N

N

Stable evaluation of 3D Zernike moments for surface
meshes

Jérome Houdayer, Patrice Koehl

» To cite this version:

Jéréme Houdayer, Patrice Koehl. Stable evaluation of 3D Zernike moments for surface meshes. 2022.
hal-03766657v2

HAL Id: hal-03766657
https://hal.science/hal-03766657v2

Preprint submitted on 20 Sep 2022 (v2), last revised 28 Nov 2022 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03766657v2
https://hal.archives-ouvertes.fr

Article

Stable evaluation of 3D Zernike moments for surface meshes

Jérome Houdayer *, and Patrice Koehl >

check for
updates

Citation: Houdayer, J.; Koehl, P.
Stable evaluation of 3D Zernike
moments for surface meshes.

Preprints 2022, 1, 0. https://doi.org/

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique, 91191, Gif-sur-Yvette, France;
jerome.houdayer@ipht.fr

Department of Computer Science, University of California, Davis, CA, USA; koehl@cs.ucdavis.edu
Correspondence: jerome.houdayer@ipht.fr

Abstract: The 3D Zernike polynomials form an orthonormal basis of the unit ball. The associated
3D Zernike moments have been successfully applied for 3D shape recognition; they are popular
in structural biology for comparing protein structures and properties. Many algorithms have been
proposed for computing those moments, starting from a voxel-based representation or from a
surface based geometric mesh of the shape. As the order of the 3D Zernike moments increases,
however, those algorithms suffer from decrease in computational efficiency and more importantly
from numerical accuracy. In this paper, new algorithms are proposed to compute the 3D Zernike
moments of a homogeneous shape defined by an unstructured triangulation of its surface that remove
those numerical inaccuracies. These algorithms rely on the analytical integration of the moments
on tetrahedra defined by the surface triangles and a central point and on a set of novel recurrent
relationships between the corresponding integrals. The mathematical basis and implementation
details of the algorithms are presented and their numerical stability is evaluated. The corresponding
free software is available at https://github.com/jerhoud.

Keywords: Shape signatures; Zernike polynomials; Zernike moments

1. Introduction

Finding efficient algorithms to describe, measure and compare shapes is a central
problem in image processing. This problem arises in numerous disciplines that generate
extensive quantitative and visual information. Among these, biology occupies a central
place [1]. In cellular biology for example, the measurements of cell morphology and dy-
namics by imaging techniques such as light or fluorescent microscopy yield large amounts
of 2D and 3D images that need to be segmented and quantified [2-5]. Measuring shapes,
computing the contribution of a shape to a potential, and more generally quantifying the
effect of a vector field on a shape are also common problems for geodesists and physicists.

In a chapter titled “The Comparison of Related Forms", Thompson explored how
differences in the forms of related animals can be described by means of simple mathe-
matical transformations [6]. This inspired the development of several shape comparison
techniques, whose aim is to define a map between two shapes that can be used to measure
their similarity. An alternate and popular method is to derive features (also called shape
descriptors or signatures) for each shape separately that can then be compared using stan-
dard distance functions, and those that directly attempt to map one surface onto the other,
thereby providing both local and non-local elements for comparison.

One particular powerful technique for generating shape signatures is based on moment-
based representations of a shape. Those representation form a class of shape recognition
techniques that have been used widely for pattern recognition [7-9]. These moments not
only provide measures of the shapes, such as volume and surface areas, they also allow
for the encoding of a shape with descriptors that are amenable to fast analysis. The most
common of these moments are geometric:

GijkZ/Vf(x,y,z)xiyfzkdxdydz, 1)

where the integration is performed over the volume V of the shape S considered, N =
i+ j+ kis the order of the moment, and f(x, y, z) is a vector field over S that may represent a

https://www.mdpi.com/article/10.3390/1010000?type=check_update&version=1
https://doi.org/10.3390/1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3849-593X
https://orcid.org/0000-0002-0908-068X
https://github.com/jerhoud

2 of 28

potential, a grey scale for image processing, or an indicator function such that f(x,y,z) =1
inside the shape and 0 otherwise. These geometric moments and their invariant extensions
have been used extensively in pattern recognition (for review, see for example [10]). They
are usually easy to compute, though at a high computational costs.

