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Recently, belief change within the framework of fragments of propositional logic has gained attention. In the context of revision it has been proposed to refine existing operators so that they operate within propositional fragments, and that the result of revision remains in the fragment under consideration. Later this notion of refinement was generalized to belief change operators. Whereas refinement allowed one to define concrete rational operators adapted to propositional fragments in the context of revision and update, it has to be specified for contraction and erasure. We propose a specific notion of refinement for contraction and erasure operators, called reasonable refinement. This allows us to provide refined contraction and erasure operators that satisfy the basic postulates. We study the logical properties of reasonable refinement of two model-based contraction operators and two model-based erasure operators. Our approach is not limited to the Horn fragment but applicable to many fragments of propositional logic, like Krom and affine fragments.

Introduction

Belief change is a central topic in knowledge representation and reasoning for artificial intelligence. It studies how a rational agent may modify his beliefs in presence of new information. Change may take different forms, incorporation of newly acquired information or removal of existing beliefs, that lead to different kinds of belief changes serving different purposes. Belief revision consists in incorporating into an agent's beliefs new information in a static environment, while belief update occurs in a changing environment where new information reflects a change in the agent's environment. Belief contraction consists in retracting an agent's existing beliefs in a static environment, while belief erasure occurs in a changing environment where the erased beliefs are not anymore true after the environment has changed.

Within the symbolic frameworks, where an agent's beliefs are represented by theories, the AGM paradigm [START_REF] Alchourrón | On the logic of theory change: Partial meet contraction and revision functions[END_REF][START_REF] Gärdenfors | Knowledge in flux[END_REF] became a standard that provides rational postulates any reasonable revision or contraction operator should satisfy.

When a theory is represented by a propositional formula, Katsuno and Mendelzon [START_REF] Katsuno | Propositional knowledge base revision and minimal change[END_REF] reformulated the AGM postulates for revision and some of them for contraction, then proposed postulates for update and erasure. They contributed to a better understanding regarding the distinction between belief revision and belief update when they proposed a common framework to characterize these operations in terms of representation theorems. When an agent's beliefs are represented by a logical formula, revision makes the models of this formula evolve as a whole towards the closest models of new information. In contrast, update makes each model of this formula locally evolve towards the closest models of new information. More recently Caridroit et al. [START_REF] Caridroit | Contraction in propositional logic[END_REF] provided a complete reformulation of the AGM postulates for contraction and proposed a representation theorem that characterizes contraction operations in terms of total preorders over interpretations.

Belief change has been studied within the framework of propositional logic, several concrete belief revision [START_REF] Alchourrón | On the logic of theory change: Partial meet contraction and revision functions[END_REF][START_REF]Investigations into theory of knowledge base revision[END_REF][START_REF] Satoh | Nonmonotonic reasoning by minimal belief revision[END_REF][START_REF] Katsuno | Propositional knowledge base revision and minimal change[END_REF][START_REF] Dubois | Belief revision and updates in numerical formalisms: An overview, with new results for the possibilistic framework[END_REF][START_REF] Nebel | Base revision operations and schemes: Semantics, representation and complexity[END_REF], belief update [START_REF] Forbus | Introducing actions into qualitative simulation[END_REF][START_REF] Del Val | A unified view of belief revision and update[END_REF][START_REF] Dubois | Belief revision and updates in numerical formalisms: An overview, with new results for the possibilistic framework[END_REF][START_REF] Zhang | Updates with disjunctive information: From syntactical and semantical perspectives[END_REF][START_REF] Boutilier | A unified model of qualitative belief change: A dynamical systems perspective[END_REF][START_REF] Friedman | Modeling belief in dynamic systems, part II: Revision and update[END_REF][START_REF] Herzig | Propositional belief base update and minimal change[END_REF][START_REF] Doherty | The PMA and relativizing minimal change for action update[END_REF][START_REF] Lang | Belief update revisited[END_REF][START_REF] Delgrande | Compositional belief update[END_REF], and belief contraction operators [START_REF] Alchourrón | On the logic of theory change: Partial meet contraction and revision functions[END_REF][START_REF] Gärdenfors | Knowledge in flux[END_REF][START_REF] Gärdenfors | Revisions of knowledge systems using epistemic entrenchment[END_REF][START_REF] Fuhrmann | Theory contraction through base contraction[END_REF][START_REF] Rott | Belief contraction in the context of the general theory of rational choice[END_REF][START_REF] Hansson | Kernel contraction[END_REF] have been proposed.

Many studies focused on belief change within the framework of propositional logic fragments, particularly on belief revision [START_REF] Cadoli | Semantical and computational aspects of Horn approximations[END_REF][START_REF] Delgrande | Belief revision in Horn theories[END_REF][START_REF] Zhuang | Definability of Horn revision from Horn contraction[END_REF][START_REF] Van De Putte | Prime implicates and relevant belief revision[END_REF][START_REF] Creignou | Belief revision within fragments of propositional logic[END_REF], belief merging [START_REF] Creignou | Belief merging within fragments of propositional logic[END_REF], belief update [START_REF] Creignou | Belief update within propositional fragments[END_REF] and belief contraction [START_REF] Delgrande | Horn clause belief change: Contraction functions[END_REF][START_REF] Wu | Language splitting and relevance-based belief change in Horn logic[END_REF][START_REF] Booth | On the link between partial meet, kernel, and infra contraction and its application to Horn logic[END_REF][START_REF] Zhuang | Transitively relational partial meet Horn contraction[END_REF][START_REF] Delgrande | Horn clause contraction functions[END_REF][START_REF] Zhuang | Entrenchment-based Horn contraction[END_REF]. However, as far as we know, research in belief contraction has been mainly devoted to the Horn fragment and belief erasure has attracted no attention.

Our goal is to provide new contraction operators and new erasure operators that operate in various fragments of propositional logic (including, but not restricted to, the Horn fragment). In doing so we continue our systematic investigation of belief change operators designed for fragments of propositional logic.

The motivation of such a study is twofold. First, in many applications, the language is restricted a priori. For instance, a rule-based formalization of expert knowledge is much easier to handle for standard users. Second, some fragments of propositional logic allow for efficient reasoning methods, and then an outcome of contraction and an outcome of erasure within such a fragment can be evaluated efficiently. It seems thus natural to investigate how known belief change operators, here contraction and erasure operators, can be refined such that the result of contraction and the result of erasure remain in the fragment under consideration. Formally, let L be a propositional fragment and ψ and µ two formulas in L . The main obstacle hereby is that there is no guarantee that the outcome of contraction, denoted by ψ -µ, and the outcome of erasure, denoted by ψ µ remain in L as well.

Let us consider the following example inspired from the one used in [START_REF] Katsuno | On the difference between updating a knowledge base and revising it[END_REF] where the beliefs describe three objects A, B and C inside a room. There is a table in the room and the objects may or may not be on the table. Suppose a means "object A is on the table", b means "object B is on the table" and c means "object C is on the table". Assume that the agent's beliefs are represented by the formula ψ = a, which expresses that the agent believes that object A is on the table, but she does not know whether the objects B and C are or are not on the table. Suppose the agent loses confidence in the belief which expresses that "if B and C are on the table then A is on the table too". This involves contracting ψ by µ = a ∨ ¬b ∨ ¬c. The formulas ψ and µ are Horn formulas, however contracting ψ by µ with a contraction operator stemming from Dalal's [START_REF]Investigations into theory of knowledge base revision[END_REF] or Satoh's operator [START_REF] Satoh | Nonmonotonic reasoning by minimal belief revision[END_REF] results in a formula equivalent to φ = (a ∨ b) ∧ (a ∨ c) which is not a Horn formula and is not equivalent to any Horn formula (because its set of models is not closed under intersection, while this property characterizes Horn formulas, see [START_REF] Horn | On sentences which are true of direct unions of algebras[END_REF]).

Suppose now, the agent's beliefs are still represented by the formula ψ = a, and a robot is sent into the room with the instruction to achieve a situation in which there are not the three objects together on the table. This change is represented by the formula µ = a ∧ b ∧ c to be erased. The formulas ψ and µ are Horn formulas, however erasing ψ by µ with an erasure operator stemming from Forbus' [START_REF] Forbus | Introducing actions into qualitative simulation[END_REF] or Winslett's [START_REF] Winslett | Reasoning about action using a possible models approach[END_REF] operator results in a formula equivalent to φ = (a ∨ b) ∧ (a ∨ c), which is not a Horn formula and is not equivalent to any Horn formula.

The notion of refinement, initially defined for revision [START_REF] Creignou | Belief revision within fragments of propositional logic[END_REF], was extended in [START_REF] Creignou | Belief update within propositional fragments[END_REF] to any belief change operator defined from L × L to L where L denotes propositional logic. A refinement adapts a belief change operator defined in a propositional setting such that it can be applicable in a propositional fragment. The basic properties of a refinement are first to guarantee the outcome of the belief change operation to remain within the fragment and second to approximate the behavior of the original belief change operator, in particular to keep the behavior of the original operator unchanged if the result already fits in the fragment. These refined operators were characterized in a constructive way. A natural objective is to define rational refined belief change operators that satisfy expected rationality postulates. Contrary to the case of revision and update [START_REF] Creignou | Belief revision within fragments of propositional logic[END_REF][START_REF] Creignou | Belief update within propositional fragments[END_REF], the refined contraction (respectively, erasure) operators do not necessarily satisfy the basic postulates for contraction (respectively, erasure) operators. In order to encompass a wider class of refined belief change operators including contraction and erasure, we introduce a specific notion of refinement, called reasonable refinement. This specification allows us to provide concrete rational contraction operators, as well as concrete rational erasure operators, obtained from respectively known model-based contraction and erasure operators. We focus on the one hand on reasonable refinements of the contraction operators defined from Dalal's and Satoh's revision operators, and on the other hand on reasonable refinements of the erasure operators defined from Forbus' and Winslett's update operators, within the Horn, Krom and affine fragments. We study the logical properties of all these operators in terms of satisfaction of postulates.

An important contribution of our study is that it provides new rational belief contraction operators and new belief erasure operators that work within propositional fragments. In the Horn case, some new belief contraction operators do not coincide with any contraction operator previously proposed in the literature.

This article is an extension of the conference paper [START_REF] Creignou | Belief contraction within fragments of propositional logic[END_REF]. Besides providing full proofs of all results, the study is extended to belief erasure within fragments of propositional logic. Moreover, it highlights the relationship between logical properties of belief change operators and decomposability of propositional fragments.

The paper is organized as follows. We start in Section 2 with some preliminaries, we first recall some basic notions about propositional logic and characterizable frag-ments of propositional logic. We then give a short reminder of belief revision, belief update, belief contraction and belief erasure. Section 3.1 deals with refinements of belief change operators. In Section 3.2 we focus on reasonable refinements and we characterize them in the general context of belief change in Section 3.3. In Section 4 we study the logical properties of refined belief contraction operators and refined belief erasure operators. Finally we conclude in Section 5.

Preliminaries

2.1 Propositional logic, preorders and orders Propositional logic. Let L be the language of propositional logic built on an infinite countable set of variables (atoms) denoted by V and equipped with standard connectives ¬, ∧, ∨, →, the exclusive or connective ⊕, and constants , ⊥. A literal a is an atom or its negation ¬a. A clause is a disjunction of literals. A clause is called Horn if at most one of its literals is positive; Krom if it consists of at most two literals. A ⊕-clause is defined like a clause but using exclusive -instead of standard -disjunction.

