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Abstract—In recent years, a growing body of work has
emerged on how to learn machine learning models under fair-
ness constraints, often expressed with respect to some sensitive
attributes. In this work, we consider the setting in which an
adversary has black-box access to a target model and show
that information about this model’s fairness can be exploited
by the adversary to enhance his reconstruction of the sensitive
attributes of the training data. More precisely, we propose a
generic reconstruction correction method, which takes as input
an initial guess made by the adversary and corrects it to
comply with some user-defined constraints (such as the fairness
information) while minimizing the changes in the adversary’s
guess. The proposed method is agnostic to the type of target
model, the fairness-aware learning method as well as the auxiliary
knowledge of the adversary. To assess the applicability of our
approach, we have conducted a thorough experimental evaluation
on two state-of-the-art fair learning methods, using four different
fairness metrics with a wide range of tolerances and with three
datasets of diverse sizes and sensitive attributes. The experimental
results demonstrate the effectiveness of the proposed approach
to improve the reconstruction of the sensitive attributes of the
training set.

Index Terms—Reconstruction attack, privacy, fairness, ma-
chine learning, constraint programming.

I. INTRODUCTION

The growing use of machine learning models in high-stakes
decision-making raises several ethical issues such as the risk
of discrimination. To address this issue, a growing body of
work has emerged on how to learn machine learning models
under fairness constraints, often expressed with respect to
some sensitive attributes [1]–[3]. These sensitive attributes
correspond to characteristics such as gender, age or race [4],
which should not be taken into account in decision-making
processes impacting individuals, for legal, ethical, social or
philosophical reasons [1]. While fair models usually do not use
such sensitive attributes at inference time to avoid disparate
treatment [5], they still require access to them at training
time [6]. The fact that these models are learnt with the
objective to meet specific constraints regarding these sensi-
tive attributes indicates that fair models intrinsically contain
information about them.

Another fundamental aspect of responsible machine learn-
ing is the protection of privacy. Indeed, machine learning
models are often trained on large amounts of personal data.
Here, the main challenge is ensuring that these models learn
useful generic patterns without leaking private information
about individuals. In this context, inference attacks [7]–[9]
aim at leveraging the output of a computation (e.g., a trained
model) to retrieve information regarding its inputs (e.g., a
training dataset). Our work belongs to the category of dataset
reconstruction attacks, in which an adversary tries to recover
part of a model’s training data [9]. More precisely, we study
the setting in which an adversary aims at retrieving the entire
column of sensitive attributes of the training set.

Depending on the available auxiliary knowledge, several
strategies can be adopted by an adversary to reconstruct the
sensitive attributes of the training set. The proposed approach
is a post-processing method that we coin as reconstruction
correction, which takes as input an initial reconstruction
performed by an adversary, optionally associated with con-
fidence scores for each guess. The reconstruction correction
method then minimally updates the adversary’s initial guess
to satisfy some user-defined constraints. Our work focuses on
the scenario in which these are fairness constraints and the
adversary leverages the fact that a model is known to be fair
to improve his initial reconstruction. Such fairness information
can for instance be the results of legal requirements, such as
the “80 percent rule” for Statistical Parity [10] stated by the US
Equal Employment Opportunity Commission (EEOC) [11].

The tensions between fairness and privacy in machine
learning have been studied in recent years, mainly through the
theoretical [12], [13] and technical [14]–[16] conflicts existing
between statistical fairness metrics and Differential Privacy
(DP). For instance, it was proved theoretically impossible
to learn models under fairness constraints while respecting
DP [12], [13]. Furthermore, DP was shown to have unfair
effects on the model’s performances [14] and it was observed
that fairness led to an increased privacy risk [15]. We refer
the interested reader to a recent survey [16] summarizing the



different causes and consequences of this conflict. Our work
takes a different direction but also demonstrates that enforc-
ing statistical fairness can endanger the privacy of sensitive
attributes. More precisely, our contributions are as follows:

• We propose a novel reconstruction attack pipeline, in
which a reconstruction correction is applied as post-
processing to an initial adversary’s guess to enforce some
user-defined constraints (e.g., fairness constraints).

• We show that declarative programming approaches can
be applied to implement a generic reconstruction correc-
tion. The proposed integer programming model includes
statistical fairness constraints but is general enough to
also work for a wide range of user-defined constraints.

• We derive an efficient reconstruction correction model
with polynomial search space, suitable to formulate any
rate constraints (such as statistical fairness constraints).

• We empirically demonstrate the effectiveness of the pro-
posed reconstruction correction method for two fairness-
enhancing techniques that intervene at different stages of
the learning pipeline, three datasets with diverse charac-
teristics and sensitive attributes, four statistical fairness
metrics as well as a wide range of unfairness tolerances.

• We discuss possible countermeasures to mitigate the
proposed reconstruction correction method. In particular,
we show that even when the fairness information is not
disclosed, the adversary can estimate it and that the
performance of reconstruction correction remains high.

The outline of the paper is as follows. First, we introduce
in Section II the necessary background notions and review
the related work on reconstruction attacks. Afterwards, we
describe in Section III our proposed reconstruction correc-
tion strategy before evaluating its empirical effectiveness in
Section IV. Finally, we discuss possible countermeasures in
Section V before concluding.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce the considered supervised
machine learning setup and the associated notations. Then, we
explain how fairness can be quantified in machine learning
before reviewing related work on reconstruction attacks.

A. Supervised Machine Learning & Fairness

Let M be the number of non-sensitive attributes character-
izing an example. For j ∈ {1..M}, Xj denotes the domain of
possible values for attribute j, which can be either categorical
or numerical, and X = X1 × X2 × . . .× XM . Similarly, let
S (respectively Y) be the domain of a (categorical) sensitive
attribute (respectively label). Such sensitive attribute corre-
sponds to personal information such as age, gender or race,
which should not be used for a decision-making process due
to legal, ethical, social or philosophical reasons [1].

D = (X,S, Y ) is a dataset drawn from the true (unknown)
distribution over X×S×Y . Let N be the number of examples
(i.e., datapoints) in D, with ei∈{1..N} = (x, s, y) ∈ X×S×Y .
The objective of a supervised machine learning algorithm is
to learn a classifier L(D) = h mapping the attributes space

to the label space. The explicit use of a sensitive attribute
(such as gender, age or race [4]) is usually prohibited by law
to avoid disparate treatment [5]. Thus, we assume that the
sensitive attribute is not used for inference, which means that
h : X 7→ Y , with Ŷ = h(X) being the predictions of the
machine learning model. In line with the fairness literature,
we consider the task of binary classification in this work: Y =
{0, 1}. Nonetheless, our framework could easily be extended
to non-binary classification provided that fairness constraints
are formulated in this more general setting.

To ensure that machine learning algorithms do not reproduce
or create undesirable biases (e.g., leading to discrimination),
different fairness notions have been proposed in the litera-
ture [3]. Three main approaches have emerged [20], namely
statistical fairness metrics, individual fairness and causal fair-
ness. Statistical fairness measures [17] aim at equalizing some
value (function of the confusion matrix of a classifier, e.g.,
true positive rate) between several protected groups (usually
defined by the sensitive attributes). Individual fairness has as
rationale that similar examples should be treated similarly [17].
Finally, causal fairness approaches analyze the causal relation-
ships between the different attributes and the outcome of a
classifier, possibly mitigating those deemed as discriminatory.

Many methods have been proposed in recent years [1]–
[3], [21] to produce fair models, which can be divided into
three categories depending on which step of the machine
learning pipeline they intervene [22]. Pre-processing methods
aim at removing undesired correlations from the training data
before applying standard learning techniques on the sanitized
data [23] while in-processing techniques directly adapt the
learning procedure to produce inherently fair models. Finally,
post-processing techniques [19] modify the outputs of a trained
classifier to achieve fairness.

In this paper, we consider the setting in which fairness is
expressed using statistical fairness notions. Our framework is
agnostic to the type of fairness-enhancing technique used. This
means that the step of the machine learning pipeline in which
the fairness intervention occurs does not impact our attack
as the latter simply relies on the predictions vector of the
model along with the fairness information. For our experi-
ments, we consider four metrics widely used in the literature,
namely Statistical Parity [17], Predictive Equality [18], Equal
Opportunity [19] and Equalized Odds [19]. Table I provides
a summary of these statistical fairness metrics, along with the
measure being equalized across the different protected groups
and the corresponding mathematical expression.