Spherical harmonics [11,12] and their rotational invariants [13] form another class of
moment-based descriptors for analyzing star-shaped objects that are topologically equiv-
alent to a sphere. They are becoming increasingly popular in cellular bio-imaging for
example, as it is usually safe to assume that cells observed through a microscope are topo-
logically closed and equivalent to a sphere; this prior makes it possible to parametrize
their shape mathematically, thereby simplifying the definition of their surface and pro-
vide a shape description (see for example [3] for representing cell organelles and more
recently [14] for studies of cell dynamics).

In many cases however, the hypothesis that the object is star-shaped does not hold.
The Zernike moments, first introduced in two dimensions by Dutch Nobel price Frederic
Zernike in 1934 [15], circumvent this problem through the introduction of a radial term.
They have proved to be superior in 2D image retrieval (see for example [16]). After they
were generalized to 3D by Canterakis [17], they have been applied in many domains, such
as tools for shape retrieval in computer graphics [18,19] or terrain matching and building
reconstruction [20,21]. As for geometric moments, most current applications are related to
biology, including protein shape comparison [22], protein docking [23] and the analyses of
protein interfaces [24-26]. In this paper, we are concerned with the computation of these
3D Zernike moments.

Many algorithms have been proposed for computing the 3D Zernike moments of a
shape. Most of these methods, especially those used for image analysis, rely on a rep-
resentation of the shape as a volumetric grid. These algorithms usually proceed in two
steps, namely computing the geometric moments of the shape first, and then expressing
the Zernike moments as linear combinations of those moments (see Refs [18,27], and back-
ground section below). They do suffer from three major drawbacks. First, the computation
of each moment has a cubic computational complexity (N3, where Ny is the number of
voxels in each dimension of the grid). Second, the volume integral in equation 1 is approxi-
mated by a discrete sum over the voxels, where each voxel contributes as a point-like object,
usually located at its center. It is easy to see that this discretization error increases as the
order of the moment increases. Finally, the relationships between geometric moments and
Zernike moments lead to numerical instabilities, limiting the order N of the moments that
can be computed accurately, usually with N < 50 (see [18,28]).

While it is often the case that the volumetric grid is the only representation available
for a given shape, alternate methods that are exact and efficient exist for computing homo-
geneous 3D moments over a shape whose boundary can be represented with a polygonal
mesh (where homogeneity refers to the fact that the function f(x, y,z) in equation 1 can be
considered constant). An exact formula for computing geometric moments on 3D polyhe-
dra was originally proposed by Lien and Kajiya [29]; it has been reformulated and extended
to general dimensional polyhedra several times since then (for a complete discussion of
the state of the art in this field, see [30]). Pozo et al. used those ideas and derived efficient
recursive algorithms for computing geometric moments for shapes defined by a triangula-
tion of their surfaces [30]; those algorithms were further refined to be optimal with respect
to the order of the moments [31]. Pozo et al. then used those geometric moments to derive
the 3D Zernike moments of such shapes. As mentioned above, however, the numerical
instabilities associated with the relationships between geometric and Zernike moments
limit the order with which those can be derived.

Recently Deng and Gwo proposed a new, stable algorithm to accurately compute
Zernike moments for shapes represented as 3D grid [32]. Their algorithm proceeds by
computing these moments directly, without using the geometric moments, using recurrence
relations that provide stability and efficiency. Our work presented in this paper is a
counterpart to the work of Deng and Gwo. We propose a new exact algorithm for the

30f28

computation of Zernike moments for shapes represented by surface meshes. Similar to
Deng and Gwo, we do not use the conversion from geometric moments to Zernike moments
to avoid numerical instabilities.

