−
(
f(tn), v

n
H
)
H +

(
f(tn), v

n
H
)
.

For any vnH ∈ VH and n = 1, . . . , NT − 1, we have thus shown that335

(δ2ϕn, vnH)H + aH(ϕn, vnH) = (rn, vnH)H + qn(vnH), (29)

where rn = δ2ΠHu(tn)− ü(tn) and q
n(vnH) =

(
f(tn)− ü(tn), v

n
H
)
−
(
f(tn)− ü(tn), v

n
H
)
H. In contrast to the336

manipulations following (24), we use the same definition of vnH = ϕn+1 − ϕn−1 for all n, and then sum from337

n = 1 to m, with 1 ≤ m ≤ NT − 1,338

m∑
n=1

(δ2ϕn, ϕn+1 − ϕn−1)H +

m∑
n=1

aH(ϕn, ϕn+1 − ϕn−1) =

m∑
n=1

(rn, ϕn+1 − ϕn−1)H + qn(ϕn+1 − ϕn−1). (30)
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The first term in (30) can be rewritten as339

∆t2
m∑

n=1

(δ2ϕn, ϕn+1 − ϕn−1)H

=

m∑
n=1

(ϕn+1, ϕn+1 − ϕn−1)H − 2

m∑
n=1

(ϕn, ϕn+1 − ϕn−1)H +

m∑
n=1

(ϕn−1, ϕn+1 − ϕn−1)H

=

m∑
n=1

(ϕn+1, ϕn+1)H − 2

m∑
n=1

(ϕn, ϕn+1 − ϕn−1)H +

m∑
n=1

(ϕn−1,−ϕn−1)H

=

m+1∑
n=2

(ϕn, ϕn)H − 2

m∑
n=1

(ϕn, ϕn+1)H + 2

m−1∑
n=0

(ϕn+1, ϕn)H −
m−1∑
n=0

(ϕn, ϕn)H

= (ϕm+1, ϕm+1)H + (ϕm, ϕm)H − 2(ϕm, ϕm+1)H + 2(ϕ1, ϕ0)H − (ϕ0, ϕ0)H − (ϕ1, ϕ1)H

= ∥ϕm+1 − ϕm∥2H − ∥ϕ1 − ϕ0∥2H.

Similarly, one can prove that340

m∑
n=1

aH(ϕn, ϕn+1 − ϕn−1) = aH(ϕm, ϕm+1)− aH(ϕ0, ϕ1).

Substituting these last two identities for the first two terms in (30), we find341

1

∆t2
∥ϕm+1 − ϕm∥2H + aH(ϕm, ϕm+1) =

1

∆t2
∥ϕ1 − ϕ0∥2H + aH(ϕ0, ϕ1)

+

m∑
n=1

(rn, ϕn+1 − ϕn−1)H + qn(ϕn+1 − ϕn−1).
(31)

The above equation can be extended to m = 0 if we define r0 = 0 and q0 = 0.342

Similar to Grote and Schötzau [16], we remark that343

aH(ϕm, ϕm+1) = aH

(
ϕm + ϕm+1

2
,
ϕm + ϕm+1

2

)
− aH

(
ϕm − ϕm+1

2
,
ϕm − ϕm+1

2

)
≥ −1

4
aH(ϕm − ϕm+1, ϕm − ϕm+1).

Then, using Lemma 4.4, we have344

aH(ϕm, ϕm+1) ≥ −Ca

4

p4

h2
∥ϕm − ϕm+1∥2H.

Replacing in (31), we obtain345 (
1

∆t2
− Ca

4

p4

h2

)
∥ϕm+1 − ϕm∥2H ≤ 1

∆t2
∥ϕ1 − ϕ0∥2H + aH(ϕ0, ϕ1)

+

m∑
n=0

(rn, ϕn+1 − ϕn−1)H + qn(ϕn+1 − ϕn−1).