B. Reconstruction Attacks

One fundamental objective in privacy protection is to ensure
that the output of a computation over a dataset D cannot be
used to retrieve private information about this dataset [24].
Our proposed framework lies in the category of inference
attacks [7], [8], which precisely aim at retrieving information
regarding the dataset D by only observing the outputs of the
computation. In the machine learning field, the computation



TABLE I
SUMMARY OF THE CONSIDERED STATISTICAL FAIRNESS METRICS

Ref. Metric Equalized Measure Constraint Expression
[17] Statistical Parity (SP) Probability of positive prediction ∀s, |P(ŷ = 1)− P(ŷ = 1 | s)| ≤ ϵ
[18] Predictive Equality (PE) False Positive Rate ∀s, |P(ŷ = 1 | y = 0)− P(ŷ = 1 | s, y = 0)| ≤ ϵ
[19] Equal Opportunity (EO) True Positive Rate ∀s, |P(ŷ = 1 | y = 1)− P(ŷ = 1 | s, y = 1)| ≤ ϵ
[19] Equalized Odds (EOdds) False Positive Rate and True Positive Rate Conjunction of Predictive Equality and Equal Opportunity

being performed is usually a learning algorithm whose output
is a trained model.

Different types of inference attacks have been proposed
against machine learning models [9]. For instance, member-
ship inference attacks [25], [26] try to infer whether individu-
als whose profiles are known from the adversary were present
in the training set of the model. Our proposed inference attack
is rather a reconstruction attack1 [7]–[9], sometimes called
model inversion attack. Inference attacks against machine
learning often consider two distinct adversarial settings [8],
[9]. In the black-box setting, the adversary does not know
the actual trained model’s parameters and can only query it
through an API. In contrast, in the white-box setting, the ad-
versary has full knowledge of the model parameters. Between
these two scenarios, different gray-box settings are possible.
Our attack only requires black-box access to the trained fair
model and is agnostic to the actual type of the model, the
training algorithm and the fairness mitigation procedure.

Reconstruction attacks have been studied in the context of
database access mechanisms since the early 2000s. In the con-
sidered setup, a database contains records about individuals,
with each record being composed of non-private information
along with a private bit (one per individual) [7]. The adversary
performs queries to a database access mechanism, whose
outputs are aggregate and noisy statistics about private bits of
individuals in the database. Such reconstruction attacks were
introduced and formalized in [24], along with some fundamen-
tal reconstruction results based on the adversary’s capabilities.
An efficient linear program for reconstructing private bits of a
database leveraging counting queries was also proposed. This
linear program was later improved and extended to handle
different query types [27]. The practical effectiveness of the
proposed attacks was demonstrated by a large-scale study
carried out by the US Census Bureau in 2018 [28] and was
part of its motivation to adopt differential privacy for future
data releases. The linear reconstruction program was also used
successfully to break the Diffix commercial database access
mechanism [29]. Pursuing the same goal, another attack [30]
exploited Diffix’s data-dependent noise (i.e., sticky noise as
well as the addition of static and dynamic noise) to infer
private attributes of individuals in a dataset.

One fundamental difference between this line of work and
ours lies is the nature of the mechanism accessing the private
data. In the machine learning (respectively, database access)
setup, such mechanism is the learning algorithm (respectively,
database access mechanism), and its output is the trained

1The term “attribute inference” could also apply (see Appendix A)

model (respectively, answers to queries). Indeed, database
access mechanisms use the private information to compute
the answer to each query. On the contrary, in our setup,
the training set sensitive attributes are not accessed anymore
at inference time, and all the information regarding them is
released at once (with the model itself or its predictions).
However, our objective is similar to these works: we aim at
retrieving a column of the dataset by leveraging the output
of some computation involving this column (query answers in
the previously depicted works, trained fair model in ours).

Other previous works have also tackled reconstruction
problems in various settings. For example in the context of
online learning, a reconstruction attack was proposed to infer
the updating set (newly-collected data used to re-train the
deployed model) information using a generative adversarial
network leveraging the difference between the model before
and after its update [31]. In collaborative deep learning, it
was also shown that an adversarial server can exploit the
collected gradient updates to recover parts of the participants’
data [32]. In the pharmacogenetics field, machine learning
models are learnt to propose medical treatments specific to
a patient’s genotype and background. In this sensitive con-
text, a reconstruction attack was proposed, taking advantage
of the correlation between the sensitive attributes, the non-
sensitive ones, and the output of a trained model. More
precisely, the attack takes as input a trained model and some
demographic (non-private) information about a patient whose
records were used for training and predicts the patient’s sensi-
tive attributes [33]. Subsequent work proposed model inversion
attacks leveraging confidence values output by several ML
models to infer private information about training examples
given some information about them [34]. The attack has been
shown to be effective against several models and applications,
namely decision trees for lifestyle surveys and neural networks
for facial recognition. In the white-box setting, an attack was
introduced that exploits the structure of an interpretable ma-
chine learning model to reconstruct a probabilistic (uncertain)
version of a database [35]. While being different both in terms
of techniques and objectives, such inference attack still lies in
the category of reconstruction attacks. Finally, other works
have studied the intended [36] and unintended [37] training
data memorization of machine learning models, along with
different ways to exploit it in a white-box or black-box setting.

More closely related to this paper are the works of [38]
and [39]. On the one side, [38] proposes an attack to infer the
sensitive attribute of an example given the model’s output for
this example. It is the only attack considering the scenario in
which the sensitive attribute is not used for inference (what we
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Fig. 1. The proposed attack framework. A model h is learnt by the fair learning procedure L and used for inference. Then, a Baseline Adversary tries to
reconstruct the sensitive attributes S of h’s training set. Our contribution lies in the Reconstruction Corrector component, which takes as input the Baseline
Adversary’s guess Ŝ and corrects it to comply with the fairness information by outputting S∗, the corrected sensitive attributes reconstruction.

also assume in this paper). In a nutshell, the adversary trains a
machine learning model using a separate attack set for which
the sensitive attributes are known. This attack roughly corre-
sponds to the baseline adversaries introduced in section IV-A.
On the other side, [39] proposes a mechanism whose principle
is related to ours, but considers a very particular setup [39].
The fair training process is done in a distributed manner, with
a learner wanting to build a fair model on some training dataset
for which it does not know the sensitive attributes, and a third-
party which owns them. The learner iteratively sends models
parameters to the third-party, which then tells him whether the
current model is fair. The learner then knows, for an entire
set of models, whether they satisfy the fairness constraint or
not. Afterwards, he uses Integer Programming techniques to
encode this information and perform the reconstruction of the
training set sensitive attributes. While the intuition is similar,
our work covers a more general setting (with no assumption on
the underlying fairness-enhancing method) in a considerably
less favourable attack setup (as the adversary only knows that
the final model satisfies the fairness constraint).

III. LEVERAGING FAIRNESS TO IMPROVE SENSITIVE
ATTRIBUTES RECONSTRUCTION

In this section, we first introduce our proposed framework to
enhance the reconstruction of sensitive attributes by leveraging
the information about the target model’s fairness. Afterwards,
we describe a general model that can be used to correct any
adversary’s guess about the sensitive attributes vector, given
some knowledge expressed as constraints over this vector.
We show how this model can be reformulated to improve
scalability in the case of statistical fairness metrics. Finally,
we discuss how the proposed models can be generalized to
handle other metrics and sensitive attribute values.

A. Attack Pipeline

Fig. 1 illustrates the different components of the considered
framework. Given a training dataset D = (X,S, Y ), a model
h is trained using a fair learning algorithm L, which ensures

that h is fair on D according to some statistical fairness metric
with respect to the sensitive attribute S. Note that h does not
use the sensitive attribute S for inference to prevent disparate
treatment [5]. Thus once trained, h can be used for inference
based only on non-sensitive attributes X . Our approach does
not make any assumption on the underlying fairness-enhancing
technique L used. Indeed, the only requirement of our attack
is the knowledge of the fairness information.

The attack itself aims at retrieving the training set sensitive
attributes vector S. In the considered pipeline, S is only used
by L to ensure h’s fairness (and never used again). In the first
step of the attack, a Baseline Adversary makes a guess Ŝ on
S, based on some auxiliary knowledge. The adversary also
outputs a probability vector P , illustrating his confidence for
each component of the guess vector Ŝ. Our attack does not
assume anything about the form of the auxiliary knowledge.
If the adversary does not compute confidence scores, the
confidence vector can simply be set to the identity vector.

In the second step of the attack, a Reconstruction Corrector
component takes as input the baseline adversary’s guess and
confidence vectors (Ŝ and P ). It outputs a new reconstruction
guess S∗ minimizing the (confidence-weighted) changes to
the adversary’s guess while satisfying some given properties,
such as statistical fairness constraints. To ensure the respect
of such constraints, the Reconstruction Corrector component
also needs as input the fairness information, the target model’s
predictions on the training set Ŷ as well as (depending on the
particular statistical fairness metric at hand, cf. Table I) the
true labels Y . Importantly, if the actual fairness information
is unknown, it can still be estimated as discussed later in
Section V-B. As stated previously, our attack does not make
any assumptions about the target model h, which can be seen
as a black-box as it only requires access to its predictions.

The success of the attack pipeline can be evaluated as the
reconstruction accuracy of S∗ (i.e., proportion of elements
of S correctly predicted in S∗). The core contribution of our
attack lies in the Reconstruction Corrector component, which,



by incorporating solely the fairness information, is able to
significantly improve the quality of the reconstruction of the
sensitive attribute. Such improvement can be quantified by
comparing the reconstruction accuracy of the initial adver-
sary’s guess Ŝ and that of the corrected one S∗.