The paper is organized as follows. In the next section, we give some background
on moments of 3D shapes, especially geometric moments and Zernike moments. We
show how the former can be used to compute the latter, but explain why this may lead to
numerical instabilities, especially for high order moments. The following section introduce
our new, stable algorithms for computing Zernike moments of 3D shapes represented
by surface-based triangular meshes. The results section introduce some experiments to
validate those algorithms on synthetic data.

2. Moments from 3D shapes

In this section, we briefly introduce the concept of moments of a shape, with three
examples, the geometric moments (GM), the spherical harmonics moments (SPHM), and
the Zernike moments (ZM). We show that ZM are extensions of the SPHM, and that they
can be computed from the GM, but with potential problems that we describe.

We start with notations. Any point p within a domain D C R? can be parametrized
either in terms of its vector of Cartesian coordinates x = (x, y, z) with respect to an origin,
or in terms of its spherical coordinates (7, 6, ¢) where r is the distance from p to the sphere
center, and 6 and ¢ are the inclination and azimuthal angles, respectively. A shape S in the
domain D is represented through its density f(x) at all points in the domain. We assume
that f is square integrable over the domain D, i.e. f € L2(D). In the special case that the
shape is homogeneous, it is represented with an indicator function f(x) with value 1 if x is
inside the shape, and 0 otherwise.

2.1. Moments of a shape

The moments y; of a shape are the projections of the function f over a set of basis
functions ¥ = {¢;}:

pi= {0 = [F@Rd

where ¢ is the complex conjugate of ¢. The properties of a particular moment based
representation are therefore determined by the set of functions ¥. There are two properties
of this set that are desirable, namely:

i) Orthonormality. The set of functions ¥ is orthonormal if

(Wi, ¥j) = dij,
for all ¢; and ¢; in ¥ (¢ is the Kronecker symbol, i.e. §;; = 1if i = j, and 0 otherwise).
ii) Completeness. The set of functions ¥ is complete if for all functions f € L?(D):

f= ;) Hithi.

The orthonormality property is important as it guarantees the mutual independence of the
computed moments. The completeness property implies that we are able to reconstruct
approximations of the original shape from its moments. Directly associated with these two
properties is Parseval’s theorem. This theorem is an important property for example in
Fourier analysis that states that the sum (or integral) of the square of a function is equal
to the sum (or integral) of the square of its transform. It is true in fact for all complete
orthonormal basis. Indeed,

4 0f 28

/ |f(x |2dx— (f, f)= ZF‘ l/’leW/’]

:ZZWW%WZZEM%f &)

i=0/=0 i=0/=0
. 2

=) [uil*
i=0

2.2. Basis function: monomials

A very popular set of functions ¥ are the monomials x'y/z¥, where i, j, k are non
negative integers. The corresponding moments are referred to as geometric moments, Gjjy,

and defined by

Gijx = /Df(x)xiyjzkdx/ ®3)

The geometric moments are easy to compute, both for grid-based and surface-based rep-
resentations of shapes. The geometric monomials, however, are neither orthonormal, nor
complete.

2.3. Basis function: Laplace spherical harmonics

If the domain is the sphere S? C R3, a point p is characterized by its inclination angle
0 and azimuthal angle ¢ only. A function f on S? can then be represented through its
spherical harmonics. They form a Fourier basis on a sphere much like the familiar sines
and cosines do on a line. The spherical harmonic Y}" is defined by

Y["(6,9) = Ni"PJ" (cos 6)™, @
where Nlm is a normalization factor:

2141 (1 —m)!

N = |
! 4 (I+m)!’

and P/" are the associated Legendre polynomial. Y;" is defined for I non negative integer
and m integer, such that —/ < m < [. It is enough, however, to compute the spherical
harmonics for m > 0, as we have the relationship,

Y"(6,9) = (=1)"Y;"(6,9).