We identify L Horn (resp., L Krom , L Affine ) as the set of all formulas in L being conjunctions of Horn clauses (resp., Krom clauses, ⊕-clauses).

Let U be a finite set of atoms. An interpretation over U is represented either by a set m ⊆ U of atoms (corresponding to the variables set to True) or by its corresponding characteristic bit-vector of length |U|, the atoms being considered in lexicographical order. For instance if we consider U = {x 1 , . . . , x 6 }, the interpretation x 1 = x 3 = x 6 = 1 and x 2 = x 4 = x 5 = 0 will be represented either by {x 1 , x 3 , x 6 } or by (1, 0, 1, 0, 0, 1).

For any formula φ, let Var(φ) denote the set of variables occurring in φ. As usual, if an interpretation m defined over U satisfies a formula φ such that Var(φ) ⊆ U, we call m a model of φ. By Mod(φ) we denote the set of all models (over U) of the formula φ.

A formula ψ is complete over U if Var(ψ) ⊆ U and if for any formula µ ∈ L such that Var(µ) ⊆ U, we have ψ |= µ or ψ |= ¬µ. In an equivalent way, a satisfiable formula ψ is complete over U1 if it has exactly one model over U. Moreover, ψ |= φ if Mod(ψ) ⊆ Mod(φ) and ψ ≡ φ if Mod(ψ) = Mod(φ). For a set A of formulas, T L (A) denotes the closure of A under the consequence relation |=. A theory A is a deductively closed set of formulas if A = T L (A). For fragments L ⊆ L, we use T L (ψ) as the set of formulas representing the logical consequences of ψ in the fragment L . Formally, we have

T L (ψ) = {φ ∈ L | ψ |= φ}.
Let ψ and µ be two propositional formulas and m and m be two interpretations. Let m∆m be the symmetric difference between m and m . We denote by |∆| min m (µ) the minimal number of propositional variables on which a model of µ and m differ. More formally,

|∆| min m (µ) = min{|m∆m | : m ∈ Mod(µ)}.
Besides, we denote by ∆ min m (µ), the minimal subsets of propositional variables w.r.t. set inclusion on which the models of a formula µ and m differ. More formally,

∆ min m (µ) = min ⊆ ({m∆m : m ∈ Mod(µ)}).
A belief change operator is a mapping from L × L to L.

Preorders and orders. We will use binary relations ≤ on the set U to encode preference or plausability relations over interpretations. We write m < m if m ≤ m and m ≤ m. A preorder ≤ on U is a reflexive and transitive binary relation on U.

An order ≤ on U is a reflexive, transitive and antisymmetric binary relation on U. A preorder (resp. an order) ≤ on U is total if, for any interpretations m and m , m ≤ m or m ≤ m. If M ⊆ U is a set of interpretations, the set Min ≤ M of minimal elements of M with respect to ≤ is defined as:

Min ≤ (M) = {w ∈ M | there is no w ∈ M such that w < w}.
Observe that if ≤ is a total order and if M is a nonempty set, then Min ≤ (M) is a singleton.

Characterizable fragments of propositional logic

Let B be the set of Boolean functions β: {0, 1} k → {0, 1} with k ≥ 1, that are symmetric (i.e. for all permutations σ, β(x 1 , . . . , x k ) = β(x σ(1) , . . . , x σ(k) )), and 0and 1-reproductive (i.e. for every x ∈ {0, 1}, β(x, . . . , x) = x). Examples of such functions are: The binary AND function denoted by ∧, the ternary MAJORITY function, maj 3 (x, y, z) = 1 if at least two of the variables x, y and z are set to 1, and the ternary XOR function ⊕ 3 (x, y, z) = x ⊕ y ⊕ z.

Recall that we consider interpretations also as bit-vectors. We thus extend Boolean functions to interpretations by applying coordinate-wise the original function. So, if m 1 , . . . , m k ∈ {0, 1} n , then β(m 1 , . . . , m k ) is defined by

(β(m 1 [1], . . . , m k [1]), . . . , β(m 1 [n], . . . , m k [n])),
where m[i] is the i-th coordinate of the interpretation m. The next definition gives a general formal definition of closure. Definition 1. Given a set of interpretations M ⊆ 2 U and a boolean function β ∈ B, we define Cl β (M), the closure of M under β, as the smallest set of interpretations that contains M and that is closed under

β, i.e. if m 1 , . . . , m k ∈ Cl β (M), then β(m 1 , . . . , m k ) ∈ Cl β (M).
For instance it is well-known that the set of models of any Horn formula is closed under ∧, and actually this property characterizes Horn formulas. Closures satisfy monotonicity: if M ⊆ N , then Cl β (M) ⊆ Cl β (N ). Moreover, if |M| = 1, then Cl β (M) = M (because by assumption β is 0-and 1-reproducing); finally, we always have Cl β (∅) = ∅.

We can now use these concepts to identify fragments of propositional logic. Additionally, we want fragments to fulfill some natural properties and for technical reasons we require closure under conjunction.

Definition 2. Let β ∈ B. A set of propositional formulas L ⊆ L is a β-fragment (or a characterizable fragment) if: (i) For all ψ ∈ L , Mod(ψ) = Cl β (Mod(ψ)). (ii) For all M ⊆ 2 U with M = Cl β (M) there exists ψ ∈ L with Mod(ψ) = M. (iii) If φ, ψ ∈ L then φ ∧ ψ ∈ L .
We will often (implicitly) use the following fact: Let µ be a formula in L and L be a β-fragment. Let μ be a formula in L such that Mod(μ) = Cl β (Mod(µ)) (such a formula exists according to (ii) in Definition 2). Then T L (µ) = T L (μ).

Many fragments of propositional logic allow for efficient reasoning methods. When representing knowledge, storing beliefs as a formula of a known tractable class is thus of interest. The most famous characterizable fragments, which are the largest in which satisfiability is tractable, are: L Horn which is an ∧-fragment, L Krom which is a maj 3fragment and L Affine which is a ⊕ 3 -fragment.

An immediate generalization of our framework to fragments characterized by a closure property under a finite number of functions (and not only one), leads to infinitely many fragments, which are organized in a lattice, known as Post's lattice [START_REF] Post | The two-valued iterative systems of mathematical logic[END_REF]. The complexity of many computational tasks has been studied in these fragments (see [START_REF] Creignou | Boolean constraint satisfaction problems: When does post's lattice help? In Complexity of Constraints[END_REF] for a survey). The complexity of reasoning tasks within the Krom fragment has been recently investigated [START_REF] Creignou | Do hard sat-related reasoning tasks become easier in the Krom fragment?[END_REF].

Belief Revision

Belief revision consists in incorporating a new belief, changing as few as possible of the original beliefs while preserving consistency. More formally, a revision operator denoted by •, is a function from L × L to L that maps two formulas ψ (the initial agent's beliefs) and µ (new information) to a new formula ψ • µ (the revised agent's beliefs).

In the AGM paradigm [START_REF] Alchourrón | On the logic of theory change: Partial meet contraction and revision functions[END_REF], postulates were proposed for belief revision when beliefs are modeled by a theory (or belief set), Katsuno and Mendelzon reformulated them when a theory is represented by a propositional formula. We recall the KM postulates for belief revision [START_REF] Katsuno | Propositional knowledge base revision and minimal change[END_REF].

Let ψ, ψ 1 , ψ 2 , µ, µ 1 , µ 2 ∈ L. (R1) ψ • µ |= µ. (R2) If (ψ ∧ µ) is satisfiable then ψ • µ ≡ ψ ∧ µ. (R3) If µ is satisfiable then ψ • µ is satisfiable. (R4) If ψ 1 ≡ ψ 2 and µ 1 ≡ µ 2 then ψ 1 • µ 1 ≡ ψ 2 • µ 2 . (R5) (ψ • µ 1 ) ∧ µ 2 |= ψ • (µ 1 ∧ µ 2 ). (R6) If (ψ • µ 1 ) ∧ µ 2 is satisfiable then ψ • (µ 1 ∧ µ 2 ) |= (ψ • µ 1 ) ∧ µ 2 .
The meaning of these postulates is the following. Postulate (R1) specifies that the added formula belongs to the revised belief set. Postulate (R2) is concerned with following issue: if the added formula does not contradict the initial belief set then the revised belief set is represented by the conjunction of the added formula and the formula representing the initial belief set, in other words if the incorporation of new knowledge does not cause problem, we just add the new belief to the existing knowledge. Postulate (R3) ensures that no inconsistency is introduced in the revised belief set. Postulate (R4) expresses the principle of irrelevance of the syntax, and (R5) and (R6) state that revising by the conjunction of two pieces of information amounts to a revision by the first one and a conjunction of the second one whenever possible (whenever the second piece of information does not contradict any belief resulting from the first revision).

Katsuno and Mendelzon showed that a revision operator satisfying the AGM postulates can be induced by a total preorder over interpretations, which reflects a plausibility ordering on interpretations, and reciprocally. More formally, a faithful assignment is a function that maps any propositional formula ψ to a total preorder over interpretations ≤ ψ such that:

1) If m |= ψ and m |= ψ, then m = ψ m . 2) If m |= ψ and m |= ψ, then m < ψ m . 3) If ψ 1 ≡ ψ 2 then ≤ ψ1 =≤ ψ2 .
They provided the following representation theorem.

Theorem 1. [33]

A revision operator • satisfies the postulates (R1)-(R6) if and only if there exists a faithful assignment that maps each formula ψ to a total preorder ≤ ψ such that Mod(ψ • µ) = Min(Mod(µ), ≤ ψ ).

Several revision operators have been proposed. We now recall the two best known model-based revision operators on which we will focus, namely Dalal's [START_REF]Investigations into theory of knowledge base revision[END_REF] and Satoh's operators [START_REF] Satoh | Nonmonotonic reasoning by minimal belief revision[END_REF]. In these model-based revision operators the closeness between models relies on the symmetric difference between models, that is the set of propositional variables on which they differ. Dalal's revision operator focuses on cardinality, while Sathoh's revision operator concentrates on set inclusion. The Dalal's revision operator, denoted by • D , is then defined by:

Mod(ψ • D µ) = {m ∈ Mod(µ) : ∃m ∈ Mod(ψ) such that |m∆m | = |∆| min m (µ)}.
Similarly, the Satoh's revision operator, denoted by • S , is defined by: [START_REF] Eiter | On the complexity of propositional knowledge base revision, updates, and counterfactuals[END_REF][START_REF] Katsuno | Propositional knowledge base revision and minimal change[END_REF] while the Satoh's revision operator satisfies (R1)-(R5) [START_REF] Ktari | Changement de croyances dans des fragments de la logique propositionnelle[END_REF].

Mod(ψ • S µ) = {m ∈ Mod(µ) : ∃m ∈ Mod(ψ) such that m∆m ∈ ∆ min m (µ)}. The Dalal's revision operator satisfies (R1)-(R6)

Belief Contraction

Belief contraction consists in reducing or retracting beliefs without adding any new information and changing as few as possible of the original beliefs. More formally, a contraction operator, denoted by -, is a function from L × L to L that maps two formulas ψ (the initial agent's beliefs) and µ (the belief to be removed) to a new formula ψ -µ (the contracted agent's beliefs).