(32)

For the system to be stable, we then choose ∆t, p, and h such that346

1− Ca
∆t2p4

4h2
= C∗ > 0, (33)

which allows one to complete the proof.347
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Proof of Lemma 5.2. The proof is similar to that of Lemma 4.2 from [26]. For every vH ∈ VH, we have348

the basic identity349

(
ϕ1 − ϕ0, vH

)
H =

∫ t1

t0

(
ΠHu̇(s)− u̇(s), vH

)
H ds+

(
u(t1)− u0, vH

)
H −

(
u1H − u0H, vH

)
H. (34)

For an element K, the L2 projection operator PK
p : L2(K) → Qp(K) is defined such that for any v ∈ L2(K),350

we have351 (
PK
p v, vH

)
K

=
(
v, vH

)
K
, ∀vH ∈ Qp(K).

Let ξ(s) = ΠHu̇(s)− u̇(s) and let PK
p−1 be the L2 projection operator in Qp−1(K). We remark that Eq. (14)352

in the proof of Lemma 4.3 is always verified with PK
p−1u instead of IKh,p−1u, then (15) becomes353 (

ξ(s), vH
)
H,K

−
(
ξ(s), vH

)
K

≤ C
(∥∥ξ(s)− IKh,pξ(s)

∥∥
0,K

+
∥∥ξ(s)− PK

p−1ξ(s)
∥∥
0,K

)∥∥vH∥∥0,K .
Then, summing the above inequality for all K ∈ Th, we deduce that354

(
ξ(s), vH

)
H −

(
ξ(s), vH

)
≤ C

(∥∥ξ(s)− Ih,pξ(s)
∥∥
0
+
∑

K∈Th

∥∥ξ(s)− PK
p−1ξ(s)

∥∥
0,K

)∥∥vH∥∥0. (35)

By the use of the definition of the L2 projector, we have
(
ξ(s)− PK

p−1ξ(s), P
K
p−1ξ(s)

)
K

= 0, so that355 ∥∥ξ(s)− PK
p−1ξ(s)

∥∥2
0,K

=
(
ξ(s)− PK

p−1ξ(s), ξ(s)
)
0,K

≤
∥∥ξ(s)− PK

p−1ξ(s)
∥∥
0,K

∥∥ξ(s)∥∥
0,K

.

Thus we have
∥∥ξ(s)− PK

p−1ξ(s)
∥∥
0,K

≤
∥∥ξ(s)∥∥

0,K
and since Ih,p(ΠHu̇) = ΠHu̇, Eq. (35) becomes356

(
ξ(s), vH

)
H −

(
ξ(s), vH

)
≤ C

(∥∥u̇(s)− Ih,pu̇(s)
∥∥
0
+
∥∥u̇(s)−ΠHu̇(s)

∥∥
0

)∥∥vH∥∥0.
Using Lemma 4.2 and Corollary 4.6, we obtain357 (

ξ(s), vH
)
H −

(
ξ(s), vH

)
≤ Chmin(p,s)p−s

∥∥u̇(s)∥∥
s,Th

∥∥vH∥∥0.
Also from Corollary 4.6, we have358 ∫ t1

t0

(
ξ(s), vH

)
ds ≤ C∆t hmin(p,s)p−s

∥∥u̇∥∥
C0(Hs(Th))

∥∥vH∥∥0.
Hence we have359 ∫ t1

t0

(
ΠHu̇(s)− u̇(s), vH

)
H ds ≤ C∆t hmin(p,s)p−s

∥∥u̇∥∥
C0(Hs(Th))

∥∥vH∥∥0. (36)

To bound the remaining terms of (34), we begin by rewriting (11d) as

(
u1H − u0H, vH

)
H = ∆t

(
z0H, vH

)
H +

∆t2

2

(
f(t0), vH

)
− ∆t2

2
a
(
u0, vH

)
+
∆t2

2

[(
f(t0), vH

)
H −

(
f(t0), vH

)
+ a
(
u0, vH

)
− aH

(
u0H, vH

)]
.

Then, using (6) at t = t0 and (11c), as well as the definition of ϕ0, we get360

(
u1H − u0H, vH

)
H = ∆t

(
u1, vH

)
H +

∆t2

2

[
(ü
(
t0), vH

)
+
(
f(t0), vH

)
H −

(
f(t0), vH

)
+ aH

(
ϕ0, vH

)]
. (37)
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We now introduce the Taylor’s expansion361

u(t1) = u0 +∆tu1 +
∆t2

2
ü(t0) +R3, (38)

where the remainder term R3 is given by362

R3 =
1

2

∫ t1

t0

(∆t− s)2u(3)(s) ds.