We note the definition of the harmonic polynomial,

e (x) = r'Y["(6, 9), ©)

where x is the point with spherical coordinates (7,6,1). The spherical harmonics are
orthonormal:

T 27 -
/ sin 00 / APV (6,0) Y1 (6,) = SpumrO10- ©)
0 0

The spherical harmonics moments g/ are defined as:

g :/O 51r19d9/ dgf(0,¢)Y7(6,9). @)

Note that these moments are complex, as the spherical harmonics are complex.
Just like Fourier series are complete, the spherical harmonics are complete on the
sphere. It is important to notice, however, that they cannot be computed on a volumetric

50f 28

shape without some modifications, such as the use of solid harmonics [33], or with the
introduction of Zernike polynomials, which are presented in the following subsection.

2.4. Basis function: the Zernike polynomials

The spherical harmonics are defined on the sphere. Zernike [15] in 2D and later
Canterakis [17] in 3D have shown that they can be expanded to account for the whole ball
by using the Zernike polynomials. Let x be a point inside the unit ball B with spherical
coordinates (7,8, ¢). The value of Zernike polynomial Z at x is given by:

ni(x) = V21 + 3Ry (1) Y]" (6, ¢), ®)

where Y/" are the spherical harmonics define above, and R,; are polynomials in the radial
coordinate r:

k
1’) = 2 invr2V+lr)
v=0

where

2k) (1;) (2(k+l+v)+1)

v (
Quiv = ()k+ £ 4k(k+]](+2vk)

(10)

The non negative integer n is the order the of Zernike polynomial, [is an integer that
is restricted so that 0 < I < n and (n —I) be an even number, k = (n —1)/2, and
—I < m < I. The coefficients in R,; were chosen to guarantee that the Zernike polynomials
are orthonormal, a property expressed in the following equation:

/ ZM () ZI (x)dx = SOy G- (11)

The Zernike moments c}; of a shape S whose density inside the unit ball is defined by
the square integrable function f are then defined as

= [fx)Zg (). (12)
Note that m can be positive or negative, as it belongs to [, 1]. It is enough, however, to
compute the moments for m non negative as we have (see for example [18]):

c M= (=1)"cm. (13)

nl nl

Reconstruction. The Zernike polynomial form a complete basis of L?(B), we hence
have

:MS

1
Y Y ez (14)
1

m=-—1

where [is an integer that is restricted so that 0 <! < n and (n —I) be an even number. In
practice, we can use a finite number of terms to approximate f.

2.5. Computing the Zernike polynomials from the Geometric moments

Although the Zernike polynomials are usually defined with respect to spherical coor-
dinates, they are actually polynomial functions on Cartesian coordinates (x,y, z). To show
this, let us first rewrite the Zernike polynomials

6 of 28

Ry (1)

001 02 03 04 05 06 07 08 09 1 T0 5 10 15 20 25 30 35 40
r v

Figure 1. Instabilities in evaluating the R, radial polynomials. In panel A, we show the values of Rgp ()
as a function of r, based on a stable evaluation of the polynomial function (see text for details). In
panel B, we show the values of the coefficients Qg 0,,, the monomial expansion of Rgp (7).

n(X) = V21 + 3Ry (r)Y]" (60, ¢)

k
=vV2n+3 Y Quu (X + v+ 227" (8, ¢) 5)
=0

QuwV2n +3(x* +y* + 2%) e} (x),

0

k
=

where k = (n —1)/2 and e}" is the harmonic polynomial (see equation 5) and x = (x,y,z) =
(r,0,¢). The harmonic polynomial can be expressed in Cartesian coordinates [18], but it is
enough to know that it is a polynomial of total degree I. We can thus write

V21 4+ 3(x2 + 2 4+ 2%) Vel (x) =) gt a2, (16)

r+s+t<Il+2v

with 7, s and f non negative integers and {5/ some known complex numbers. We now have

k
@)=Y Qu Y, Gnxved=) xixv, (17)
=0 r4s+t<l4+2v r+s+t<n
with
t £ t
X:zslm = Z Qﬂlvgﬁv' (18)
v=0

Finally, after replacing the Cartesian expression for Z; (equation 17) into equation (12),
we get an expression of the Zernike moments ¢ as a function of the geometric moments G:

= T XiGr
r+s+t<n
This allow for a simple algorithm for computing the Zernike moments of a shape from
its geometric moments. Similar algorithms have been proposed [18,30] for the same task.
Such an algorithm is theoretically very efficient, once the geometric moments have been
computed, as it is independent of the size of the mesh representing the shape or the number
of grid point in a voxel representation of the shape. There are, however, numerical issues
with this formula that we discuss below.