Likewise belief revision, postulates were proposed within the AGM paradigm [START_REF] Alchourrón | On the logic of theory change: Partial meet contraction and revision functions[END_REF] for belief contraction when beliefs are modeled by a theory (or belief set), Katsuno and Mendelzon reformulated them when a theory is represented by a propositional formula [START_REF] Katsuno | On the difference between updating a knowledge base and revising it[END_REF]. More recently, Caridroit, Konieczny and Marquis [START_REF] Caridroit | Contraction in propositional logic[END_REF] revisited them as follows.

Let ψ, ψ 1 , ψ 2 , µ, µ 1 , µ 2 ∈ L. (C1) ψ |= ψ -µ. (C2) If ψ |= µ, then ψ -µ |= ψ. (C3) If ψ -µ |= µ, then |= µ. (C4) If ψ 1 ≡ ψ 2 and µ 1 ≡ µ 2 , then ψ 1 -µ 1 ≡ ψ 2 -µ 2 . (C5) If ψ |= µ, then(ψ -µ) ∧ µ |= ψ. (C6) ψ -(µ 1 ∧ µ 2 ) |= (ψ -µ 1 ) ∨ (ψ -µ 2 ). (C7) If ψ -(µ 1 ∧ µ 2 ) |= µ 1 , then ψ -µ 1 |= ψ -(µ 1 ∧ µ 2 ).
Postulates (C1)-(C4) were initially proposed by Katsuno and Mendelzon, while (C5)-(C7) were introduced by Caridroit, Konieczny and Marquis. The meaning of these postulates is the following. Postulate (C1) ensures that after contraction, no new information was added to the initial agent's beliefs. Postulate (C2) expresses that if µ is not deducible from ψ, then no change is made by the contraction of the initial agent's beliefs. Postulate (C3) guarantees that the only possibility for the contraction of ψ by µ to fail is that µ is a tautology. Postulate (C4) reflects the principle of irrelevance of syntax. For a uniform numbering of the postulates with respect to the other belief change operations, we changed the numbering used in [START_REF] Caridroit | Contraction in propositional logic[END_REF]. Postulate (C5) says that if µ is deducible from ψ, then the initial belief set ψ is deducible from the conjunction of the result of the contraction of ψ by µ and from µ. Note that the initial KM postulate was (C5 KM ): (ψ -µ) ∧ µ |= ψ, it is stronger than (C5). Nevertheless, postulates (C2) and (C5) imply (C5 KM ). Postulates (C6) and (C7) express the minimality of change for the conjunction. Postulate (C6) says that the contraction by a conjunction always implies the disjunction of the two contractions by the conjuncts. Postulate (C7) says that if µ 1 has not been removed during the contraction by µ 1 ∧ µ 2 , then the contraction by µ 1 must imply the contraction by the conjunction.

Interestingly, Caridroit, Konieczny and Marquis [START_REF] Caridroit | Contraction in propositional logic[END_REF] proposed a representation theorem for model-based contraction operators in the same spirit as Katsuno et Mendelzon's representation theorem for revision.

Theorem 2. [5]

A contraction operatorsatisfies the postulates (C1)-(C7) if and only if there exists a faithful assignment that maps each formula ψ to a total preorder

≤ ψ such that Mod(ψ -µ) = Mod(ψ) ∪ min(Mod(¬µ), ≤ ψ ).
Revision and contraction operators are closely related. Indeed, as a revision operator can be defined from a contraction operator via Levi's identity [START_REF] Levi | Subjunctives, dispositions of chances[END_REF] (ψ • µ ≡ (ψ -¬µ) ∧ µ), a contraction operator can be likewise defined from a revision operator via Harper's identity [START_REF] Harper | Rational conceptual change[END_REF] (ψ -µ ≡ ψ ∨ (ψ • ¬µ)). Consequently, two model-based contraction operators can be defined from the well-known Dalal's and Satoh's revision operators.

The contraction operator obtained from Dalal's revision operator is denoted by -D , and is defined by

Mod(ψ -D µ) = Mod(ψ) ∪ Mod(ψ • D ¬µ).
Similarly, the contraction operator obtained from Satoh's revision operator is denoted by -S , and is defined by

Mod(ψ -S µ) = Mod(ψ) ∪ Mod(ψ • S ¬µ).
The contraction operator -D satisfies (C1) -(C7) [START_REF] Caridroit | Contraction in propositional logic[END_REF] while the contraction operator -S satisfies (C1) -(C6), but violates (C7) [START_REF] Ktari | Changement de croyances dans des fragments de la logique propositionnelle[END_REF].

The contraction operators -D and -S are illustrated in the following example.

Example 1. Let us come back to the example given in the introduction where ψ = a and thus Mod(ψ) = {{a}, {a, b}, {a, c}, {a, b, c}}, and µ = a ∨ ¬b ∨ ¬c and thus

Mod(¬µ) = {{b, c}}. For all • ∈ {• D , • S }, we have M od(ψ • ¬µ) = {{b, c}} therefore for all -∈ {-D , -S } we have M od(ψ -µ) = M od(ψ) ∪ M od(ψ • ¬µ) = {{a}, {a, b}, {a, c}, {a, b, c}, {b, c}}.
Note that ψ and µ are Horn formulas, however the result of contraction is not in Horn, since M od(ψ -µ) is not closed under intersection (e.g. {b} and {c} are missing).

When working in propositional fragment L , we say that a contraction operator satisfies a KM postulate (C i ) (i = 1, . . . , 7) in L if the respective postulate holds when restricted to formulas in L .

Belief Update

Belief update consists in incorporating into an agent's beliefs new information reflecting a change in her environment. More formally, an update operator, denoted by , is a function from L × L to L that maps two formulas ψ (the initial agent's beliefs) and µ (new information) to a new formula ψ µ (the updated agent's beliefs). Katsuno and Mendelzon [START_REF] Katsuno | A unified view of propositional knowledge base updates[END_REF] contributed to a better understanding regarding the distinction between belief revision and belief update. Revision makes the models of this formula evolve as a whole towards the closest models of new information, while update makes each model of this formula locally evolve towards the closest models of new information. We recall the KM postulates for belief update [START_REF] Katsuno | Propositional knowledge base revision and minimal change[END_REF].

Let ψ, ψ 1 , ψ 2 , µ, µ 1 , µ 2 ∈ L. (U1) ψ µ |= µ. (U2) If ψ |= µ, then ψ µ ≡ ψ. (U3) If ψ and µ are satisfiable then so is ψ µ. (U4) If ψ 1 ≡ ψ 2 and µ 1 ≡ µ 2 , then ψ 1 µ 1 ≡ ψ 2 µ 2 . (U5) (ψ µ) ∧ φ |= ψ (µ ∧ φ). (U6) If (ψ µ 1 ) |= µ 2 and (ψ µ 2 ) |= µ 1 , then ψ µ 1 ≡ ψ µ 2 . (U7) If ψ is complete, then (ψ µ 1 ) ∧ (ψ µ 2 ) |= ψ (µ 1 ∨ µ 2 ). (U8) (ψ 1 ∨ ψ 2 ) µ ≡ (ψ 1 µ) ∨ (ψ 2 µ). (U9) If ψ is complete and (ψ µ) ∧ φ is satisfiable, then ψ (µ ∧ φ) |= (ψ µ) ∧ φ.
These postulates have been discussed in several papers (see for example [START_REF] Herzig | Propositional belief base update and minimal change[END_REF]). Postulate (U1) says that the models of the updated agent's beliefs have to be models of new information. Postulate (U4) states the irrelevance of syntax. Postulate (U5) expresses minimality of change. The three postulates (U1), (U4) and (U5) directly correspond to the belief revision postulates (R1), (R4) and (R5) respectively. Postulate (U2) differs from (R2), the latter stating that if ψ ∧ µ is satisfiable then ψ • µ ≡ ψ ∧ µ. A consequence of (U2) for update is that once an inconsistency is introduced in the initial beliefs there is no way to eliminate it [START_REF] Katsuno | Propositional knowledge base revision and minimal change[END_REF]. Note that this is not the case for belief revision. Furthermore, (U3) is a weaker version of (R3). The latter states that if µ is satisfiable then so is ψ • µ, while in order to ensure the consistency of the result of update (U3) requires an additional condition, namely that the initial beliefs be consistent as well. Postulates (U6), (U7) and (U8) are specific to update operators. The eighth postulate (U8), which means that an update operator should give each of the models of the initial beliefs equal consideration, is considered as the most "uncontroversial" one. Finally, (U9) is a weaker version of (R6), it is similar but restricted to complete formulas ψ.

Katsuno and Mendelzon showed that an update operator corresponds to a set of preorders on interpretations. More formally, a pointwise faithful assignment is a function that maps any interpretation m to a preorder over interpretations ≤ m , such that:

For any interpretation m , if m = m then m < m m .
They provided the following representation theorem.

Theorem 3. [34]

• An update operator satisfies the postulates (U1)-(U9) if and only if there exists a pointwise faithful assignment that maps each interpretation m to a total preorder ≤ m such that Mod(ψ µ) = m∈Mod(ψ) min(Mod(µ), ≤ m ).

• An update operator satisfies the postulates (U1)-(U8) if and only if there exists a pointwise faithful assignment that maps each interpretation m to a partial preorder ≤ m such that Mod(ψ µ) = m∈Mod(ψ) min(Mod(µ), ≤ m ).

The representation theorems, Theorem 1 and Theorem 3, pinpoint the differences between revision and update. Update stems from a pointwise minimization, model by model of ψ, while revision stems from a global minimization on all the models of ψ.

Update operators, for each model m of ψ, select the set of models of µ that are the closest to m, while revision operators select the set of models of µ that are the closest to the set of models of ψ. Note that when there exists only one model of ψ (which is the case when ψ is complete) revision and update coincide.

Several update operators have been proposed. We recall the two best known modelbased update operators on which we will focus, namely Forbus' [START_REF] Forbus | Introducing actions into qualitative simulation[END_REF] and Winslett's operators [START_REF] Winslett | Reasoning about action using a possible models approach[END_REF]. The Forbus' update operator, denoted by F , is then defined by:

Mod(ψ F µ) = m∈Mod(ψ) {m ∈ Mod(µ) : |m∆m | = |∆| min m (µ)}.
Similarly the Winslett's operator, also called PMA (Possible Models Approach), denoted by W , is then defined by:

Mod(ψ W µ) = m∈Mod(ψ) {m ∈ Mod(µ) : m∆m ∈ ∆ min m (µ)}.
The Forbus's operator F satisfies (U1)-(U8) [START_REF] Katsuno | Propositional knowledge base revision and minimal change[END_REF] and (U9) [START_REF] Herzig | Propositional belief base update and minimal change[END_REF] while the Winslett's operator satisfies (U1)-(U8) [START_REF] Katsuno | Propositional knowledge base revision and minimal change[END_REF] but does not satisfy (U9) [START_REF] Ktari | Changement de croyances dans des fragments de la logique propositionnelle[END_REF].