B. General Reconstruction Correction Model

We now introduce RC(Ŝ, P , Ŷ , ϵ), a general Integer Pro-
gramming model implementing the Reconstruction Corrector
component of Fig. 1, for the binary sensitive attributes setting.
Its objective is to modify the adversary’s guess for the sensitive
attributes of the training examples to satisfy some constraints
while minimizing the (confidence-weighted) changes to the
adversary’s original guess. Here, the constraints implement the
fairness information.

a) Inputs:
• ŝi ∈ {0, 1}, i = 1, . . . , N (adversary’s initial guesses)
• pi ∈ {0, 1}, i = 1, . . . , N (adversary’s confidence for ŝi)
• ŷi ∈ {0, 1}, i = 1, . . . , N (target model h’s predictions)
• Fairness information: h satisfies fairness constraints for

some metric (e.g., SP) and some tolerance ϵ

b) Decision variables:
• s∗i ∈ {0, 1}, i = 1, . . . , N (corrected guess for the

sensitive attributes vector)
c) Model RC(Ŝ, P , Ŷ , ϵ):

min

N∑
i=1

(pi · (1− ŝi) · s∗i ) +
N∑
i=1

(pi · ŝi · (1− s∗i )) (1)

s.t. :

N∑
i=1

s∗i > 0 (2)

N∑
i=1

(1− s∗i ) > 0 (3)

− ϵ ≤
∑N

i=1 ŷi
N

−
∑N

i=1 ŷi · s∗i∑N
i=1 s

∗
i

≤ ϵ (4)

− ϵ ≤
∑N

i=1 ŷi
N

−
∑N

i=1 ŷi · (1− s∗i )∑N
i=1 (1− s∗i )

≤ ϵ (5)

The objective (1) aims at minimizing the confidence-
weighted changes to the original adversary’s guess Ŝ. Each
modification of a component ŝi of the original adversary’s
guess is penalized with cost pi and the model minimizes
the total cost. Constraints (2) and (3) simply ensure that
the reconstruction contains at least one example from each
protected group. Finally, constraints (4) and (5) encode the
fairness constraint for the Statistical Parity metric. Here,
constraint (4) (respectively, constraint (5)) ensures that the
Positive Prediction Rate (PPR) on group 1 (respectively, group
0) is no further than ϵ from the PPR on the overall dataset.

The key idea here is that fairness is ensured by modifying
the reconstruction of the sensitive attributes. This differs from
the typical case of fair model training, in which the sensitive
attributes are known and fairness is ensured by modifying the

model’s predictions ŷi (which, in turn, are fixed here, and
exploited to build the sensitive attributes s∗i ).

Finally, an optimal solution to our general reconstruc-
tion correction model RC(Ŝ, P , Ŷ , ϵ) is an assignment of
the binary variables s∗i that minimizes (1) while satisfying
constraints (2) to (5). This assignment S∗ corresponds to
the minimum (confidence-weighted) changes to the original
adversary guess Ŝ in order to meet the fairness requirement. If
the performed changes are correct most of the time (which is to
be expected if the adversary provides good confidence scores),
then the overall reconstruction accuracy will be improved.
In any case, the algorithm is guaranteed to find a solution
satisfying the fairness constraint - which is not the case of
the baseline adversary. Indeed, as it is able to modify the
sensitive attributes guess of all training examples, the model
could actually set any fairness value regarding the sensitive
attributes corrected reconstruction. Thus, the knowledge of the
exact training unfairness value (rather than a simple upper
bound) could easily be used to reduce the set of acceptable
reconstructions and enhance the performance of the recon-
struction correction. Finally, because it explicitly encodes each
training example’s sensitive attribute, RC(Ŝ, P , Ŷ , ϵ) can be
used to formulate any constraint using such attributes.

C. Efficient Model for Statistical Fairness

The search space of the reconstruction correction model
RC(Ŝ, P , Ŷ , ϵ) grows exponentially with the number of train-
ing examples N . As each element of the sensitive attributes
vector S is considered independently from the others (and
represented as a binary decision variable), the search space of
this model is O(2N ), which limits its scalability. However,
when considering statistical fairness metrics, one does not
need such granularity. More precisely to satisfy the fairness
constraint, the reconstruction corrector may consider exactly
four different moves: (i) flipping an element of the recon-
structed sensitive attributes ŝi from 1 to 0, for an example
with prediction ŷi = 1, (ii) flipping ŝi from 0 to 1, for an
example with prediction ŷi = 1, (iii) flipping ŝi from 1 to 0,
for an example with prediction ŷi = 0, or (iv) flipping ŝi from
0 to 1, for an example with prediction ŷi = 0. Then, for the
chosen move, the model will always select the example with
the lowest confidence score (and then, eventually, the second
lower and so on), which drastically reduces the size of the
search space as we explain below.

Let n+
1 be the number of training examples positively

predicted by the target model and assigned to group 1 by
the initial adversary’s guess: n+

1 =
∑N

i=1 ŝi · ŷi. Similarly,
let n+

0 =
∑N

i=1 (1− ŝi) · ŷi, n−
1 =

∑N
i=1 ŝi · (1− ŷi), and

n−
0 =

∑N
i=1 (1− ŝi) · (1− ŷi). The four numbers n+

1 , n+
0 , n−

1

and n−
0 are the cardinalities of the four groups of examples

defining the four possible moves (respectively, (i), (ii), (iii)
and (iv)) from a fairness perspective. For each group, we sort
and cumulate the confidence scores associated to its examples
and obtain the following arrays: T1+ , T0+ , T1− and T0− . For
instance, T1+ contains the confidence scores associated to the
n+
1 training examples positively predicted by the target model



and assigned to group 1 by the initial adversary’s guess. T1+ [i]
is the sum of the i lowest confidence scores among this group.
Indeed, T1+ [i] is the exact minimal cost of switching the final
reconstruction guess from 1 to 0 for i examples positively
predicted by the target model. We use four positive integer
decision variables, modeling the number of times each of the
four moves is performed to correct the reconstruction. We now
define our efficient model for sensitive attributes reconstruction
correction: RCE(Ŝ, P , Ŷ , ϵ).

a) Inputs:
• Original guesses cardinalities n+

1 , n+
0 , n−

1 and n−
0 .

• Arrays of sorted and cumulated adversary’s probabilities
for each original guess : T1+ , T0+ , T1− and T0− .

• Fairness information: h satisfies fairness constraints for
some metric (e.g., SP) and some tolerance ϵ

b) Decision variables:
• s+01 ∈ [0, n+

0 ]: number of changes of ŝi from 0 to 1, for
examples such that ŷi = 1.

• s+10 ∈ [0, n+
1 ]: number of changes of ŝi from 1 to 0, for

examples such that ŷi = 1.
• s−01 ∈ [0, n−

0 ]: number of changes of ŝi from 0 to 1, for
examples such that ŷi = 0.

• s−10 ∈ [0, n−
1 ]: number of changes of ŝi from 1 to 0, for

examples such that ŷi = 0.
c) Model RCE(Ŝ, P , Ŷ , ϵ):

min T0+ [s
+
01] + T1+ [s

+
10] + T0− [s

−
01] + T1− [s

−
10] (6)

s.t. : n+
0 + n−

0 − s+01 − s−01 + s+10 + s−10 > 0 (7)

n+
1 + n−

1 − s+10 − s−10 + s+01 + s−01 > 0 (8)

−ϵ ≤
∑N

i=1 ŷi
N

− n+
1 − s+10 + s+01

n+
1 + n−

1 − s+10 − s−10 + s+01 + s−01
≤ ϵ

(9)

−ϵ ≤
∑N

i=1 ŷi
N

− n+
0 − s+01 + s+10

n+
0 + n−

0 − s+01 − s−01 + s+10 + s−10
≤ ϵ

(10)

Similarly to the general model, the objective (6) minimizes
the confidence-weighted sum of the changes. It can be ef-
ficiently implemented using element constraints within a
Constraint Programming (CP) solver. Such constraints are
used to access a data array at index given by the value of a
variable: T0+ [s

+
01] = element(T0+ , s

+
01). Furthermore, when

minimizing only the number of changes, one could simply sum
the four decision variables. The objective then becomes linear
as the whole model which can be solved using off-the-shelf
Mixed Integer Linear Programming solvers.

Constraints (7) and (8) simply ensure that the reconstruction
contains at least one example from each protected group. Fi-
nally, constraints (9) and (10) encode the fairness constraint for
the Statistical Parity metric. More generally, RCE(Ŝ, P , Ŷ , ϵ)
could be used to encode any rate constraints on the target
model’s outputs (using the sensitive attributes), including (but
not restricted to) all statistical fairness metrics.