2.6. Numerical instabilities associated with the Zernike polynomials

Let us first look at the radial polynomials. R,; is a polynomial of degree n. For large
values of 1, special care is needed for computing them, and direct application of equation 9
is bound to numerical instabilities, as described in figure 1.

The values of Rgp(r) as a function of 7, based on a stable evaluation of the polynomial
function vary in the interval [—1.57,7.20], where the largest value is reached for r = 0.

7 of 28

Numerical application of equation 9 wrongly indicates that Rgy;(7) varies in the interval
[—4149,4 x 10'3] (results not shown). This is due to the fact that the coefficients Qgg g, are
large (up to 10%%), as illustrated in panel B of figure 1. Those coefficients alternate from
positive to negative due to the presence of the term (—1)", leading to large cancellations
and ultimately to a small value for the polynomial. Computing correctly those cancella-
tions requires very high precision usually not available with standard double precision
in programming languages. It is possible to use arbitrary precision libraries to solve this
issue, but it is in fact not necessary. As was noticed multiple times for the 3D Zernike
radial polynomials (see for example [34,35]) the radial polynomial R,; can be expressed as
a Jacobi polynomial:

Ru(r) = P32 (92 1), (19)
Equation 19 allows the results available in the literature for the Jacobi polynomials to be
translated for the 3D radial functions. In particular, we have the following recurrence
relation (it was also derived in [32])

Ry (r) = (Ky(n,1)r* 4+ Kp(n, 1)) Ry (r) + K3 (n,1)Ryy_y (r), (20)

where the coefficients K; are defined as:

ky = (n—=1)(n+1+4+1)(2n—-23),
ki = (2n—-1)2n+1)(2n-23),
b::%P%+UW+W—%,
ks = —(n—1-2)(n+1-1)2n+1),
k k k
Ki(n 1) = é,Kﬂmm:é,menzé. 1)

This recursive formula is only valid for I < n — 4. This can be addressed by noticing that

Ruyu(r) = 1",

Run a(r) = m+%ym4n—4w4. 22)
This recurrence allows for a stable computation of all R, (), even for large orders.

The geometric moments of a shape can be computed accurately even for large orders,

see for example [30,31]. Those moments can then be used to evaluate the 3D Zernike
moments, as described in the section above. Converting the geometric moments to Zernike
moments require, however, that the factor x'% be computed (where nlm refers to the
indices for the Zernike moments, while rst refers to the indices for the geometric moments).
As defined in 18, the factors x:f’lfﬂ depend on the coefficients Q,;;, and therefore they are
bound to suffer from the same numerical instabilities. We illustrate this in figure 2.
As expected, the x5! vary significantly over a large range of values. This was already
observed by Berjon and colleagues in their attempts to parallelize the computation of
Zernike moments [28] and is the main reason that the computation of Zernike moments
is usually limited to order below N = 50. One solution to solve this problem would be
to derive recurrence relationships for the x5 . Pozo et al. provided such a recurrence.
However, their relationships still involve the computations of the factors Q,;, (see their
equation (13e)) and as such do not solve the numerical instabilities.

Deng and Gwo [32] proposed a different approach in their attempt to compute Zernike
moments for a shape described on a grid, which is to bypass the computation of the

8 of 28

1 5 x10"

_rst

anl
(e}
n

=]

Extrema of
=)
n

1
—
T

-1.5

20 25) 30 35
n (Zernike order)

Figure 2. Instabilities in evaluating the)(Zslin factors. We show the maxima (in blue) and minima (in red)

for the x5! for a given n, as a function of n.

geometric moments. In the following, we propose a similar approach for computing
Zernike moments for a shape described by a surface-based triangular mesh.