Belief Erasure

Belief erasure, introduced by Katsuno and Mendelzon [START_REF] Katsuno | On the difference between updating a knowledge base and revising it[END_REF], is to contraction what update is to revision. Intuitively, erasing a belief means the world may have changed in such a way that this belief is not true anymore. From a logical point of view, when the agent's beliefs are represented by a logical formula ψ, erasing the belief µ from ψ means locally adding models of ¬µ to ψ. More formally, an erasure operator, denoted by is a function from L×L to L that maps two formulas ψ (the initial agent's beliefs) and µ (the belief to be erased) to a new formula ψ µ (the erased agent's beliefs).

Postulates characterizing the rational behavior of erasure operators have also been proposed by Katsuno and Mendelzon [34] in the same spirit as the ones they proposed for belief contraction and belief update.

Let ψ, ψ 1 , ψ 2 , µ, µ 1 , µ 2 ∈ L. (E1) ψ |= ψ µ. (E2) If ψ |= ¬µ, then ψ µ ≡ ψ. (E3) If ψ is satisfiable and |= µ, then ψ µ |= µ. (E4) If ψ 1 ≡ ψ 2 and µ 1 ≡ µ 2 , then ψ 1 µ 1 ≡ ψ 2 µ 2 . (E5) (ψ µ) ∧ µ |= ψ. (E8) (ψ 1 ∨ ψ 2 ) µ ≡ (ψ 1 µ) ∨ (ψ 2 µ).
Let us briefly discuss these postulates. The postulates (E1), (E4) and (E5) are the same respectively as (C1), (C4) and (C5 KM ). There are three differences between contraction and erasure in terms of postulates. The first one is that (E2) is weaker than (C2); since contracting by µ does not influence ψ if ψ does not imply µ, but erasing by µ might modify ψ if ψ does not imply ¬µ. The second difference is that (E3) is a weaker version of (C3). In order to ensure the consistency of the result of erasure (E3) requires an additional condition, namely that the initial beliefs be consistent as well. Finally, erasure needs the disjunctive rule (E8) (like (U8) in the case of belief update) which means that an erasure operator should give each model of the initial beliefs equal consideration, but contraction does not.

Similarly to Harper's and Levi's identities, Katsuno and Mendelzon [START_REF] Katsuno | On the difference between updating a knowledge base and revising it[END_REF] proposed two other identities allowing the crossing from update to erasure and reciprocally.

(Id 1 ) ψ µ ≡ ψ ∨ (ψ ¬µ).

(Id 2 ) ψ µ ≡ (ψ ¬µ) ∧ µ.
Moreover, the following theorem gives the correspondence between update and erasure similar to the correspondence between revision and contraction.

Theorem 4. [34]

1. If an update operator satisfies (U1)-(U4) and (U8), then the erasure operator defined by the identity (Id 1 ) satisfies (E1)-(E5) and (E8).

2. If an erasure operator satisfies (E1)-(E4) and (E8), then the update operator defined by the identity (Id 2 ) satisfies (U1)-(U4) and (U8).

3. Suppose that an update operator satisfies (U1)-(U4) and (U8). Then, it is possible to define an erasure operator thanks to (Id 1 ). The update operator obtained from the erasure operator via (Id 2 ) is equal to the original update operator .

4. Suppose that an erasure operator satisfies (E1)-(E5) and (E8). Then, it is possible to define an update operator thanks to (Id 2 ). The erasure operator obtained from the update operator via (Id 1 ) is equal to the original erasure operator .

The KM identities allow one to define two model-based erasure operators from well-known update operators, namely the Forbus's and Winslett's update operators, denoted respectively by F and W and defined by

Mod(ψ F µ) = Mod(ψ) ∪ Mod(ψ F ¬µ), Mod(ψ W µ) = Mod(ψ) ∪ Mod(ψ W ¬µ).
According to Theorem 4 the erasure operators F and W both satisfy (E1) -(E5) and (E8).

The erasure operators F and W are illustrated in the following example. Note that ψ and µ are Horn, resp. Krom, formulas, however the result of erasure is not in Horn, since M od(ψ µ) is not closed under intersection ({b}, {c}, ∅ are missing), while it is in Krom, since M od(ψ µ) is closed under ternary majority.

When working in propositional fragment L , we say that an erasure operator satisfies a KM postulate (E i ) (i = 1, . . . , 4) and (E 8 )) in L if the respective postulate holds when restricted to formulas in L .

Refinement and reasonable refinement for belief change operators

When applied to fragments of propositional logic, the result of belief change operations may not be in the considered fragment as illustrated for contraction and erasure in the introductive example. Belief change within propositional fragments was originally studied in the context of revision in [START_REF] Creignou | Belief revision within fragments of propositional logic[END_REF], then in the context of update [START_REF] Creignou | Belief update within propositional fragments[END_REF]. The idea was to use wellestablished belief change operators, to refine them, in order to get rational operators tailored for fragments of propositional logic.

Refinement of belief change operators

The notion of refinement of an operator can be expressed as follows. Given a belief change operator : L × L -→ L and a fragment L of propositional logic, how can be adapted (or refined) to a new operator such that for all ψ, µ ∈ L , also ψ µ ∈ L ? As proposed in [START_REF] Creignou | Belief revision within fragments of propositional logic[END_REF] few natural desiderata for such refined operators can be stated. Definition 3. Let L be a fragment of propositional logic and : L × L → L a belief change operator. We call an operator : L × L → L a -refinement for L if it satisfies the following properties, for each ψ, ψ , µ, µ ∈ L :

(i) Consistency: ψ µ is satisfiable if and only if ψ µ is satisfiable. (ii) Equivalence: If ψ µ ≡ ψ µ , then ψ µ ≡ ψ µ . (iii) Containment: T L (ψ µ) ⊆ T L (ψ µ). (iv) Invariance: If ψ µ ∈ L , then T L (ψ µ) = T L (ψ µ).
Let us briefly discuss these properties. The first two conditions are rather independent from L , but relate the refined operator to the original belief change operator in certain ways. To be more precise, consistency states that the refined operator should yield a consistent belief change exactly if the original operator does so. Equivalence means that the definition of the -operator should not be syntax-dependent: belief changes which are equivalent w.r.t are also equivalent w.r.t. . In fact, this states that if the original belief change operator yields equivalent results for two different belief change problems, also the refined version should yield equivalent results for these two problems, but the results of the refined operator are not necessarily equivalent to the results of the original operator. The final two properties take more care of the fragment L . Containment ensures that can be seen as a form of approximation of when applied in the L fragment, while invariance states that in case behaves as expected (i.e., the belief change is contained in L ) there is no need for to do something additional.

In [START_REF] Creignou | Belief revision within fragments of propositional logic[END_REF] the authors defined such refined operators in the context of revision. This was generalized to any belief change operator operating from L × L to L in [START_REF] Creignou | Belief update within propositional fragments[END_REF]. Roughly speaking it was proved that when considering a model-based operator all refinements can be obtained by first applying the original operator, and in case the result is not in the fragment, applying in addition a mapping to the set of models obtained. This is formalized in what follows. Definition 4. Given β ∈ B, we define a β-mapping, f β , as a mapping from sets of models into sets of models, f β : 2 2 U -→ 2 2 U , such that for every M ⊆ 2 U , we have:

1. Cl β (f β (M)) = f β (M), i.e., f β (M) is closed under β. 2. f β (M) ⊆ Cl β (M). 3. If M = Cl β (M), then f β (M) = M. 4. If M = ∅, then f β (M) = ∅.
Starting from well-known belief change operators, we can define new belief change operators adapted to any fragment of propositional logic L by using β-mappings. Definition 5. Let : L × L -→ L be a belief change operator and L ⊆ L a βfragment of classical logic with β ∈ B. Given a β-mappingf β , we denote with f β : L × L -→ L the operator for L defined as

Mod(ψ f β µ) := f β (Mod(ψ µ)).
The class [ , L ] contains all operators f β where f β is a β-mapping.

Interestingly, this class actually captures all refinements we had in mind. Hence, β-mappings allow one to define a variety of refined operators. We consider two β-mappings in particular, namely the closure Cl β defined above and Min β defined as follows. Definition 6. Let β ∈ B and suppose that ≤ is a fixed total order on the set 2 U of interpretations. We define the function Min β as

   Min β (M) = M if Cl β (M) = M Min β (M) = Min ≤ (M) otherwise.
Observe that since ≤ is a total order for any nonempty set M, Min ≤ (M) is a singleton, and thus is β-closed. Therefore Min β is indeed a β-mapping.

According to Definition 5, this β-mapping Min β allows us to define from a belief change operator , the refined operator Min β such that Mod(ψ Min β µ) = Min β (Mod(ψ µ)).

The following example illustrates refined contraction and refined erasure operators.

Example 3. Let ψ, µ ∈ L Horn (resp., L Krom ) such that Mod(ψ) = {{a, b}, {c, d}, ∅} and Mod(µ) = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {c, d}, {a, c, d}}. Observe that such formulas exist since the corresponding sets of models are closed under intersection (resp., ternary majority).

Note that Mod(µ) = {{b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, {a, b, c, d}}.

From Table 2, for all • ∈ {• D , • S } we have Mod(ψ•¬µ) = {{a, b, c}, {a, b, d}, {b, c, d}} and for all -∈ {-D , -S } the result of the contraction is

Mod(ψ -µ) = Mod(ψ) ∪ Mod(ψ • ¬µ)
= {{a, b}, {c, d}, ∅, {a, b, c}, {a, b, d}, {b, c, d}}.

From Table 2, for all ∈ { F , W } we have Mod(ψ ¬µ) = {{a, b, c}, {a, b, d}, {b, c, d}, {b, c}, {b, d}} and for all ∈ { F , W } the result of erasure is

Mod(ψ µ) = Mod(ψ) ∪ Mod(ψ ¬µ)
= {{a, b}, {c, d}, ∅, {a, b, c}, {a, b, d}, {b, c, d}, {b, c}, {b, d}}.

Note that ψ, µ ∈ L Horn (resp., L Krom ), however the result of contraction and the result of erasure are not the sets of models of any Horn formula nor are the sets of any Krom formula, since in both cases the sets of models are neither ∧-closed nor maj 3 -closed. Indeed, in the Horn case, for contraction the models {b}, {c}, {d}, {b, c}, {b, d} are missing and for erasure the models {b}, {c}, {d} are missing. In the Krom case, for contraction the models {b}, {c}, {d}, {b, c}, {b, d}, {a, b, c, d} are missing and for erasure the models {b}, {c}, {d}, {a, b, c, d} are missing.