Once the model is solved, optimal assignments of the four
decision variables define the (confidence-weighted) minimal

number of moves that must be done to ensure fairness. In a
post-processing step, the associated moves are performed to
the corresponding examples in an increasing order of the con-
fidence scores (so that the overall cost is exactly the objective
value (6) of the solved model). This results in the corrected
reconstruction vector S∗. One can notice that S∗ is also an
optimal solution to the general reconstruction correction model
RC(Ŝ, P , Ŷ , ϵ). Indeed, as stated in Theorem 1, both models
share the same set of optimal solutions, even though their
encodings of such solutions differ. The difference is that some
non-optimal solutions to the general model RC(Ŝ, P , Ŷ , ϵ)
do not correspond to any solution to our efficient model
RCE(Ŝ, P , Ŷ , ϵ) (i.e., they are simply not part of its search
space). Such solutions are all the assignments in which the
corrector makes one of the four aforementioned moves but
does not select the example with the lowest confidence score
(which in this context does not make sense).

Theorem 1 (Equivalence of models): In the context of statis-
tical fairness constraints, the general reconstruction correction
model RC(Ŝ, P , Ŷ , ϵ) and the efficient one RCE(Ŝ, P , Ŷ , ϵ)
share the same set of optimal solutions.

Proof: The proof is provided in Appendix B.
Model RCE(Ŝ, P , Ŷ , ϵ) uses four variables whose total sum

cannot exceed N . Its search space is then O(N4), which
is polynomial in the training set cardinality. Our resolution
method also requires some polynomial O(N · log(N)) pre-
processing and O(N) post-processing computations, which
does not modify the overall solving complexity. Overall,
for statistical fairness constraints, solving our new model is
equivalent to solving the general one, but with polynomial
search space instead of exponential one. In practice, this will
lead to running times smaller by several orders of magnitude.

D. Generalizing the Reconstruction Correction

The proposed models directly encode the Statistical Parity
fairness constraints, but can also be used to correct sensitive
attributes reconstructions from all the other metrics of Table I.
Recall that the Predictive Equality (PE) metric equalizes the
False Positive rates (across the protected groups), which is
equivalent to satisfying Statistical Parity over the negatively-
labelled subset of the training set. Then, one can simply use
the reconstruction correction model on the negatively-labelled
subset of the training set. Indeed, PE gives no information
on the positively-labelled subset of the training set. Similarly,
Equal Opportunity equalizes the True Positive rates, and
reconstruction can be achieved using the proposed model
on the positively-labelled subset of the training set. Finally,
dealing with the Equalized Odds metric can be done by suc-
cessively applying Predictive Equality and Equal Opportunity
reconstruction corrections. Overall, the model proposed for
the Statistical Parity metric can actually be used for any of
the statistical fairness metrics of Table I, by applying the
reconstruction correction on the appropriate data slice.

Observe that even though RC(Ŝ, P , Ŷ , ϵ) is proposed for
the binary sensitive attributes setting, it could easily be gen-
eralized by adapting the domains of the s∗i variables and



adding the appropriate cardinalities and fairness constraints
for the additional groups. Extending RCE(Ŝ, P , Ŷ , ϵ) can also
be done by declaring additional variables and constraints.
Appendix C depicts how both models can be extended to the
general case of multi-valued sensitive attributes, along with a
discussion regarding the resulting complexity.

IV. EXPERIMENTS

In this section, we present our large experimental study
regarding the proposed reconstruction framework. We consider
a wide range of scenarios using two fair learning algorithms
intervening at different stages of the machine learning pipeline,
three datasets of various sizes with diverse sensitive attributes,
four fairness metrics and a variety of unfairness tolerances.
First, we describe our baseline adversaries before detailing
the experimental setup and the results obtained.

A. Baseline Adversaries Initial Reconstruction

We instantiate the framework described in Figure 1 with
two different baseline adversaries, A and A′, which are
introduced separately hereafter2. In line with the reconstruction
literature [24], [27], [29], [30], we consider that the dataset
contains a “large amount of nonprivate identifying information
and a secret bit, one per individual” [7]. Here, the private
bit of every individual i is his sensitive attribute si. Both
adversaries hence know the training set non-sensitive attributes
vector X and ground truth labels Y (i.e., all training set
columns except the secret one, which is the sensitive attribute
in our case). Furthermore, both adversaries have access to an
auxiliary attack set, DA = (XA, SA, Y A) drawn from the
same distribution as the actual training set. This attack set
models the knowledge of an approximation of the distribution
of the sensitive attribute with respect to the non-sensitive ones
and the ground truth label. Indeed, the use of such attack set
to train an attack model is in line with the literature [38].

1) Adversary A: Adversary A can be used to estimate to
what extent general knowledge about the distribution (of the
sensitive attributes with respect to the non-sensitive ones and
the ground truth label) can be leveraged to reconstruct the
sensitive attributes of the training set. Indeed, it does not have
any knowledge about the sensitive attributes singularities of the
training set, as S is not used directly or indirectly for any of
its inputs. As aforementioned, adversary A has access to the
auxiliary attack set DA = (XA, SA, Y A). It relies on such
attack set to train a machine learning model (coined attack
model) to predict SA from (XA, Y A). Adversary A then uses
his trained attack model to predict Ŝ from (X,Y ).

2) Adversary A′: Adversary A′ has access to all informa-
tion that our reconstruction correction will later use, which
constitutes the strongest baseline possible to compare against
our reconstruction correction. Furthermore, it corresponds to
the adversary proposed in [38]. More precisely, A′ also has
access to the auxiliary attack set DA = (XA, SA, Y A), and
to the training set non-sensitive attributes X and ground truth

2Knowledge of both adversaries is summarized in Table V, in Appendix D.

labels Y (just like A). However, A′ also knows the target
model’s predictions on the training set Ŷ = h(X) and on the
attack set Ŷ A = h(XA). Adversary A′ relies on the attack set
to train an attack model to predict SA from (XA, Y A, Ŷ A). He
then uses his trained attack model to predict Ŝ from (X,Y , Ŷ ).

B. Confidence Scores

The attack models perform binary classification, hence their
confidence scores lie between 0.5 and 1.0. Using these scores
directly to weight our reconstruction correction problem would
imply that modifying a prediction with confidence 1.0 (the
attacker was certain about it) is better than modifying two
predictions with confidence 0.51 (the attacker was unsure).
To encourage the reconstruction correction to target the pre-
dictions with the lowest scores, we normalize all confidence
scores and exponentiate them in order to enlarge their dif-
ferences. In practice, all the normalized scores are set to the
power of k, in which k is chosen to maximize reconstruction
correction accuracy on part of the attacker’s data used as a
validation set. However, other confidence scores processing
techniques are possible and may improve the reconstruction
correction step. For instance, an adversary could learn how to
best discriminate the confidence scores between correct and
incorrect predictions on his attack set. Overall, each adversary
outputs a guess Ŝ = {ŝi∈{1...N}} for the sensitive attributes
vector, along with a confidence vector P = {pi∈{1...N}}.

C. Setup

1) Datasets: To obtain sufficiently diverse scenarios, we
consider three datasets of the fairness literature with different
sizes, each with a different binary sensitive attribute. The first
one is the UCI Adult Income dataset [40], which gathers
records about the 1994 US Census database, with the clas-
sification task being to predict whether individuals earn more
than $50, 000 per year. The considered sensitive attribute is
gender (female/male). We also consider two datasets built
from the American Community Survey (ACS) Public Use
Microdata Sample (PUMS) of the US Census Bureau. More
precisely, the datasets are built from data collected in the Texas
state in 2018. The second dataset, ACSPublicCoverage [4],
contains data about individuals under the age of 65, with
an income of less than $30, 000, with the classification task
being to predict whether they are covered by public health
insurance. Here, age is used as the sensitive attribute (younger
quartile/others). The third dataset, ACSIncome [4], gathers
records about individuals above the age of 16, who reported
usual working hours of at least 1 hour per week in the past
year, and an income of at least $100. Similar to the original
UCI Adult Income dataset, the classification task is to predict
whether individuals earn more than $50, 000 per year. We rely
on the binarized race (white/others) as the sensitive attribute.

Table II summarizes the datasets used in our experiments.
For all experiments, each dataset is split between a training set(
1
3

)
, a test set

(
1
3

)
and an attack set

(
1
3

)
. The test set is only

used to ensure that the fair target model is trained appropriately



TABLE II
SUMMARY OF THE DATASETS USED IN OUR EXPERIMENTS

Ref. Dataset Binary Prediction Task #Datapoints #Non-Sensitive Features Sensitive Feature
[40] UCI Adult Income Income above $50K 45,222 7 categorical, 6 numerical Gender (Male/Female)
[4] ACSPublicCoverage* Coverage from public health insurance 98,928 17 categorical, 1 numerical Age (First Quartile/Others)
[4] ACSIncome* Income above $50K 135,924 7 categorical, 2 numerical Race Code (White/Other)

*(Texas State, 2018)

(in particular, to show that it does not overfit). The attack set
is known by the baseline adversary (see Section IV-A).