To derive an estimate for the two last terms in (34), we isolate the ∆t2 term in (38) and combine it with (37)363

to find364 (
u(t1)− u0, vH

)
H −

(
u1H − u0H, vH

)
H

=
(
u(t1)− u0, vH

)
H −

(
u(t1)− u0, vH

)
+∆t

(
u1, vH

)
−∆t

(
u1, vH

)
H

+
(
R3, vH

)
− ∆t2

2

[(
f(t0), vH

)
H −

(
f(t0), vH

)
+ aH

(
ϕ0, vH

)]
.

(39)

To bound the right-hand side of this last identity, we first observe that365

(
u(t1)− u0, vH

)
H −

(
u(t1)− u0, vH

)
=

∫ t1

t0

(
u̇(s), vH

)
H −

(
u̇(s), vH

)
ds,

and then apply Lemma 4.3 repeatedly to conclude366 (
u(t1)− u(t0), vH

)
H −

(
u1H − u0H, vH

)
H

≤ C
[
∆t hmin(p,s)p−s

∥∥u̇∥∥
C0(Hs(Th))

+∆t hmin(p,s)p−s
∥∥u1∥∥s,Th

+∆t3
∥∥u(3)∥∥

C0(L2)
+∆t2hmin(p,d)p−d

∥∥f(t0)∥∥d,Th

]∥∥vH∥∥0 − ∆t2

2
aH
(
ϕ0, vH

)
.

(40)

Since u1 = u̇(0), the term ∥u1∥s,Th
is bounded by ∥u̇∥C0(Hs(Th)) from the definition of the Cm(Hs(Th))367

norm (5). We now return to our original expansion (34), substitute vH for ϕ1 − ϕ0, use Eqs. (36) and (40),368

and invoke Lemma 4.1, to obtain369

∥∥ϕ1 − ϕ0
∥∥2
H +

∆t2

2
aH
(
ϕ0, ϕ1

)
≤ C

[
∆t hmin(p,s)p−s

∥∥u̇∥∥
C0(Hs(Th))

+∆t3
∥∥u(3)∥∥

C0(L2)

+∆t2hmin(p,d)p−d
∥∥f(t0)∥∥d,Th

]∥∥ϕ1 − ϕ0
∥∥
H +

∆t2

2
aH
(
ϕ0, ϕ0

)
.

(41)

Using 2ab ≤ a2 + b2, the previous inequality becomes370

∥∥ϕ1 − ϕ0
∥∥2
H +

∆t2

2
aH
(
ϕ0, ϕ1

)
≤ 1

2
C2
[
∆thmin(p,s)p−s

∥∥u̇∥∥
C0(Hs(Th))

+∆t3
∥∥u(3)∥∥

C0(L2)
+∆t2hmin(p,d)p−d

∥∥f(t0)∥∥d,Th

]2
+

1

2

∥∥ϕ1 − ϕ0
∥∥2
H +

∆t2

2
aH
(
ϕ0, ϕ0

)
.

(42)

We still have to bound the last term in the right-hand side of (42). From the continuity of aH and Eq. (28),371

we conclude that372

aH
(
ϕ0, ϕ0

)
≤ Ch2min(p,s)−2p2−2s

∥∥u0∥∥2s,Th
. (43)

Thus, replacing the above inequality in (42) leads to the desired result.373
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Proof of Lemma 5.3. Recall that for each n = 0, . . . , NT −1, we have an arbitrary vnH ∈ VH. Furthermore,374

we continue to assume that q0 = r0 = 0 and we select an integer m between 1 and NT −1. Using Lemma 4.3375

and Lemma 4.1, we can show376

m∑
n=1

qn(vnH) =

m∑
n=1

(f(tn)− ü(tn), v
n
H)− (f(tn)− ü(tn), v

n
H)H

≤ C

m∑
n=1

hmin(p,d)p−d∥f(tn)∥d,Th
∥vnH∥0 + hmin(p,s)p−s∥ü(tn)∥s,Th

∥vnH∥0

≤ CNT

[
hmin(p,d)p−d max

1≤n≤m
∥f(tn)∥d,Th

+ hmin(p,s)p−s max
1≤n≤m

∥ü(tn)∥s,Th

]
max

1≤n≤m
∥vnH∥0

≤ CNT

[
hmin(p,d)p−d∥f∥C0(Hd(Th)) + hmin(p,s)p−s∥ü∥C0(Hs(Th))

]
max

1≤n≤m
∥vnH∥H.