The refined operators -Cl∧ , -Clmaj 3 and Cl∧ , Clmaj Assume now that we have the following order, ≤ on the set of interpretations {b, c} < {b, d} < ∅ < {a, b} < {c, d} < {a, b, c} < {a, b, d} < {b, c, d}. Then the refined operators -Min∧ , -Minmaj 3 and Min∧ , Minmaj 3 are such that

Mod(ψ -Min∧ µ) = Mod(ψ -Minmaj 3 µ) = Min ≤ (Mod(ψ -µ)) = {∅} since Mod(ψ -µ) is not closed, and 
Mod(ψ Min∧ µ) = Mod(ψ Minmaj 3 µ) = Min ≤ (Mod(ψ µ)) = {{b, c}} since Mod(ψ µ) is not closed.
This notion of refinement has allowed one to define rational belief change operators that are well-suited for characterizable fragments of propositional logic in the case of revision operators [START_REF] Creignou | Belief revision within fragments of propositional logic[END_REF] and of update operators [START_REF] Creignou | Belief update within propositional fragments[END_REF]. A natural question is whether these refined revision (resp., update) operators can be used to define contraction (resp., erasure) operators well-suited to fragments as well in using the Harper's identity ψµ ≡ ψ ∨ (ψ • ¬µ) [START_REF] Harper | Rational conceptual change[END_REF] (resp. the Katsuno& Mendelzon's identity ψ µ ≡ ψ ∨ (ψ ¬µ) [START_REF] Katsuno | On the difference between updating a knowledge base and revising it[END_REF]). Unfortunately these identities do not allow one to obtain a contraction (resp., erasure) operator that is adapted to a fragment, from a revision (resp., update) operator that is so. Indeed, in these identities revision (resp., update) is first performed by the negation of a formula, moreover the second one uses the disjunction of two formulas. However characterizable fragments are neither closed under negation nor under disjunction (i.e., given two formulas µ 1 and µ 2 in a β-fragment L , neither ¬µ 1 , nor µ 1 ∨ µ 2 is necessarily equivalent to a formula in L ). Therefore contraction and erasure operators deserve an investigation on their own.

Reasonable refinements

The characterization of refined operators gives a way to define concrete refined operators for which we can study the satisfaction of rationality postulates. The property of containment for a refinement (property (iii) in Definition 3) guarantees that the refined operator approximates the original operator, in the sense that the refinement preserves the logical consequences of the original operator within the considered fragment. In the context of revision (resp., update) this property ensures in particular that if µ is a logical consequence of the revision ψ • µ (resp., the update ψ µ), then µ is also a logical consequence of the refined revision ψ • µ (resp., the refined update ψ µ). Hence, this property contributes to the preservation of basic postulates when refining revision and update operators. In contrast, it turns out to be insufficient for contraction and erasure operators, which are based on removing information from agent's initial beliefs. Indeed, while the notion of refinement continues to express a kind of approximation of the original operator, it fails at preserving all basic postulates, in particular (C1) and (C3) for contraction and (E1) and (E3) for erasure. Therefore, refined contraction operators and refined erasure operators will not necessarily behave rationally. In order to overcome this difficulty we have to restrict refinements to reasonable ones, which are refinements having two additional properties. Definition 7. Let L be a fragment of propositional logic, : L × L → L a belief change operator. We call an operator : L × L → L a -reasonable refinement for L if it is a -refinement that satisfies in addition the two following properties. For all ψ, ψ , µ and µ ∈ L ,

• (v) If T L (ψ µ) ⊆ T L (ψ), then T L (ψ µ) ⊆ T L (ψ). • (vi) If T L (µ) T L (ψ µ), then T L (µ) T L (ψ µ).
Property (v) states that if no new information is added to the initial agent's beliefs by the original operator, then none is either by the refined operator. Property (vi) means that if µ is not deducible from the result of the belief change ψ µ by the original operator, then it is not either from the result of the belief change ψ µ by the refined operator.

Obviously the refinement by the minimum, Min β is not a reasonable refinement since it does not satisfy condition (v). In contrast, the refinement by the closure is such a reasonable refinement. Proposition 3. For any belief change operator : L × L → L and any β-fragment L ⊆ L of classical logic, Cl β is a reasonable -refinement for L .

Proof. The operator Cl β is a -refinement for L , it remains to show that it is a reasonable one, i.e. that it verifies properties (v) and (vi) in Definition 7.

(v) : Suppose that

T L (ψ µ) ⊆ T L (ψ), that is Mod(ψ) ⊆ Mod(ψ µ). By monotonicity, Cl β (Mod(ψ)) ⊆ Cl β (Mod(ψ µ)). Since ψ ∈ L , we thus get Mod(ψ) ⊆ Mod(ψ Cl β µ), hence T L (ψ Cl β µ) ⊆ T L (ψ).
(vi) : Suppose that T L (µ) T L (ψ µ). Then, Mod(ψ µ) Mod(µ), and a fortiori Cl

β (Mod(ψ µ)) Mod(µ), i.e. Mod(ψ Cl β µ) Mod(µ). Since µ is in L , it follows that T L (µ) T L (ψ Cl β µ).
We now show how to characterize all reasonable refinements.

Characterization of reasonable refinements

Let L be a β-fragment, ψ, µ two formulas in L and a model-based belief change operator. We have seen that in order to set a refinement of , we first compute M the set of models of ψ µ, and we then apply a mapping to M in order to obtain a set of models N which is the set of models of a formula in L . This post-processing on M is not sufficient in the case of reasonable refinements. Indeed due to the two additional requirements for a refinement to be reasonable, in a post-processing step we have to take into account both the original formula and the information to remove, we cannot just consider the result of the original contraction (resp. erasure). We will have to consider mappings that take into account the sets of models of ψ µ, ψ, and µ.

The characterization of all reasonable refinements of a contraction operator or an erasure operator within a fragment uses the notion of reasonable β-mapping defined as follows 2 . Definition 8. Given β ∈ B, we define a reasonable β-mapping , f β , as a mapping

f β : 2 2 U × 2 2 U × 2 2 U -→ 2 2 U , such that for all sets of models M, M 1 , M 2 in 2 2 U : 1. Cl β (f β (M, M 1 , M 2 )) = f β (M, M 1 , M 2 ), 2. f β (M, M 1 , M 2 ) ⊆ Cl β (M), 3. If M = Cl β (M), then f β (M, M 1 , M 2 ) = M, 4. If M = ∅, then f β (M, M 1 , M 2 ) = ∅, 5. If M 1 ⊆ M, then M 1 ⊆ f β (M, M 1 , M 2 ), 6. If M M 2 , then f β (M, M 1 , M 2 ) M 2 .
As explained above the underlying idea of the reasonable mappings f β is to return f β (Mod(ψ µ), Mod(ψ), Mod(µ)), thus defining a reasonable refinement of the operator . Observe that the first four conditions depend only on the first argument, and therefore capture exactly the notion of refinement. The fifth and the sixth conditions involve the three arguments.The fifth condition (resp., the sixth condition) approximates the behavior of the initial belief change operator w.r.t. the initial beliefs (resp., new information).

The concept of reasonable mapping allows us to define a family of reasonable refined operators for fragments of propositional logic as follows. Definition 9. Let : L × L -→ L be a belief change operator, and L ⊆ L a βfragment of classical logic with β ∈ B. For a reasonable β-mapping, f β , we denote with f β : L × L -→ L the operator for L defined as

Mod(ψ f β µ) := f β (Mod(ψ µ), Mod(ψ), Mod(µ)).
The class , L contains all operators f β where f β is a reasonable β-mapping.

The next proposition reflects that the above class captures all reasonable refined belief change operators we had in mind. Proposition 4. Let : L × L -→ L be a belief change operator and L ⊆ L a characterizable fragment of propositional logic. Then, , L is the set of all reasonable -refinements for L .

Contraction and erasure operators within fragments

We now focus on reasonable refinements of contraction operators and erasure operators. We first prove that reasonable refinements preserve basic postulates. Then we propose some reasonable β-mappings and study the logical properties of the refined operators they define. In all the section it is implicit that within L Horn (resp., L Krom ) a β-mapping is a ∧-mapping (resp., maj 3 -mapping).

Basic Logical Properties of Refined Belief Contraction and Erasure Operators

From now on we study the logical properties of reasonably refined contraction and erasure operators in terms of satisfaction of KM postulates. We first show a positive result concerning four basic postulates. We prove that the first four postulates are preserved by any reasonable refinement both in the case of contraction and erasure.

Proposition 5. Let L ⊆ L be a characterizable fragment.

• Letbe a contraction operator. Ifsatisfies postulate (C1) (resp. (C2), (C3) and (C4)), then so does any reasonable refinement of this operator ∈ -, L in L .

• Let be an erasure operator. If satisfies postulate (E1) (resp. (E2), (E3) and (E4)), then so does any reasonable refinement of this operator ∈ , L in L .

Proof. Since L a characterizable fragment, L is a β-fragment for some β ∈ B. According to Proposition 4 we can assume that ∈ -, L is an operator of the form -f β and ∈ , L is an operator of the form f β , where f β is some suitable reasonable β-mapping. Let ψ and µ be two formulas in L .

(C1) and (E1): Sincesatisfies (C1), Mod(ψ) ⊆ Mod(ψ -µ). According to property 5 in Definition 8, we have Mod(ψ) ⊆ f β (Mod(ψ -µ), Mod(ψ), Mod(µ)), i.e., ψ |= ψ -f β µ. So, ψ |= ψ µ. The proof is the same for erasure.

(C2): The second postulate states that if

ψ |= µ, then Mod(ψ -µ) ⊆ Mod(ψ). Assume that ψ |= µ. Since -satisfies (C2), then Mod(ψ -µ) ⊆ Mod(ψ). Thus Cl β (Mod(ψ -µ)) ⊆ Cl β (Mod(ψ)) by monotonicity of the closure. Hence, Cl β (Mod(ψ -µ)) ⊆ Mod(ψ) since ψ ∈ L and L is a β-fragment. According to property 2 in Definition 8 f β (Mod(ψ -µ), Mod(ψ), Mod(µ)) ⊆ Cl β (Mod(ψ -µ)), hence f β (Mod(ψ -µ), Mod(ψ), Mod(µ)) ⊆ Mod(ψ)
. By definition of , this means that ψ µ |= ψ.

(E2): For erasure the second postulate states that if ψ |= ¬µ, then Mod(ψ µ) = Mod(ψ). Assume ψ |= ¬µ. Since satisfies (E2), then Mod(ψ -µ) = Mod(ψ). Thus f β (Mod(ψ -µ), Mod(ψ), Mod(µ)) = f β (Mod(ψ), Mod(ψ), Mod(µ)). Besides Cl β (Mod(ψ)) = Mod(ψ) since ψ ∈ L and L is a β-fragment, and thus according to property 3 in Definition 8 f β (Mod(ψ), Mod(ψ), Mod(µ)) = Mod(ψ). Therefore f β (Mod(ψ -µ), Mod(ψ), Mod(µ)) = Mod(ψ), that is ψ µ ≡ ψ.

(C3): Suppose that ψ µ |= µ, i.e., Mod(ψ -f β µ) ⊆ Mod(µ). According to property 6 in Definition 8, we get Mod(ψ -µ) ⊆ Mod(µ). Sincesatisfies (C3), |= µ holds.

(E3): Suppose that ψ µ |= µ, i.e., Mod(ψ f β µ) ⊆ Mod(µ). According to property 6 in Definition 8, we get Mod(ψ µ) ⊆ Mod(µ). Since satisfies (E3), |= µ holds.

(C4) and (E4): the postulates are the same, they express the irrelevance of the syntax. Let us consider the proof for contraction. Let

ψ 1 , ψ 2 , µ 1 and µ 2 in L such that ψ 1 ≡ ψ 2 and µ 1 ≡ µ 2 , i.e. Mod(ψ 1 ) = Mod(ψ 2 ), Mod(µ 1 ) = Mod(µ 2 ). Since -satisfies (C4), ψ 1 -µ 1 ≡ ψ 2 -µ 2 , i.e. Mod(ψ 1 -µ 1 ) = Mod(ψ 2 -µ 2 ). Thus f β (Mod(ψ 1 -µ 1 ), Mod(ψ 1 ), Mod(µ 1 )) = f β (Mod(ψ 2 -µ 2 ), Mod(ψ 2 ), Mod(µ 2 )), hence (C4) holds.
We have proved that reasonable refinements of contraction and erasure operators preserve the four basic postulates. Then a natural question is whether one can find reasonably refined operators for characterizable fragments that satisfy all postulates.