2) Target Fair Models: To validate our approach, we have
tested two off-the-shelf fair learning methods implemented in
the Fairlearn library [41]: one in-processing method, Ex-
ponentiatedGradient [42], as well as a post-processing method,
ThresholdOptimizer [19]. In a nutshell, ExponentiatedGradi-
ent [42] formulates the fair classification problem as a se-
quence of cost-sensitive classification problems. Given a cost-
sensitive base learner, it follows a two-player game structure in
which one player trains the base learner while the other adapts
the training examples weights. ThresholdOptimizer [19] takes
as input a trained (possibly unfair) classifier and computes
group-specific thresholds on the outputs of the classifier to
adjust its predictions. The thresholds are optimized to enforce
some fairness constraints while having minimal impact on
classification accuracy. By using two fair learning techniques
intervening at different steps of the machine learning pipeline,
we want to emphasize that our method is completely agnostic
to the type of fairness intervention. Indeed, the only informa-
tion used by our reconstruction correction strategy is the final
fairness information, along with the predictions of the model.
For both methods, we use scikit-learn [43] Decision
Tree classifiers as base learners with the maximum depth being
set to 8 and all other parameters left to their default values.

3) Fairness Metrics: We run experiments for the four
fairness metrics presented in Table I. Experiments using the
ExponentiatedGradient method use 49 different values of the
unfairness tolerance ϵ, ranging non-linearly from 0.0 (exact
fairness) to 0.20 (loose constraint). The ThresholdOptimizer
method modifies the initial model’s predictions to approximate
0.0 unfairness, so we cannot vary the unfairness tolerance here.

4) Attack Models: The attack models used by our baseline
adversaries are scikit-learn [43] Random Forest clas-
sifiers, which are known to be resistant to overfitting and
generalize well in many situations. This hypothesis class was
chosen based on thorough preliminary experiments. To handle
sensitive attributes imbalance [38], we use a class-balanced
loss. The Random Forest hyperparameters are optimized using
the HyperOpt-Sklearn framework [44], with a maximum
of 100 evaluations for its Tree of Parzen Estimators search
algorithm. This setup ensures that the baseline adversary
implements a strong baseline and is in line with the literature.

5) Reconstruction Correction: Our efficient reconstruc-
tion correction model RCE(Ŝ, P , Ŷ , ϵ) (depicted in Sec-
tion III-C) is implemented and solved using the IBM ILOG

CP Optimizer Version 12.103 via the DOcplex4

Python Modeling API (version 2.21.207) and its default con-
figuration. The number of threads used in CP Optimizer is set
to 1 and the optimality tolerance (absolute and relative) is set
to 0.0. Indeed, due to the probabilities exponentiation process
presented in Section IV-A, some values can be very small and
would lie below the solver’s default optimality tolerance. Our
reconstruction correction method is implemented as a Python
class and is available on our repository5.

6) Experimental Parameters: We set a one minute timeout
for the reconstruction correction step (model creation and
solving). It was never reached in practice, and all models were
solved to optimality in less than a few seconds (less than one
second in average). Each experiment is repeated 100 times,
with different seeds for the data split process and the random
state of the algorithms. The results are averaged over the 100
runs and the standard deviation is reported. All experiments are
run on a computing cluster over a set of homogeneous nodes
using Intel Xeon E5-2683 v4 Broadwell @ 2.1GHz CPU.

D. Results

1) Experiments using the ExponentiatedGradient tech-
nique: Results of our experiments using the Exponentiated-
Gradient [42] method are displayed for the different datasets
in Fig. 2, 3 and 4. The training and test performances of
the target fair models are shown in Appendix E, and show
that they do not overfit. As expected, training accuracy and
unfairness both increase when the fairness constraint is relaxed
(i.e., ϵ increases). Due to the models’ good generalization, test
accuracy and unfairness follow the same trends.

The reconstruction accuracy results displayed in Fig. 2, 3
and 4 for the three considered datasets and the four fairness
metrics demonstrate the effectiveness of the proposed ap-
proach. In this section, we report the results for adversary A′.
Results for adversary A, which are provided in Appendix F,
are almost perfectly identical and follow the same trends.
As the adversary A′ exploits all the information that our
reconstruction correction uses, any further improvement in the
reconstruction accuracy can only be explained by the seman-
tics of the fairness constraint integrated in our Reconstruction
Corrector model. Recall that the reconstruction accuracy is
the proportion of training examples ei for which the sensitive
attribute si ∈ S was correctly reconstructed (in the baseline
attacker original guess ŝi ∈ Ŝ or in the corrected one s∗i ∈ S∗).

3https://www.ibm.com/analytics/cplex-cp-optimizer
4http://ibmdecisionoptimization.github.io/docplex-doc/
5https://github.com/ferryjul/SensitiveAttributesReconstructionCorrector/
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Fig. 2. Corrected and original (adversary A′) reconstruction quality, for our experiments using the UCI Adult Income dataset.
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Fig. 3. Corrected and original (adversary A′) reconstruction quality, for our experiments using the ACSPublicCoverage dataset.
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Fig. 4. Corrected and original (adversary A′) reconstruction quality, for our experiments using the ACSIncome dataset

One can observe that the corrected reconstruction is always
more accurate than the adversary’s original guess, which
means that the changes made by the reconstruction correction
model are correct most of the time. Furthermore, the corrected
reconstruction accuracy gets better as the fairness constraint
becomes tighter (i.e., lower values of the unfairness tolerance
ϵ). Indeed, the reconstruction accuracy improvement is related
to the amount of bias mitigated by the fair learning technique,
which in turn depends on the considered fairness metric, the
unfairness tolerance and the original data bias. For tight fair-
ness constraints, we observe reconstruction accuracy absolute
improvements up to 0.06, as in the experiments using the
Statistical Parity metric on the ACSIncome dataset (Fig. 4, top
left). Such improvements are due to the fairness information,
which is the only constraint of our correction models.

Recall that the Predictive Equality (respectively Equal Op-
portunity) metric only applies to the negatively-labelled (re-
spectively positively-labelled) training examples. This means
that such metrics can only help in partially correcting the
adversary’s guess (as described in Section III-D). Because the
datasets used are imbalanced, with the majority of training
examples belonging to the negative class, the Equal Oppor-
tunity metric relates only to a minority of training examples.
As a result, the reconstruction accuracy improvement is more
modest than for the remaining metrics. Indeed, even with a
close rate of correct modifications, the number of corrections
applied (and thus the overall improvement) is smaller.

When varying the unfairness tolerance ϵ, the only input of
the reconstruction methods that is modified is the fair model’s
predictions Ŷ (and the fairness information). The fact that the
reconstruction accuracy of the baseline adversary A′ is rather
constant across variations of ϵ shows that the fair model’s
predictions Ŷ are not used a lot by the learnt attack models.
In contrast, as our method knows exactly how to interpret the
fairness information with respect to Ŷ , it is able to exploit it
to significantly improve the final reconstruction accuracy.

Finally, the empirical results show that our reconstruction
correction method is able to considerably improve the recon-
struction accuracy of the training set sensitive attributes, even
when the original adversary is as informed as our method.

2) Experiments using the ThresholdOptimizer technique:
Results of our experiments using the ThresholdOptimizer [19]
fair post-processing method are displayed in Table III. The
observed trends are similar to that of the previous subsection,
which demonstrates that the type of fairness intervention
does not impact our framework. One can observe that the
performances of both baseline adversaries are very close. As
he possesses more information than A, A′ always performs
better on the attack set (used to train the attack models).
However, his generalization is sometimes poorer, resulting in
worse reconstruction performances when used on the target
model training set. This may be due to the distribution of the
target fair model’s predictions on its own training set Ŷ being
different from that on the adversary’s attack set Ŷ A.