(44)

The proof of Lemma 4.3 in [26] showed that377

∥rn∥H ≤ C

(
hmin(p+1,s)p1−s∥ü(tn)∥s,Th

+
1

∆t

∫ tn+1

tn−1

∥ΠHü(s)− ü(s)∥0 ds+
∆t

6

∫ tn+1

tn−1

∥u(4)(s)∥0 ds
)
.

Applying Corollary 4.6 to this estimate, we find378

∥rn∥H ≤ C
(
hmin(p,s)p1−s∥ü∥C0(Hs(Th)) +∆t2∥u(4)∥C0(L2)

)
.

The previous estimate immediately leads to379

m∑
n=1

(rn, vnH)H ≤
m∑

n=1

∥rn∥H∥vnH∥H

≤ CNT

(
hmin(p,s)p1−s∥ü∥C0(Hs(Th)) +∆t2∥u(4)∥C0(L2)

)
max

1≤n≤m
∥vnH∥H.

(45)

The result is deduced by combining (44) and (45).380

Proof of Lemma 5.4. First, we recall the estimate from Lemma 5.1381

C∥ϕm+1 − ϕm∥2H ≤ ∥ϕ1 − ϕ0∥2H +∆t2aH(ϕ0, ϕ1) +∆t2
m∑

n=0

(rn, ϕn+1 − ϕn−1)H + qn(ϕn+1 − ϕn−1),

which holds for m = 0, . . . , NT − 1. We bound the terms on the right-hand side using Lemma 5.2 and382

Lemma 5.3.383

max
0≤n≤NT−1

∥ϕn+1 − ϕn∥2H ≤ C
[
∆t hmin(p,s)p−s∥u̇∥C0(Hs(Th)) +∆t3∥u(3)∥C0(L2)

+∆t2hmin(p,d)p−d∥f(t0)∥d,Th
+∆t hmin(p,s)−1p1−s∥u0∥s,Th

]2
+ CT∆t

[
hmin(p,d)p−d∥f∥C0(Hd(Th)) + hmin(p,s)p1−s∥ü∥C0(Hs(Th))

+∆t2∥u(4)∥C0(L2)

]
max

1≤n≤NT−1
∥ϕn+1 − ϕn−1∥H.
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Using the Peter-Paul inequality, i.e. 2ab ≤ εa2 + b2/ε with ε = 2, yields384

max
0≤n≤NT−1

∥ϕn+1 − ϕn∥2H ≤ C
[
∆t hmin(p,s)p−s∥u̇∥C0(Hs(Th)) +∆t3∥u(3)∥C0(L2)

+∆t2hmin(p,d)p−d∥f(t0)∥d,Th
+∆t hmin(p,s)−1p1−s∥u0∥s,Th

]2
+ C2T 2∆t2

[
hmin(p,d)p−d∥f∥C0(Hd(Th)) + hmin(p,s)p1−s∥ü∥C0(Hs(Th))

+∆t2∥u(4)∥C0(L2)

]2
+

1

4
max

1≤n≤NT−1
∥ϕn+1 − ϕn−1∥2H.

With the help of the obvious bound385

max
1≤n≤NT−1

∥ϕn+1 − ϕn−1∥H ≤ 2 max
0≤n≤NT−1

∥ϕn+1 − ϕn∥H,

we have386

max
0≤n≤NT−1

∥ϕn+1 − ϕn∥H ≤ C∆t
[
hmin(p,s)p−s∥u̇∥C0(Hs(Th)) +∆t2∥u(3)∥C0(L2)

+∆thmin(p,d)p−d∥f(t0)∥d,Th
+ hmin(p,s)−1p1−s∥u0∥s,Th

+ hmin(p,d)p−d∥f∥C0(Hd(Th)) + hmin(p,s)p1−s∥ü∥C0(Hs(Th))

+∆t2∥u(4)∥C0(L2)

]
.

Remembering that ∆t < T allows one to conclude the proof.387
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