Examples of reasonably refined contraction and erasure operators

The first instantiation of a reasonable -refinement is Cl β . Indeed, observe that by abuse of notation the application Cl β can be defined by Cl

β (M, M 1 , M 2 ) = Cl β (M).
It is then easy to verify that this application satisfies all properties of Definition 8 and thus is a reasonable β-mapping.

In order to get further concrete reasonable refinements we need to define further reasonable β-mappings. We propose two additional examples: p β , which is the "reasonable counterpart" of Min β and ct β that optimizes the cost in terms of number of models added in order to remain within the considered fragment. Definition 10. Let β ∈ B and suppose that ≤ is a total order on the set 2 U of interpretations. We define the function

p β as p β (M, M 1 , M 2 ) :=                M if M = Cl β (M) Cl β (M 1 ∪ Min ≤ (M ∩ M 2 )) else and if M 1 ⊆ M and M ∩ M 2 = ∅ Cl β (M) otherwise.
Let us define another mapping, denoted by ct β , which selects the closure of the set composed of the models of ψ and of m the least expensive model among the models of ¬µ that are the closest to ψ. In others words, m is the model of ¬µ the closest to ψ that generates the minimum number of models by applying the closure with ψ models.

Let M, M 1 , M 2 ⊆ 2 2 U three sets of interpretations and m an interpretation of M. We define the cost of m w.r.t. M 1 , cost β (m, M 1 ), as the number of models generated in addition when we consider the closure of M 1 ∪ {m} under the action of β.

Formally, we have

cost β (m, M 1 ) = |Cl β (M 1 ∪ {m})| -|M 1 ∪ {m}|.
Besides, we define Min β (M, M 1 , M 2 ) as the model m of the set M∩M 2 having the smallest cost w.r.t. M 1 . In case of multiple candidates, we select the closest to ψ in a total order over interpretations, ≤, fixed in advance.

Min β (M, M 1 , M 2 ) = Min ≤ ({m ∈ M ∩ M 2 | ∀m ∈ M ∩ M 2 , cost β (m, M 1 ) ≤ cost β (m , M 1 )}) Definition 11. Let β ∈ B, M, M 1 , M 2 ⊆ 2 2 U
sets of interpretations and ≤ a total order over interpretations 2 U . We define the function ct

β (M, M 1 , M 2 ) :=                M if Cl β (M) = M Cl β (M 1 ∪ Min β (M, M 1 , M 2 )) else and if M 1 ⊆ M and M ∩ M 2 = ∅ Cl β (M) else.
It is easy to verify that the functions p β and ct β satisfy all six properties in Definition 8 and thus are reasonable β-mappings. Therefore, according to Proposition 4, for L a β-fragment, a belief change operator, it holds that the operators p β and ct β defined respectively as Mod(ψ p β µ) = p β (Mod(ψ µ), Mod(ψ), Mod(µ)), Mod(ψ ct β µ) = ct β (Mod(ψ µ), Mod(ψ), Mod(µ)) are reasonable -refinements for L .

The following example illustrates reasonable refinement in case of contraction and erasure. 

Logical Properties of Refined Belief Contraction Operators

Actually the existence of contraction operators in fragments of propositional logic that satisfy all postulates was addressed in a more general context by Flouris et al. [START_REF] Flouris | Generalizing the AGM postulates: preliminary results and applications[END_REF].

They studied belief change in a broad class of logics (which includes characterizable propositional fragments) and determined necessary and sufficient conditions for a logic to support AGM-compliant contraction operators, which are operators that support AGM postulates. Their results are easy to reformulate in our setting, that is in dealing with sets of models instead of theories and in using KM postulates. They proved that in every logic there exists a contraction operator satisfying the first four postulates (C1) -(C4). However if the recovery postulate (C5) is added then the above proposition fails, not all logics support the first five postulates for contraction. Their result is based on the notion of decomposability that we define now in the setting of fragments of propositional logic. Then their result is as follows.

Theorem 5. [START_REF] Flouris | Generalizing the AGM postulates: preliminary results and applications[END_REF] Let L be a characterizable fragment. There exists a contraction operator in L that satisfies the basic postulates (C1) -(C5) if and only if L is decomposable.

Interestingly there are characterizable fragments that are decomposable and some that are not. It was shown in [START_REF] Langlois | Horn complements: Towards Horn-to-Horn belief revision[END_REF] that the Horn fragment is not decomposable, and it is easy to provide a counter-example. In contrast it is an easy exercise to prove that the affine fragment is decomposable in using the fact that the set of models of an affine formula can be seen as an affine subspace. As far as we know the question is still open for the Krom fragment. For the sake of completeness and since we will build on this result we give here a proof that Horn is not decomposable. Proposition 6. L Horn is not decomposable.

Proof. Consider Horn formulas φ A and φ B such that Mod(φ A ) = {{b}, {a, b}} and Mod(φ B ) = {∅, {b}, {a, b}}. We have Mod(φ A ) ⊂ Mod(φ B ) ⊂ 2 {a,b} . We are looking for a Horn formula φ C such that {{b}, {a, b}} ⊂ Mod(φ C ) and {{b}, {a, b}} = {∅, {b}, {a, b}}∩Mod(φ C ). The only possibility is that Mod(φ C ) = {{a}, {b}, {a, b}}, but this set of models is not closed under intersection, thus there is no such Horn formula, hence concluding the proof.

As a consequence, according to Theorem 5 and Proposition 6 we get the following negative result in the Horn fragment. As we said before the affine fragment is decomposable and we do not know whether the Krom fragment is decomposable or not, so we cannot conclude as generally as we did within the Horn fragment. We get nevertheless a negative result for the refinement of Satoh's and Dalal's contraction operators by the two mappings we consider here, in the Krom and Affine fragments. Observe that Mod(ψ) ⊆ Mod(µ) hence ψ |= µ.

Recall that Mod(ψ -µ) = {∅, {a, b}, {c, d}, {a, b, c}, {a, b, d}, {b, c, d}} and that this set is not closed under maj 3 . In particular {c} ∈ Cl maj 3 (Mod(ψ -µ)). Therefore, {c}, which is a model of µ but not a model of ψ, belongs to Mod(ψ -Clmaj 3 µ), thus proving that (ψ -Clmaj 3 µ) ∧ µ |= ψ.

Let us now turn to the affine fragment. Let us consider two formulas ψ and µ in L Affine such that Mod(ψ) = {{a, b, c, d}}, and Mod(µ) = {∅, {c}, {d}, {a, b}, {c, d}, {a, b, c}, {a, b, d}, {a, b, c, d}}.

We have

Mod(ψ µ) = {{a, b, c, d}, {b, c, d}, {a, c, d}}.

This set is not closed under ⊕ 3 ({c, d} is missing). We obtain Mod(ψ Cl⊕ Such formulas exist since the sets of models are closed under intersection.

We have Mod(¬(µ 1 ∧ µ 2 )) = {{a}, {a, b}, {a, c}}.

Assume that we have the following order on the interpretations: {a, b} < {a, c}.

On the one hand, Mod(ψ -(µ 1 ∧ µ 2 )) = {∅, {a}, {a, b}, {a, c}, {a, b, c}}. This set is closed under ∧ and thus

Mod(ψ -p∧ (µ 1 ∧ µ 2 )) = Mod(ψ -ct∧ (µ 1 ∧ µ 2 )) = {∅, {a}, {a, b}, {a, c}, {a, b, c}}.
On the other hand Mod(ψ -µ 1 ) = {∅, {a, b}, {a, c}, {a, b, c}} is not closed under ∧ ({a} is missing). Thus,

Mod(ψ -p∧ µ 1 ) = p ∧ (Mod(ψ -µ 1 )) = Cl ∧ (Mod(ψ) ∪ Min ≤ (Mod(ψ -µ 1 ) ∩ Mod(¬µ 1 ))) = Cl ∧ ({∅, {a, b, c}} ∪ Min ≤ ({{a, b}, {a, c}})) = {∅, {a, b}, {a, b, c}} for {a, b} < {a, c} and 
Mod(ψ -ct∧ µ 1 ) = ct ∧ (Mod(ψ -µ 1 )) = Cl ∧ (Mod(ψ) ∪ Min ∧ (Mod(ψ -µ 1 ) ∩ Mod(¬µ 1 ))) = Cl ∧ ({∅, {a, b, c}} ∪ Min ∧ ({{a, b}, {a, c}})).
In both cases, Mod(ψ Cl β µ)∩Mod(µ) = {∅, {a}, {b}, {c}} and so Mod(ψ Cl β µ)∩ Mod(µ) Mod(ψ). Therefore, Cl∧ and Clmaj This set is not closed under ⊕ 3 ({c, d} is missing). We obtain Mod(ψ Let us now prove that ct∧ and ctmaj 3 violate (E5).

We have seen that

Mod(ψ ct β µ) = Cl β (Mod(ψ) ∪ {a, b, c}) = {∅, {a, b}, {c, d}, {a, b, c}, {c}}.
Consequently Mod(ψ ct β µ)∩Mod(µ) = {∅, {a, b}, {c, d}, {c}}. So Mod(ψ ct β µ)∩ Mod(µ) Mod(ψ) and we conclude as above.

Let us discuss postulate (E8), which is specific to erasure operators. This postulate, which means that an erasure operator should give each of the models of the initial beliefs equal consideration (a property that distinguishes erasure from contraction) is considered as the most "uncontroversial" one in the context of full propositional logic. Unfortunately it is not applicable in our study since it uses disjunction of formulas while our fragments are not closed under disjunction (given µ 1 and µ 2 in L , µ 1 ∨ µ 2 does not necessarily belong to L ).

However, note that by construction our reasonably refined operators first compute the result obtained through an original operator, and then, as a post-processing step, apply a reasonable β-mapping to it. Therefore, starting from an erasure operator that satisfies (E8) the models of the formula will equally contribute to the erasure in the first step. So at least the spirit is preserved, even if of course one has to perform a post-processing in order to remain in the fragment.

Moreover, for the refinement by the closure Cl β it is easy to prove that for all formulas ψ and µ in L , T L (ψ Cl β µ) = T L (ψ µ). Therefore, if can be considered as a rational erasure operator, then so can Cl β in L .

Concluding discussion

Within the framework of our systematic study of belief change operators designed for propositional fragments we focused on belief contraction and belief erasure.

The notion of refinement we previously proposed allows one to define concrete revision and update operators tailored to fragments of propositional logic. However in case of contraction and erasure, a more specific notion of refinement, called reasonable refinement is necessary to obtain rational contraction and erasure operators adapted to propositional fragments. This notion of refinement is more involved and requires to take into account not only the result of the initial contraction (resp., erasure) but also two additional parameters, the initial belief set and the information to be removed (resp., to be erased). We defined concrete rational contraction operators from Dalal's and Satoh's revision operators as well as concrete rational erasure operators from Forbus' and Winslett's update operators. We have shown that reasonable refinements of contraction operators (resp., erasure operators) satisfy the basic postulates of contraction (resp., of erasure), whereas the recovery postulate (C5) (resp., (E5)), as well as the postulates dealing with the minimality of change for contraction (C6) and (C7) are more problematic.