TABLE III
SUMMARY OF THE RESULTS OF OUR EXPERIMENTS USING A POST-PROCESSING METHOD FOR FAIRNESS

Metric Target model (under attack) Baseline Reconstructions Corrected Reconstructions
Train Acc. Test Acc. Train Unf. Test Unf. A A′ A A′

UCI Adult Income dataset
SP 0.820± 0.008 0.808± 0.009 0.003± 0.002 0.005± 0.003 0.808± 0.005 0.814± 0.006 0.851± 0.003 0.858± 0.005
PE 0.849± 0.005 0.836± 0.006 0.002± 0.001 0.003± 0.003 0.808± 0.005 0.807± 0.005 0.843± 0.003 0.844± 0.004
EO 0.857± 0.005 0.845± 0.005 0.005± 0.005 0.041± 0.023 0.808± 0.005 0.805± 0.005 0.810± 0.005 0.807± 0.005

EOdds 0.846± 0.006 0.834± 0.007 0.007± 0.006 0.037± 0.021 0.808± 0.005 0.807± 0.004 0.839± 0.008 0.840± 0.009
ACSPublicCoverage dataset

SP 0.861± 0.003 0.851± 0.003 0.001± 0.001 0.003± 0.002 0.861± 0.005 0.860± 0.006 0.874± 0.005 0.875± 0.007
PE 0.861± 0.002 0.853± 0.002 0.001± 0.000 0.003± 0.002 0.861± 0.005 0.860± 0.005 0.864± 0.005 0.870± 0.007
EO 0.851± 0.005 0.843± 0.004 0.002± 0.002 0.022± 0.011 0.861± 0.005 0.859± 0.006 0.862± 0.004 0.861± 0.006

EOdds 0.841± 0.004 0.833± 0.004 0.003± 0.002 0.023± 0.011 0.861± 0.005 0.860± 0.005 0.862± 0.004 0.861± 0.005
ACSIncome dataset

SP 0.788± 0.003 0.776± 0.003 0.002± 0.001 0.005± 0.004 0.690± 0.007 0.715± 0.010 0.756± 0.005 0.764± 0.006
PE 0.797± 0.002 0.785± 0.002 0.001± 0.001 0.004± 0.003 0.690± 0.007 0.688± 0.007 0.736± 0.007 0.735± 0.006
EO 0.796± 0.003 0.784± 0.003 0.001± 0.001 0.010± 0.007 0.690± 0.007 0.685± 0.006 0.693± 0.007 0.689± 0.006

EOdds 0.795± 0.003 0.783± 0.003 0.002± 0.001 0.010± 0.006 0.690± 0.007 0.688± 0.007 0.737± 0.007 0.735± 0.006

Importantly, we observe that the reconstruction correction
step always improves the reconstruction accuracy. Indeed,
the improvement obtained depends on the considered fairness
metric and on the original bias of the reconstruction (which is
related to the inherent bias of the original training set). The
reconstruction accuracy improvements over the two baseline
adversaries are of the same magnitude than with the Exponen-
tiatedGradient method. Again, reconstruction correction using
the Equal Opportunity metric offers modest improvements due
to the fact that it applies to a minority of training examples.

V. DISCUSSION ON COUNTERMEASURES

We have seen that the proposed reconstruction correction is
able to exploit the fairness information to significantly improve
the reconstruction accuracy, even with an informed adversary.
In this section, we discuss possible countermeasures to limit
the effectiveness of the reconstruction correction step.

A. Differential Privacy

Differential Privacy (DP) [45], [46] is considered to be
one of the state-of-the-art methods for preventing inference
attacks against machine learning models. While it may affect
the performances of a baseline adversary, DP cannot be
an effective countermeasure to our proposed reconstruction
correction step. Indeed, it is designed to ensure that the
output of a mechanism does not rely too much on any single
example, but rather on general patterns. However, statistical
fairness metrics are measured over an entire dataset and do
not specifically rely on individual examples. Thus, as our
reconstruction correction method only relies on group-level
statistics, DP cannot effectively affect its performances [47].

Additionally, DP is incompatible with the strict respect of
any statistical fairness measure [12], [13]. Indeed, releasing a
model along with information regarding its strict respect of any
statistical fairness constraint is intrinsically non-DP compliant.

B. Hiding the Fairness Information

Intuitive countermeasures consist in perturbing the fair-
ness information (type of fairness metric used or unfairness

tolerance parameter ϵ). Note that this may not be possible
when a particular fairness requirement is also a legal require-
ment, as for the “80 percent rule” for Statistical Parity [10]
stated by the US Equal Employment Opportunity Commis-
sion (EEOC) [11]. When possible, releasing noisy or empty
fairness information may be a reasonable defense mechanism.
However, adversaries may still use diverse strategies to infer
both the fairness metric that was optimized and the unfairness
tolerance parameter. Depending on the adversarial knowledge,
such property inference attacks [9] might give a good estima-
tion to the adversary, which we can expect would still allow
reasonable reconstruction correction performances from our
approach. Indeed, recall that our proposed method only needs
information regarding the model’s predictions fairness and the
reconstruction correction still works even if the set fairness
constraint is not the one that was used for training.

Using our baseline adversaries A or A′, a simple strategy
would be to quantify the target model unfairness on the attack
set DA for the different considered metrics. Then, one can
select the metric with the smallest measured unfairness, and
consider that the model is fair for this metric with unfairness
tolerance ϵ equal to the measured unfairness. To assess its
effectiveness, we implemented this fairness information esti-
mation strategy and performed our experiments again.

Results for the experiments using the ThresholdOpti-
mizer [19] method are reported in Table IV. More precisely,
we report the performances of the fairness constraint estima-
tion process, namely the rate of correct metric identification,
and the average unfairness tolerance inferred. Due to the
simple estimation process, the Equalized Odds metric can
never be identified as its violation is the maximum of the
Predictive Equality and Equal Opportunity violations (hence
it can never be the smallest value). However, for the other
metrics we observe that even this simple estimation process is
often able to correctly identify the optimized metric.

Several trends can be noted when comparing the reconstruc-
tion results with those of Table III, in which the reconstruction
correction is done using the actual fairness constraint. A



TABLE IV
SUMMARY OF THE RESULTS OF OUR EXPERIMENTS USING A
POST-PROCESSING METHOD FOR FAIRNESS, FOR THE SIMPLE

COUNTERMEASURE OF NOT REVEALING THE FAIRNESS INFORMATION.
Reconstruction results have to be compared with those of Table III

Metric Estimated Constraint Corrected Reconstr.
(Estimated Constraint)

Metric
Detect.

Average
Tolerance A A′

UCI Adult Income dataset
SP 0.95 0.004± 0.003 0.848± 0.009 0.856± 0.011
PE 0.97 0.003± 0.002 0.841± 0.006 0.843± 0.007
EO 0.26 0.018± 0.010 0.829± 0.012 0.828± 0.013

EOdds 0.00 0.005± 0.005 0.841± 0.006 0.843± 0.007
ACSPublicCoverage dataset

SP 1.00 0.002± 0.002 0.873± 0.005 0.873± 0.009
PE 1.00 0.003± 0.002 0.863± 0.005 0.865± 0.007
EO 0.28 0.008± 0.005 0.862± 0.005 0.862± 0.005

EOdds 0.00 0.002± 0.002 0.868± 0.006 0.869± 0.007
ACSIncome dataset

SP 0.80 0.003± 0.003 0.743± 0.026 0.754± 0.020
PE 0.86 0.003± 0.003 0.729± 0.016 0.728± 0.016
EO 0.73 0.008± 0.006 0.704± 0.019 0.700± 0.020

EOdds 0.00 0.002± 0.002 0.723± 0.021 0.721± 0.022

first situation occurs when the fairness constraint is correctly
inferred, which is the case in most experiments using the
Statistical Parity or Predictive Equality metrics. For instance,
when using the ACSIncome dataset, the Statistical Parity
metric was correctly identified in all our experiments. In this
scenario, the reconstruction correction still brings important
improvement - slightly weakened by the fact that the estimated
tolerance is usually not as tight as the actual one. A second
interesting situation is when the fairness metric is not correctly
identified, which is the case for all experiments using the
Equalized Odds metric. Nonetheless, the fairness information
estimation process can still come with a valid fairness con-
straint (even if it is not the one that was optimized during train-
ing), which can effectively be leveraged by the reconstruction
correction step. When the fairness estimation proposes a metric
more informative (in terms of number of involved examples)
than the actual one (e.g., for some experiments with the
Equal Opportunity metric), the reconstruction improvement
can sometimes be better than with the original constraint.
For instance, consider the experiment using the UCI Adult
Income dataset with the Equal Opportunity metric. In 74% of
the runs, the fairness constraint estimation process came up
with a Predictive Equality constraint. Even though this is not
the actual constraint that was optimized during training, this
constraint is approximately valid and the corresponding metric
relates to a greater number of examples. As a consequence
and somewhat counter-intuitively, the final reconstruction is
better than with the actual constraint (see Table III). Finally,
one important drawback of the fairness estimation process is
that the performances of the reconstruction correction step are
more variable as shown by greater standard deviation values.

Results using the ExponentiatedGradient method [42] are
provided in Fig. 5 for the experiment using the ACSIncome
dataset with the Statistical Parity metric and baseline adver-
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Fig. 5. Original (adversary A′), corrected (from actual fairness constraint,
and from estimated one (est.)) reconstruction quality, for experiments using
the ACSIncome dataset

sary A′, and in Appendix G for the remaining ones. They
show similar trends as those using the ThresholdOptimizer
method: estimating the fairness constraint still allows for good
reconstruction correction performances but leads to a greater
variability in the final reconstruction accuracy. Here also,
inferring a fairness constraint different from the actual one can
improve reconstruction correction, especially when the origi-
nal tolerance is larger than the actual bias contained in the data
(i.e., large values of ϵ). In such cases, the adversary’s baseline
reconstruction already meets the actual fairness requirement
and the reconstruction correction process cannot improve it.
In contrast, the fairness constraint estimation process can infer
a tighter value, allowing some reconstruction improvement.