3. Algorithms for computing the 3D Zernike moments for a surface triangular mesh
3.1. Zernike moments over a shape defined by a triangular surface mesh

Let us consider a shape S, covering a volume V. The shape is assumed to be repre-
sented by a triangle mesh that defines its boundary. Each facet (triangle) T is defined by
three vertices A, B and C that are oriented consistently counter-clockwise when seen from
the exterior of the shape. As the Zernike polynomials are complete and orthonormal over
the unit ball B, the shape is assumed to fit within this ball. This is obtained by centering the
mesh to the origin O, and scaling the mesh such that the longest distance between a vertex
of the mesh and O is set to one.

Assuming that this shape is homogeneous (i.e. represented by a constant scalar field,
with the constant set to one), its Zernike moments c}/; are given by:

e = /V Zm(x)dx, (23)

where 7 is the order of the moment, [is a non negative integer smaller or equal to n, with
the same parity as n, and m an integer with — <m <.

Using the origin O of the coordinate frame as a reference point, each facet T defines
a tetrahedron, o = (O, A,B,C). We set A = (ﬂ, with similar notations for B and C. As
these tetrahedra are oriented, the integral over the whole shape is simply the sum of the
integrals over them. Therefore

¢ = Y sign(V (7)) /a Zjjwdx (24)

The volume of the oriented tetrahedron is given by

1 XA XB XC
V(or) = 8det(A, B,C) = 6lYa YB Yc|-
ZA ZB ZC

3.2. Basic idea

Our task is then to evaluate the integrals of the Zernike polynomials over a tetrahedron
or = (0, A, B,C). The first step is to perform a change of basis, parameterizing any point

9 of 28

Figure 3. Parameterization of a tetrahedron. Let T = (A, B, C) be a triangle in the surface mesh, and
or = (0, A, B,C) be the associated tetrahedron where 0 is the origin. Any point M within o1 with
spherical coordinates (7,6, ¢) is projected onto the triangle T to a new point P(rg, 6, ¢). Note that rg
is a function of 6 and ¢.

inside the tetrahedron with respect to its position with respect to the triangle (A, B, C) (see
figure 3).

A point M with spherical coordinates (r, 0, ¢) inside the tetrahedron can be character-
ized by its projection from the origin to the triangle T. Let P be this point. The spherical
coordinates of this point are (rg, 6, ¢). Note that r(is a function of 6 and ¢. The integration
over the tetrahedron proceeds in two steps, first a radial integration over r from 0 to rg, and
then an integration over the triangle only.

cy(T) = sign(V(or)) /OT zm (x)dx

_ 3;(;;) / 1 (I r2Rnl(r)dr>Y,m(9,4))dP.

o

This expression defines a basic 2-step process for evaluating those integrals and therefore
the Zernike moments:

i) For a given P inside the triangle T with distance r(to the origin O, compute the radial
integral

70
Qui(ro) = /0 PRy (r)dr.
ii) Integrate over all points P in the triangle T to get:

i) =2 [, g ar

In the following, we provide recurrence relationships to evaluate the Q,;; and describe

a numerical way to evaluate exactly the integral in ¢/} (T), using quadrature.

3.3. Computing the integrals Q,
We consider the different integrals S, (r) of the radial functions Ry (r):

S5, r0) = [PRy (r)d
) = [PRt

Prata and Rusch have derived relationships for similar integrals for the 2D Zernike radial
polynomials [36]. We expand their results here. In appendix A, we show the following
proposition that allows us to compute S%(ro):

10 of 28

Proposition 1. For non negative integers n and 1 with | < n —2and n —1 = 0 (mod 2), the
following relationship hold:

214+ 3 I+2
0 0
Sui(ro) = @+ 3)0+1) (Rn+1,l+1(70) - Rn71,1+1(70)> - msn,l+2(r0)/ (25)
and for | = n:
0 gt
Sun(r0) = P

In appendix B, we then establish a recurrence on the Sk, (ro), in steps of 2 in k:

Proposition 2. For non negative integers n and l with | <n —2and n —1 = 0 (mod 2), and for
non negative integer k, the following relationship hold:

Ki(n+2,1)S572(r0) = =Sk 5, (ro) + Ka(n +2,1)S%,(ro) + K3(n +2,1)Sk 5 ,(ro), (26)
where Ky, Ky, and K3 are defined in equation 21.