In contrast to previous work on belief contraction that was mainly devoted to the Horn logic, our approach applies to any characterizable propositional fragment.

In the special case of the Horn fragment, the proposed contraction operators can be compared to previously defined ones. The closure-based refinement coincides with the Model-based Horn Contraction (MHC) [START_REF] Zhuang | Model based Horn contraction[END_REF] when the initial contraction operator is defined by ψ -µ = Mod(ψ) ∪ Min(Mod(¬µ), ≤ ψ ) where ≤ ψ is a faithful preorder over interpretations. This is the case, in particular, for Dalal's and Satoh's contraction operators. Note that, more generally, for any contraction operator satisfying (C1), (C2), (C3), (C4) and (C7), the closure-based refinement provides a contraction operator which operates within the Horn fragment and which satisfies these postulates as well.

The p β -refinement can coincide on some instances of the Maxi Choice Horn Contraction based on Weak Remainder Sets (MCHCWR) [START_REF] Delgrande | Horn clause contraction functions[END_REF] (but is not such an operator). Indeed, when the result of the initial contraction is not closed, then Mod(ψ -p β µ) = Cl β (Mod(ψ) ∪ {m}) where m ∈ Mod(¬µ). For MCHCWR the choice of m ∈ Mod(¬µ) is arbitrary, while in the case of p β -refinement this model has to be chosen in Mod(ψ-µ)∩Mod(¬µ). As such it corresponds to an instantiation of an MCHCWR operator which obeys to the principle of minimal change. Let us examine once more Example 3. No matter what is the fixed order on the interpretations, the model {b, c} (which is a counter-model of µ and as such a valid candidate for an MCHCWR operator) will never be considered as a candidate to be in the result of the contraction by our refined operator. Indeed it is further away from ψ than any other counter-model of µ (e.g. for Dalal's contraction operator, for any model m ∈ Mod(ψ -D µ) ∩ Mod(¬µ), min{|m ∆m| : m ∈ Mod(ψ)} = 1, while min{|m ∆{b, c}| : m ∈ Mod(µ)} = 2).

This study raises several issues. An interesting question is the possibility of defining reasonable refined operators for characterizable fragments that satisfy all postulates. Flouris and al. gave a necessary and sufficient condition for the existence of contraction operators satisfying the basic AGM postulates in terms of decomposability of the fragment [START_REF] Flouris | Generalizing the AGM postulates: preliminary results and applications[END_REF]. This gives a negative answer to the above question in the Horn case since the Horn fragment is not decomposable [START_REF] Langlois | Horn complements: Towards Horn-to-Horn belief revision[END_REF]. In contrast, the question is still open for the Krom fragment and the affine fragment, the latter being decomposable, while the decomposability of the Krom fragment is an open question. A more general question to investigate concerning fragments is the possibility of characterizing decomposable ones.

Regarding erasure, a central question to investigate is the establishment of a representation theorem. As a first step this will require to formulate postulates expressing the principle of minimal change for erasure. Besides, within the framework of fragments, it could be of interest to know if the decomposability of a fragment is a necessary condition for the existence of operators that satisfy all postulates.

We plan to continue our systematic study of belief change operations within the framework of fragments of propositional logic, in particular, in exploring an operator called Forget and discussed by Winslett [START_REF] Winslett | Sometimes updates are circumscription[END_REF], which she compares with contraction. It turns out that Forget, given an update operator , is equivalent to

(ψ µ) ∨ (ψ ¬µ).
Authors in [START_REF] Katsuno | On the difference between updating a knowledge base and revising it[END_REF] call this operator symmetric erasure because µ and its negation play the same role in its definition. They consider that the main difference between erasure and symmetric erasure is that erasure does not affect the possible worlds in which ¬µ holds, but symmetric erasure does. Gärdenfors [START_REF] Gärdenfors | An epistemic approach to conditionals[END_REF] defines an operator similar to symmetric contraction, which he calls complete contraction, and proposes to use it to model even if conditionals.

Example 2 (

 2 Example 1 continued). Let us come back to the example given in the introduction where ψ = a and thus Mod(ψ) = {{a}, {a, b}, {a, c}, {a, b, c}}, and µ = a ∧ b ∧ c and thus M od(¬µ) = {{a}, {b}, {c}, {a, b}, {a, c}{b, c}, ∅}. According to

M

  od(ψ) Mod(¬µ) {b,c} {b,d} {a,b,c} {a,b,d} {b,c,d} {a,b,c,d} {a{b,d} {a,b,c} {a,b,d} {b,c,d} {a,b,c,d} Table 2: Symmetric difference between Mod(ψ) and Mod(¬µ) in Example 3. Minima are in bold. Proposition 1. [11] Let : L × L -→ L be a belief change operator and L ⊆ L a characterizable fragment of classical logic. Then, [ , L ] is the set of all -refinements for L .

3

 3 are such that Mod(ψ -Cl∧ µ) = {{a, b}, {c, d}, ∅, {a, b, c}, {a, b, d}, {b, c, d}, {b, c}, {b, d}, {b}, {c}, {d}}. Mod(ψ -Clmaj 3 µ) = {{a, b}, {c, d}, ∅, {a, b, c}, {a, b, d}, {b, c, d}, {b, c}, {b, d}, {b}, {c}, {d}, {a, b, c, d}}. and Mod(ψ Cl∧ µ) = {{a, b}, {c, d}, ∅, {a, b, c}, {a, b, d}, {b, c, d}, {b, c}, {b, d}, {b}, {c}, {d}}. Mod(ψ Clmaj 3 µ) = {{a, b}, {c, d}, ∅, {a, b, c}, {a, b, d}, {b, c, d}, {b, c}, {b, d}, {b}, {c}, {d}, {a, b, c, d}}.

Proposition 2 .

 2 • Let -∈ {-D , -S } and L ∈ {L Horn , L Krom }. Then the refined operator -Min β violates postulates (C1) and (C3) in L . • Let ∈ { F , W } and L ∈ {L Horn , L Krom }. Then the refined operator Min β violates postulates (E1) and (E3) in L . Proof. Let -∈ {-D , -S } and ∈ { F , W }, we refer again to Example 3 where ψ and µ are two Horn (resp., Krom) formulas such that Mod(ψ) = {{a, b}, {c, d}, ∅} and Mod(µ) = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {c, d}, {a, c, d}}. Assume now that we have the following order, ≤ on the set of interpretations; ∅ < {b, c} < {b, d} < {a, b} < {c, d} < {a, b, c} < {a, b, d} < {b, c, d}. The refined operators -Min∧ and Min∧ are such that Mod(ψ -Min∧ µ) = {∅} and Mod(ψ Min∧ µ) = {∅}. The refined operator -Min∧ does not satisfy (C1) since ψ |= ψ-Min∧ µ nor (C3) since ψ-Min∧ µ |= µ but |= µ. Moreover the refined operator Min∧ does not satisfy (E1) since ψ |= ψ Min∧ µ nor (E3) since ψ is satisfiable and |= µ but ψ Min∧ µ |= µ.

Example 4 .

 4 Consider two formulas ψ, µ ∈ L Horn (resp., L Krom ) as in Example 3 with Mod(ψ) = {{a, b}, {c, d}, ∅} and Mod(µ) = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {c, d}, {a, c, d}}. Such formulas exist since their sets of models are closed under intersection (resp., ternary majority). For all -∈ {-D , -S }, we have Mod(ψ -µ) = {{a, b}, {c, d}, ∅, {a, b, c}, {a, b, d}, {b, c, d}}. Therefore, Mod(ψ ct β µ) = Cl β Mod(ψ) ∪ Min β (Mod(ψ µ), Mod(ψ), Mod(µ)) = {{a, b}, {c, d}, ∅, {a, b, c}, {c}}.

Definition 12 .

 12 A characterizable fragment L is called decomposable if for all formulas φ A and φ B in L such that Mod(φ A ) ⊂ Mod(φ B ) ⊂ 2 U , there exists a formula φ C in L such that Mod(φ A ) ⊂ Mod(φ C ) and Mod(φ A ) = Mod(φ B ∧ φ C ).

Proposition 7 .

 7 Letbe a contraction operator. Then no reasonably refined operator ∈ -, L Horn satisfies postulates (C1) -(C5) in L Horn .

Proposition 8 .

 8 Let -∈ {-D , -S } and L ∈ {L Krom , L Affine }. Then the refined operator -Cl β violates postulate (C5) in L . Proof. (C5) states that if ψ |= µ, then (ψ -µ) ∧ µ |= ψ. Let -∈ {-D , -S }.Let us first consider the Krom fragment. Consider ψ and µ in L Krom as in Example 4, such that Mod(ψ) = {∅, {a, b}, {c, d}} and Mod(µ) = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {c, d}, {a, c, d}}.

Proposition 9 .

 9 3 µ) = {{a, b, c, d}, {b, c, d}, {a, c, d}, {c, d}}. Consequently Mod(ψ Cl⊕ 3 µ) ∩ Mod(µ) = {{a, b, c, d}, {c, d}}. Therefore Mod(ψ Cl β µ) ∩ Mod(µ) Mod(ψ), which proves that Cl⊕ 3 violates (C5) in L Affine . Let -∈ {-D , -S }. Then -pmaj 3 and -ctmaj 3 violate postulate (C5) in L Krom . Proof. Consider once again ψ and µ in L Krom as in Example 4 such that Mod(ψ) = {∅, {a, b}, {c, d}} and Mod(µ) = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {c, d}, {a, c, d}}, with the following order on interpretations: {a, b, c} < {a, b, d} < {b, c, d}. Mod(µ 1 ) = {{a, c}, {b, d}, {a, b}, {c, d}, {a, b, c}, {a, c, d}, {a, b, d}, {b, c, d}, {a, b, c, d}} and Mod(µ 2 ) = {{a, b}, {c, d}, {a, d}, {b, c}, {a, b, c}, {a, c, d}, {a, b, d}, {b, c, d}, {a, b, c, d}}. can be used to prove that -Clmaj 3 violates (C6) in L Krom . Proposition 11. Let -∈ {-D , -S }. Then -p∧ and -ct∧ violate postulate (C6) in L Horn . Proof. Consider ψ, µ 1 and µ 2 Horn formulas such that Mod(ψ) = {∅, {a, b, c}}, Mod(µ 1 ) = {∅, {a}, {b}, {c}, {b, c}, {a, b, c}} and Mod(µ 2 ) = {∅, {b}, {c}, {a, c}, {b, c}, {a, b, c}}.

3

 3 violate the postulate (E5) in L Horn and L Krom respectively. Let us now turn to the affine fragment. Let us consider two formulas ψ and µ in L Affine such that Mod(ψ) = {{a, b, c, d}} and Mod(µ) = {∅, {c}, {d}, {a, b}, {c, d}, {a, b, c}, {a, b, d}, {a, b, c, d}}.We haveMod(ψ µ) = {{a, b, c, d}, {b, c, d}, {a, c, d}}.