Overall, we see that the knowledge of the actual fair-
ness constraint is not necessary as estimations can provide
comparable-quality reconstruction correction performances.
Using the proposed fairness constraint estimation process, we
provide in Appendix H additional reconstruction experiments
using a pre-processing method for enhancing fairness. Results
demonstrate the effectiveness of the proposed reconstruction
correction approach, even when fairness metrics are not di-
rectly optimized and no fairness information is available.

VI. CONCLUSION

In this work, we have proposed a novel approach using
declarative programming to improve the reconstruction per-
formances of any baseline adversary by incorporating user-
defined constraints. While the general problem may be com-
putationally challenging, we have demonstrated that in the case
of statistical fairness metrics (and, more generally, group-level
constraints), it can be reformulated and solved efficiently. In
addition, our thorough experimental study shows that due to
the use of the sensitive attribute information to ensure fairness
of the built model, fairness-enhancing learning techniques
inherently leak information about it. Indeed, the fairness
constraints provide information regarding the distribution of
a fair model’s (training set) predictions with respect to the
(training set) sensitive attributes. Even if such information is
at the group level, it can be leveraged by an adversary to



improve baseline reconstructions of the sensitive attributes.
Furthermore, the tighter the fairness requirement, the more
significant the reconstruction improvement.

We additionally observed that, even if the fairness informa-
tion is not available, an adversary can still try to infer it, and
obtain good (and sometimes, even better) reconstruction cor-
rection performances. While the fairness information is simply
an input of our proposed reconstruction correction component,
this finding demonstrates the applicability of our approach. It
also illustrates the fact that due to their use of the sensitive
attributes information, statistical fairness metrics intrinsically
conflict with protecting the privacy of such attributes.

Future work includes combining our reconstruction correc-
tion attack with different baseline adversaries, optimizing the
adversary confidence vector P processing as well as applying
our framework in the wider context of non-binary sensitive
attributes. One of the key points of our framework is the
declarative nature of the reconstruction correction step, which
allows considering a wide range of constraints. Extending our
proposed pipeline to improve baseline reconstruction attacks
by enforcing other constraints (e.g., proportion constraints, rate
constraints, . . . ) is also an interesting research direction.
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APPENDIX A
REMARK ON THE ATTACK NAMING

The term reconstruction attack was first used in the context
of database access mechanisms [7], [24], [27] to refer precisely
to the setup we consider: an adversary knowing an entire
database except one column (here, the sensitive attributes
column) wants to retrieve such “private bit, one per individual
in the database” [7]. This explains why we identify our attack
as a “reconstruction attack”.

However, our attack could also be coined as attribute in-
ference or model inversion. More precisely, attribute inference
usually refers to predicting the missing attributes of a partially
known data record, which is exactly what our two baseline
adversaries A and A′ (introduced in Section IV-A) do. This
slightly differs from our reconstruction correction setup, in
which - because the fairness constraints are applied on an
entire group of examples - we can only correct reconstructions
for groups of sensitive attributes (and not a single one).

Overall, rigorously speaking, one can consider that our
baseline adversaries A and A′ perform attribute inference
attacks (as they predict individually the sensitive attributes
of examples given their non-sensitive attributes), while our
reconstruction correction step performs a global reconstruction
attack, by reconstructing an entire set of examples’ sensitive
attributes.

APPENDIX B
PROOF OF THEOREM 1

Theorem 1 (Equivalence of models): In the context of statis-
tical fairness constraints, the general reconstruction correction
model RC(Ŝ, P , Ŷ , ϵ) and the efficient one RCE(Ŝ, P , Ŷ , ϵ)
share the same set of optimal solutions.



Proof: (a) Any optimal solution to RC(Ŝ, P , Ŷ , ϵ) cor-
responds to a solution to RCE(Ŝ, P , Ŷ , ϵ). Let S∗ be an
optimal solution to RC(Ŝ, P , Ŷ , ϵ). Then, count the number of
performed changes of each type between S∗ and Ŝ (i.e., for an
example i with ŷi = 0 (or 1), switching ŝi from 0 to 1 (or the
contrary)). When performing such changes, the solver must
have chosen the examples with the lowest confidence scores,
or else another solution also satisfies the fairness constraint
and has a better objective function value, which contradicts
the optimality hypothesis. Afterwards, S∗ corresponds to a
solution to RCE(Ŝ, P , Ŷ , ϵ), represented by the counts for the
four moves. Indeed, application of the aforementioned post-
processing procedure then allows to retrieve S∗.

(b) Any solution to RCE(Ŝ, P , Ŷ , ϵ) corresponds to a solu-
tion to RC(Ŝ, P , Ŷ , ϵ). Consider a solution to RCE(Ŝ, P , Ŷ , ϵ)
and then apply the post-processing step aforementioned. The
obtained reconstruction vector is a solution to RC(Ŝ, P , Ŷ , ϵ).

(c) The objective function value of any solution of
RCE(Ŝ, P , Ŷ , ϵ) is the same in RCE(Ŝ, P , Ŷ , ϵ) and
RC(Ŝ, P , Ŷ , ϵ). Consider a solution to RCE(Ŝ, P , Ŷ , ϵ)
with objective value o and apply the aforementioned post-
processing step before plugging the resulting reconstruction
vector into RC(Ŝ, P , Ŷ , ϵ). By construction, the objective
value of this solution of RC(Ŝ, P , Ŷ , ϵ) will be exactly o.

Overall, by (a), (b), and (c), each optimal solution to one
of the models is also an optimal solution to the other.

APPENDIX C
RECONSTRUCTION CORRECTION MODELS FOR

MULTI-VALUED SENSITIVE ATTRIBUTES

In this appendix section, we discuss the most general setting
in which the sensitive attribute is multi-valued and takes
one of |S| values (hence effectively defining |S| protected
groups). One may also observe that this general setting covers
the intersectional fairness notions [48] (also called subgroup
fairness) in which protected groups are defined with respect to
combinations of values of several sensitive attributes. Indeed,
the intersectional fairness case can be cast to the scenario in
which we have a single, multi-valued sensitive attribute, by
creating one sensitive attribute value per combination of the
attributes considered for intersectional fairness.

Hereafter, we explain how both models can be extended
to handle multi-valued sensitive attributes reconstruction and
discuss the complexity cost induced by this extension. We
begin with the general reconstruction correction model, which
is suitable to encode any constraint on the protected attributes.
We then treat the efficient model, which can be used to encode
any rate constraints on the protected attributes (such as, but
not restricted to, statistical fairness constraints).

A. General Reconstruction Correction Model

The general reconstruction correction model RC(Ŝ, P , Ŷ , ϵ)
uses exactly one decision variable to encode each training
example’s sensitive attribute. Extension to the general multi-
valued sensitive attributes case hence requires modifying the
domains of such variables to match that of the sensitive

attributes (with |S| different possible values). The N decision
variables now have domain of cardinality |S|. The objective
function sums the (weighted) changes in the adversary’s
sensitive attributes guess, as was done in the binary case
in (1). |S| constraints ensure that there is at least one example
from each protected group (as was done with (2) and (3)
for the binary sensitive attribute setting). Finally, one fairness
constraint is declared for each protected group (sensitive
attribute value), ensuring that its positive prediction rate is
no further than ϵ from that of the entire dataset (as was done
with (4) and (5) for the binary sensitive attribute setting).

Overall, the size of the search space of RC(Ŝ, P , Ŷ , ϵ) is
O(|S|N ), which generalizes the binary sensitive attribute case
for which it was O(2N ).

B. Efficient Model for Statistical Fairness

The efficient reconstruction correction model
RCE(Ŝ, P , Ŷ , ϵ) uses one decision variable to count the
number of changes from one sensitive attribute value to
another, for each pair of sensitive attributes values. Extension
to the general multi-valued sensitive attributes case hence
requires declaring O(|S|2) variables. To ensure that each
example is counted only once, O(|S|) constraints must
be declared. Furthermore, to quantify the total cost of the
performed changes, O(|S|2) element constraints have to be
summed in the objective function, as was performed in (6) in
the binary sensitive attributes case. |S| constraints ensure that
there is at least one example from each protected group (as
was done with (7) and (8) for the binary sensitive attribute
setting). Finally, one fairness constraint is declared for each
protected group (sensitive attribute value), ensuring that its
positive prediction rate is no further than ϵ from that of the
entire dataset (as was done with (9) and (10) for the binary
sensitive attribute setting).

Overall, the size of the search space of RCE(Ŝ, P , Ŷ , ϵ) is
O(N |S|2), which generalizes the binary sensitive attribute case
for which it was O(N4).

APPENDIX D
SUMMARY OF THE BASELINE ADVERSARIES’ KNOWLEDGE

Table V summarizes the knowledge of the two considered
baseline adversaries, A and A′. Both attackers have access
to an estimate of the sensitive attributes distribution with
respect to the non-sensitive ones and the ground truth labels
(modelled through the use of the auxiliary attack set DA =
(XA, SA, Y A)). The key difference between adversaries A
and A′ relies on the fact that A′ has access to the target model
h’s predictions.