The special case k = 0 leads to the following recurrence for the integral Q,;(ro) =
5721 i (7’0):

(n+2-0(n+143) o (o)
(2n+3)(2n+5) o
1 (21 +1)?
2((2n+5)(2n+1

Qui(ro) =

(n—D(n+1+1) 9, (0 @)

)t 1) Si(ro) + (2n+3)(2n+1) "

for | = n, we additionally need:

n+3

T
_ 0
an(rO) T h+3

Finally, we show that for all non negative integer 7, and all integer / with 0 <[<mn
and 7 and [of the same parity, there exists a polynomial function U,;; of degree n — I such
that

Qui(ro) = 153Uy (ro). (28)

The proof is simple. First, we notice that R, is written as:

Ry (ro) = 'Vyu(ro), (29)

where V is a Jacobi polynomial (see equation 19) of degree n — [. Then

Quiro) = [rH2V,a(r)er 60

Using the polynomial expansion of V,, it is easy to show that Q,; () is a polynomial
function of degree n + 3, with r6+3 as a factor.

3.4. Computing the integrals ¢!l (T)

Recall that the triangle is defined as T = (A, B, C) and that we need to compute over
this triangle the integral

c"(T) = 3;/((}')” /T %an(ro)Yl"%G,cp)dP.

Let us define

11 of 28

1
& (P) = %in(ro)ylm (0, ¢). (31)

Note that there is a function g for all triplets (1,1, m). We need to compute as exactly as
possible,

S(lT) /T ¢"(P)dP.

This integral can be approximated with a 2D quadrature [37]

1 L
YTE oy / gn(P)dP ~) wigh(aA+ BB+ 7,C), (32)
S(T) Jr =

The sum is computed over N, points on the triangle, with each point P; defined by its
barycentric coordinates («;, B;, v;) with respect to (A, B, C), and w; is a weight. The points
and weights are said to define a quadrature rule. A rule is said to be of strength N if it
is capable of exactly integrating any polynomial of maximal degree N over the domain
(here the triangle). To apply such a scheme for our application, we need to consider two
elements:

a) Exactness. As mentioned above, a 2D quadrature may be exact if it is applied on a
polynomial. This is our case. Indeed, recall that Q,,;(r¢) is a polynomial function of
degree n 4 3, with r6+3 as a factor. The function g can then be rewritten as

1 -
&) = 50 TFEH)
=7 unlYlm (9/ 4’)

= nlelm(x)/

where ¢} (x) are the harmonic polynomials (see equation 5). As U,,; is of degree n —
and e}" is of degree [, the function g is a 2D polynomial function of degree n. A
quadrature rule of strength n will therefore integrate g exactly.

b) Number of points for the quadrature. While it is well known that an n-point Gaussian
rule is exact for all polynomials of degree up to 2n — 1 in one dimension, the situation
is more complex in higher dimensions. Xiao and Gimbutas [38] proposed an empirical
rule for the minimal number of points N;,“in to integrate exactly a polynomial of order
n:

~ n+1)(n+2
o - [4042

3.5. Two algorithms for computing Zernike moments

The previous subsections provide the elements for computing the contribution of one
triangle of a surface mesh to the 3D Zernike moments of the shape enclosed with this mesh.
We summarize those elements in Algorithm 1.

Briefly, given a quadrature rule R defined by a set of weighted points P;, the algorithm
proceeds by computing the functions g} (P;) over all those weighted points, and then
accumulating the results based on the quadrature rule given by equation 32. The functions
g (P;) are computed from the Q' (r;) at r;, the radial distance of P;, and from the Y"(6;, ¢;),
at the inclination angle ¢; and azimuthal angle ¢; of P;. The corresponding procedure is
defined as TRIANGLE. Details on its implementation are provided in the section below.