Table 1 ,

 1 for all ∈ { F , W }, we have M od(ψ ¬µ) = {{a}, {a, b}, {a, c}, {b, c}}, therefore for all ∈ { F , W } we have M od(ψ µ) = {{a}, {a, b}, {a, c}, {a, b, c}, {b, c}}.

	M od(ψ)			Mod(¬µ)			
		{a}	{b}	{c}	{a,b} {a,c} {b,c}	∅
	{a}	0	2	2	1	1	3	1
		∅	{a,b}	{a,c}	{b}	{c}	{a, b, c} {a}
	{a,b}	1	1	3	0	2	2	2
		{b}	{a}	{a,b,c} ∅	{b,c} {a,c}	{a,b}
	{a,c}	1	3	1	2	0	2	2
		{c}	{a,b,c} {a}	{b,c} ∅	{a,b}	{a,c}
	{a, b, c}	2	2	2	1	1	1	3
		{b,c} {a,c}	{a,b}	{c}	{b}	{a}	{a, b, c}

Table 1 :

 1 Symmetric difference between Mod(ψ) and Mod(¬µ) in Example 2. Minima are in bold.

  Cl⊕ 3 µ) = {{a, b, c, d}, {b, c, d}, {a, c, d}, {c, d}}. Consequently Mod(ψ Cl⊕ 3 µ) ∩ Mod(µ) = {{a, b, c, d}, {c, d}}. Therefore Mod(ψ Cl β µ) ∩ Mod(µ) Mod(ψ), which proves that Cl⊕ 3 violates the postulate (E5) in L Affine .We get also negative results for the two other reasonable refinements we consider. So, Mod(ψ p β µ)∩Mod(µ) = {∅, {a, b}, {c, d}, {b}, {c}}. Consequently Mod(ψ p β µ)∩ Mod(µ) Mod(ψ). Therefore, p∧ , pmaj 3 violate (E5) in L Horn and L Krom respectively.

Proposition 15. Let ∈ { F , W } and L ∈ {L Horn , L Krom }. Then the refined operators p β and ct β violate postulate (E5) in L . Proof. Let ∈ { F , W } and L ∈ {L Horn , L Krom }. Consider as in Example 4 two formulas ψ et µ in the Horn fragment (resp., in the Krom fragment) such that Mod(ψ) = {{a, b}, {c, d}, ∅} and Mod(µ) = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {c, d}, {a, c, d}}, with the following order on interpretations: {b, c} < {b, d} < {a, b, c} < {a, b, d} < {b, c, d}.

We have seen that Mod(ψ p β µ) = Cl β (Mod(ψ) ∪ {b, c}) = {∅, {a, b}, {c, d}, {b, c}, {b}, {c}}.

When U is not mentioned, it implicitly means that U is the set of variables occurring in formulas under consideration.

reasonable β-mappings were originally called β-contract-mapping in[START_REF] Creignou | Belief contraction within fragments of propositional logic[END_REF] where they were used only in the context of contraction operators.

Proof. Let us first show that any belief change operator f β ∈ , L is a reasonable -refinement for L . Observe that while a reasonable β-mapping is a ternary mapping, the first four properties of Definition 8 only depend on the first variable and coincide with the properties of a β-mapping. Therefore, according to Proposition 1 the operator f β is -refinement for L . We only have to prove that it satisfies the two additional properties in Definition 7.

(v) Suppose that T L (ψ µ) ⊆ T L (ψ). Then, Mod(ψ) ⊆ Mod(ψ µ) and according to property 5 in Definition 8, Mod(ψ) ⊆ f β (Mod(ψ µ), Mod(ψ), Mod(µ)), thus Mod(ψ) ⊆ Cl β (f β (Mod(ψ µ), Mod(ψ), Mod(µ))) since ψ ∈ L . It follows that T L (f β (Mod(ψ µ), Mod(ψ), Mod(µ))) ⊆ T L (ψ), i.e. T L (ψ f β µ) ⊆ T L (ψ).

(vi) Suppose that T L (µ) T L (ψ µ). Then, Mod(ψ µ) Mod(µ) and according to property 6 in Definition 8, f β (Mod(ψ µ), Mod(ψ), Mod(µ)) Mod(µ), i.e. Mod(ψ f β µ) Mod(µ). Hence, T L (µ)

Conversely, given a reasonable -refinement for L . Let us prove that ∈ , L . Consider the application f defined for all triple of sets of interpretations

First observe that this application is well defined. Indeed, since the operator is a reasonable -refinement for L , it does not depend on the choice of the pair (ψ M , µ M ). Moreover, this application satisfies the first four properties in Definition 8. We have to verify the last two ones.

(5) Suppose that M 1 ⊆ M (the case where

Hence reasonable β-mappings allow us to define reasonably refined operators. We give some examples of such mappings in the next section and study how they perform on contraction (resp. erasure) operators.

Consider the following order over interpretations: {b, c} < {b, d} < {a, b, c} < {a, b, d} < {b, c, d}. The refined operators -p β and -ct β for β = ∧ (resp., β = maj 3 ) provide

Besides, we have

Concerning erasure, for all ∈ { F , W } we have Mod(ψ µ) = {{a, b}, {c, d}, ∅, {a, b, c}, {a, b, d}, {b, c, d}, {b, c}, {b, d}}. So, our refined operators p β and ct β provide

= {{a, b}, {c, d}, ∅, {b, c}, {b}, {c}}.

Besides, we have

and since {a, b, c} < {a, b, d} < {b, c, d}, we obtain

We have seen in Example 4 that

= {{a, b}, {c, d}, ∅, {a, b, c}, {c}}.

Therefore, {c} ∈ Mod(ψ -pmaj 3 µ) (resp., {c} ∈ Mod(ψ -ctmaj 3 µ)), and we conclude as above.

We also get negative results for postulate (C6) in Horn, Krom and Affine fragments. On the other hand Mod(ψ -µ 1 ) = {{a, b, c, d}, {b, c, d}, {a, c, d}}. This set is not closed under ∧ ({c, d} is missing). Therefore Mod(ψ -Cl β µ 1 ) = {{a, b, c, d}, {b, c, d}, {a, c, d}, {c, d}}.

Moreover Mod(ψ -µ 2 ) = {{a, b, c, d}, {a, b, d}, {b, c, d}}, which is not closed under ∧ either ({b, d} is missing). Therefore,

, which proves that -Cl∧ violates (C6) in L Horn .

The same example can be used to prove that -Cl⊕ 3 violates (C6) in L Affine .

Finally, formulas ψ, µ 1 and µ 2 in L Krom having as sets of models Mod(ψ) = {{a, b, c, d}}, Since cost ∧ (Mod(ψ), {a, b}) = cost ∧ (Mod(ψ), {a, c}) = 0 and {a, b} < {a, c}, we have Mod(ψ -ct∧ µ 1 ) = {∅, {a, b}, {a, b, c}}.

Moreover Mod(ψ -µ 2 ) = {∅, {a}, {a, b}, {a, b, c}}, which is closed under ∧. Thus, Mod(ψ -p∧ µ 2 ) = Mod(ψ -ct∧ µ 2 ) = {∅, {a}, {a, b}, {a, b, c}}.

Note that {a, c} ∈ Mod(ψ -p∧ (µ 1 ∧ µ 2 )) and {a, c} / ∈ Mod(ψ -p∧ µ 1 ) ∪ Mod(ψ -p∧ µ 2 ), that is to say ψ -p∧ (µ 1 ∧ µ 2 ) |= (ψ -p∧ µ 1 ) ∨ (ψ -p∧ µ 2 ). This proves that -p∧ violates (C6) in L Horn . The same holds when considering -ct∧ .

For the postulate (C7) the results are more contrasted, the refinement by closure preserves this postulate, while the p β -refinement does not.

Proposition 12. Letbe a contraction operator and L a β-fragment. Ifsatisfies postulate (C7), then so does the refined operator Assume that we have the following order on interpretations: {a, b, c} < {a, b, d} < {a} < {b}.

On the one hand we get

This set is not closed under ∧.

According to the order on interpretations, Mod(ψ-p∧ (µ 1 ∧µ 2 )) = {{a, b}, {a, b, c}} Mod(µ 1 ). On the other hand Mod(ψ -µ 1 ) = {{a, b}, {a, b, c}, {a, b, d}}, which is closed under ∧. Therefore, Mod(ψ

Since for all m ∈ Mod(ψ -(µ 1 ∧ µ 2 )), cost ∧ (Mod(ψ), m) = 0 we also have Mod(ψ -ct∧ (µ 1 ∧ µ 2 )) = {{a, b}, {a, b, c}} and we conclude as above that -ct∧ violates the postulate (C7) in L Horn .

Let us now turn to the Krom fragment. Consider two Krom formulas, ψ and µ 1 , having as sets of models

Let µ 2 be the formula obtained from µ 1 in exchanging the roles of c and d: Such formulas exist since the sets of models are closed under maj 3 . Assume that we have the following order on interpretations: {a, d} < {b, c} < {a, c} < {b, d}.

On the one hand, Mod(ψ -(µ 1 ∧ µ 2 )) = {{a, b, c, d}, {a, c}, {a, d}, {b, c}, {b, d}}, which is not closed under maj 3 (e.g. {a, c, d} is missing). According to the order on interpretations, Mod(ψ -pmaj 3 (µ 1 ∧ µ 2 )) = {{a, b, c, d}, {a, d}} Mod(µ 1 ). On the other hand Mod(ψ -µ 1 ) = {{a, b, c, d}, {a, d}, {b, c}}, which is closed under maj 3 . Therefore Mod(ψ -pmaj 3 µ 1 ) = {{a, b, c, d}, {a, d}, {b, c}}. Note that Mod(ψ

Since for all m ∈ Mod(ψ -(µ 1 ∧ µ 2 )), cost maj 3 (Mod(ψ), m) = 0 we also have Mod(ψ -ctmaj 3 (µ 1 ∧ µ 2 )) = {{a, b, c, d}, {a, d}} and we conclude as above that ctmaj 3 violates the postulate (C7) in L Krom . Table 3 gives a summary of the results we obtained. It shows only negative results except for the postulate (C7), which is preserved by the closure refinement in all characterizable fragments.

Refined operators

Postulates

Table 3: An overview of the satisfaction of postulates by refined contraction operators.

Logical Properties of Refined Belief Erasure Operators

As far as we know and as it is mentioned in [START_REF] Flouris | Generalizing the AGM postulates: preliminary results and applications[END_REF] it is not known whether decomposability is a necessary and sufficient condition for a logic to have erasure operators that satisfy the five basic postulates (E1) -(E5).

We get here negative results that are obtained in providing counter-examples. We prove that postulate (E5) is not satisfied by the refinements of Forbus's and Winslett's erasure operators by Cl β in the Horn, Krom and Affine fragments. We also prove that postulate (E5) is violated when we refine Forbus's and Winslett's erasure operators by the two mappings p β and ct β in the Horn and Krom fragments. Such formulas exist since the corresponding sets of models are ∧-closed (resp., maj 3 -closed).

We have Mod(ψ µ) = {∅, {a}, {b}, {a, b}, {a, c}, {b, c}}.

. We obtain

• Mod(ψ Cl∧ µ) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}} if β = ∧.

• Mod(ψ Clmaj 3 µ) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} if β = maj 3 .

Besides, a more ambitious issue is to study the computational complexity of classical decision problems like model-checking for refined contraction and erasure operators.