APPENDIX E
DETAILED RESULTS: TARGET MODELS PERFORMANCES

In this section, we provide the training and test perfor-
mances (accuracy and unfairness) of the (target) trained fair
models for our experiments using the ExponentiatedGradi-
ent [42] method (Section IV-D1). Fig. 6, 7 and 8 display these



TABLE V
SUMMARY OF THE KNOWLEDGE OF THE CONSIDERED BASELINE ADVERSARIES, INTRODUCED IN SECTION IV-A.

Attacker Auxiliary attack set
DA = (XA, SA, Y A)

Training set non-sensitive
attributes vector and true labels

(X,Y )

Target model predictions
on the training set

Ŷ = h(X)

Target model predictions
on the attack set
Ŷ A = h(XA)

A ✓ ✓ ✗ ✗
A′ ✓ ✓ ✓ ✓

results for our experiments on the three datasets, for the four
fairness metrics.

As expected, we observe that both accuracy and unfairness
decrease when the fairness constraint is tightened (ϵ dimin-
ishes). The trained fair models generalize rather well and so
similar trends are observed on the test sets.

APPENDIX F
DETAILED RESULTS: RECONSTRUCTION ACCURACY USING

BASELINE ADVERSARY A
In this section, we provide the experimental results (recon-

struction accuracy) for the experiments using the baseline ad-
versary A, for a target model trained using the Exponentiated-
Gradient [42] method. These results are displayed in Fig. 9, 10
and 11. They show the same trends as the experiments using
the baseline adversary A′ (Fig. 2, 3 and 4, presented in
Section IV-D1). In particular, we observe that the corrected
reconstruction always has better accuracy than the original one
made by the baseline adversary. More precisely, the tighter the
fairness constraint (i.e., the smaller the unfairness tolerance ϵ),
the greater the reconstruction correction step improvement.

APPENDIX G
DETAILED RESULTS: RECONSTRUCTION CORRECTION

PERFORMANCES FROM ESTIMATED FAIRNESS
CONSTRAINTS

In this section, we provide the reconstruction correction
performances for our experiments using the Exponentiated-
Gradient [42] method, including a scenario in which the actual
fairness constraint is not known. In such case, the adversary
has to estimate it as described in Section V-B. Fig. 12, 13
and 14 display these results for our experiments on the three
datasets, for the four fairness metrics, with baseline adversary
A′. Fig. 15, 16, and 17 display these results for baseline
adversary A. Results for both adversaries are very similar and
show the same phenomenons.

As discussed in Section V-B, we observe several trends.
When the fairness constraint is tight enough, the estimation
process usually estimates it correctly. In this situation, the
reconstruction correction step then exhibits slightly weaker
performances as the provided tolerance estimation is not as
tight as the actual constraint. However, when the unfairness
tolerance ϵ is large enough, its actual value is not informative,
while the estimated one is usually tighter leading to more
accurate reconstruction results. Finally, the fairness constraint
estimation process sometimes comes up with a fairness metric
differing from the actual optimized one. When the proposed
metric is more informative (in terms of number of examples

involved in its computation), the reconstruction performance
can even be better than with the actual constraint.

APPENDIX H
ADDITIONAL EXPERIMENT: RECONSTRUCTION

PERFORMANCES USING A PRE-PROCESSING METHOD FOR
FAIRNESS

In this appendix section, we provide results for addi-
tional experiments using a pre-processing method for fair-
ness: the CorrelationRemover method, implemented in the
Fairlearn library [41]. In a nutshell, the CorrelationRe-
mover transforms the training set unsensitive attributes in
order to remove their correlations with the sensitive ones.
A traditional machine learning algorithm is then used on the
sanitized data (pre-processed unsensitive attributes) to produce
a fair model.

The CorrelationRemover does not optimize statistical fair-
ness metrics explicitly. Indeed, bias against sensitive attributes
is removed before training the model, in the data pre-
processing step. Hence, in order to perform sensitive attributes
reconstruction correction, one has to infer some fairness infor-
mation. To do so, we use the strategy described in section V-B:
the attacker measures the target model’s unfairness on its own
attack set, and chooses the metric with the smallest value. The
experimental setup is similar to that of section IV-C. However,
because the CorrelationRemover method does not optimize a
particular fairness metric nor a particular tolerance value, we
only perform one experiment for each dataset (repeated 100
times with different random seeds).

The results presented in Table VI show that even in this
context, the reconstruction correction step still provides signif-
icant reconstruction accuracy improvements. In all situations,
the attacker was able to infer a valid fairness constraint and to
leverage it to improve the initial sensitive attributes reconstruc-
tion. Finally, these additional experiments confirm that the type
of fairness intervention does not influence the performances of
our proposed reconstruction correction step. The key factor for
allowing reconstruction correction is that the predictions of the
target model should be more fair than the original data. In this
situation, the original attacker’s reconstruction will likely be
more biased than the (fair) target model’s predictions, which
will allow some reconstruction correction.



TABLE VI
SUMMARY OF THE RESULTS OF OUR EXPERIMENTS USING A PRE-PROCESSING METHOD FOR FAIRNESS, WITH THE ATTACKER INFERRING THE FAIRNESS

INFORMATION. WE REPORT THE ACCURACY PERFORMANCES OF THE TRAINED (TARGET) MODEL, THE RESULTS OF THE FAIRNESS CONSTRAINT
ESTIMATION PROCESS (INFERRED METRICS AND AVERAGE INFERRED TOLERANCE), AND THE RECONSTRUCTION PERFORMANCES.

Target model (under attack) Estimated Constraint Baseline
Reconstructions

Corrected
Reconstructions

Train
Acc.

Test
Acc.

Estimated
Metric

Estimated
Tolerance A A′ A A′

UCI Adult Income dataset
0.860± 0.003 0.848± 0.003 PE (68%), EO (32%) 0.023± 0.013 0.808± 0.005 0.806± 0.005 0.828± 0.013 0.827± 0.014

ACSPublicCoverage dataset
0.862± 0.001 0.852± 0.002 PE (92%), SP (8%) 0.006± 0.004 0.861± 0.005 0.860± 0.006 0.863± 0.005 0.872± 0.010

ACSIncome dataset
0.798± 0.002 0.785± 0.003 PE (100%) 0.056± 0.016 0.690± 0.007 0.685± 0.008 0.704± 0.014 0.763± 0.009
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Fig. 6. Target models performances for our experiments using the UCI Adult Income dataset.
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Fig. 7. Target models performances for our experiments using the ACSPublicCoverage dataset.
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Fig. 8. Target models performances for our experiments using the ACSIncome dataset.
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Fig. 9. Corrected and original (adversary A) reconstruction quality, for our experiments using the UCI Adult Income dataset.
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Fig. 10. Corrected and original (adversary A) reconstruction quality, for our experiments using the ACSPublicCoverage dataset
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Fig. 11. Corrected and original (adversary A) reconstruction quality, for our experiments using the ACSIncome dataset
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Fig. 12. Original (attacker A′), corrected (from actual fairness constraint, and from estimated one (est.)) reconstruction quality, for our experiments using
the UCI Adult Income dataset



0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Unfairness Tolerance 

0.855

0.860

0.865

0.870

0.875

0.880

Re
co

ns
tru

ct
io

n 
Ac

cu
ra

cy

Statistical Parity
Original (average and std)
Corrected (average and std)
Corrected (est.) (average and std)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Unfairness Tolerance 

0.855

0.860

0.865

0.870

0.875

Re
co

ns
tru

ct
io

n 
Ac

cu
ra

cy

Predictive Equality
Original (average and std)
Corrected (average and std)
Corrected (est.) (average and std)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Unfairness Tolerance 

0.855

0.860

0.865

0.870

0.875

0.880

Re
co

ns
tru

ct
io

n 
Ac

cu
ra

cy

Equal Opportunity
Original (average and std)
Corrected (average and std)
Corrected (est.) (average and std)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Unfairness Tolerance 

0.855

0.860

0.865

0.870

0.875

0.880

Re
co

ns
tru

ct
io

n 
Ac

cu
ra

cy

Equalized Odds
Original (average and std)
Corrected (average and std)
Corrected (est.) (average and std)

Fig. 13. Original (attacker A′), corrected (from actual fairness constraint, and from estimated one (est.)) reconstruction quality, for our experiments using
the ACSPublicCoverage dataset
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Fig. 14. Original (attacker A′), corrected (from actual fairness constraint, and from estimated one (est.)) reconstruction quality, for our experiments using
the ACSIncome dataset
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Fig. 15. Original (attacker A), corrected (from actual fairness constraint, and from estimated one (est.)) reconstruction quality, for our experiments using
the UCI Adult Income dataset
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Fig. 16. Original (attacker A), corrected (from actual fairness constraint, and from estimated one (est.)) reconstruction quality, for our experiments using
the ACSPublicCoverage dataset
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Fig. 17. Original (attacker A), corrected (from actual fairness constraint, and from estimated one (est.)) reconstruction quality, for our experiments using
the ACSIncome dataset