Given the procedure TRIANGLE, there are two possible algorithms that can then be
used to compute the Zernike moments of a shape defined by a surface triangle mesh, one
for an exact computation, and one for finite precision. We summarize them in algorithm 2
and algorithm 5, respectively.

12 of 28

Algorithm 1 Zernike moments associated with one triangle of a surface mesh

procedure TRIANGLE(N, A, B, C, R)
Input: N: The maximum order for the 3D Zernike moments. A, B, C: The three vertices defining the triangle.
R: The 2D quadrature rule
Initialize: N(R) number of points in R. Initialize ¢)i(T) = 0. Compute V, the signed volume of the
tetrahedron (O, A, B, C)
fori=1,...,N(R) do
(1) Define (r;,6;, ¢;) for point P; in the quadrature rule.
(2) Evaluate Q,(r;) over alln € [0, N], I with 0 < < n and n and [of same parity
(3) Evaluate YZ’”(Gi,(pi) forall/with0 <!/ < Nandallmwith0 <m <1
(4) Compute all g7 (P;) based on equation 31
(5) Update ¢/l (T) = ¢y (T) + 3Vw;gh (P;)
end for
Output: The Zernike moments c}};(T) associated with triangle (A, B, C).
end procedure

Algorithm 2 Exact Zernike moments for surface triangular meshes

Input: The triangular mesh with M facets supposed to fit inside the unit ball. The maximum order N for the 3D
Zernike moments.
Initialize: Given N, choose the 2D quadrature rule R to be applied on all triangles. Initialize c}; = 0
fork=1,...,Mdo

(1) Define (A, B, C) the three vertices of triangle k.

(2) Compute ¢} (T) = TRIANGLE(N, A, B,C, R)

(3) Update ¢l = ¢t +cli(T).
end for
Output: The exact Zernike moments cJ, of the shape.

3.5.1. Exact Zernike moments for shapes described by surface triangular meshes

As described on the previous subsection, the 2D quadrature rule of strength N will
define exact Zernike moments of order up to N on any triangle of the surface mesh. For
a given N, if a quadrature rule R with this strength exists, it is then sufficient to use the
procedure TRIANGLE defined in algorithm 1 on all triangles of the surface mesh and then
accumulate the results. As described below, we were able to generate quadrature rules for
N up to 101. The corresponding algorithm has a complexity of order O(M x N°), where
M is the number of triangles in the mesh and N the Zernike order. This can be derived
as follows. The computation is performed independently on all triangles of the mesh,
hence the factor M. For each facet, we need a quadrature rule R of strength N, which itself
requires a number of points Ny that is empirically of order N? (see for example [38]). As
N? functions g need to be evaluated for each point in the quadrature rule, we get the
overall time complexity O(M x N°).

3.5.2. Finite precision Zernike moments for shapes described by surface triangular meshes

While algorithm 2 is deemed exact, it suffers from two major limitations. First, it
requires quadrature rules with large strengths. Such rules include large number of sampling

Algorithm 3 Adaptive computation of Zernike moments associated with one triangle of a surface
mesh

procedure INFO=TRIANGLEADAPT(N, A, B,C,TOL)
Input: N: The maximum order for the 3D Zernike moments. A, B, C: The three vertices defining the triangle.
The tolerance TOL for finite precision computation.
Initialize: ¢} (old) = 0
forR € {R3, .. .,Rl()l} do
(1) Compute ¢’} (R) = TRIANGLE(N, A, B,C, R)
(2) Compute err = ||c(R) — c}i; (old)|
(3) If err < TOL, break
(4) Set cpi(old) = ¢ (R)
end for
(5) If err < TOL, set INFO=true, otherwise INFO=false.
Output: INFO, and the current Zernike moments ¢ (R) associated with triangle (A, B, C).
end procedure

13 of 28

120

100 + o o

80 + o 4

60 Bl

Strength, N
8
8

40 | 1

8

0.6] 0.62 0.63 01‘)4 0.65 0.6(v 0.67 OA(‘)X 0.69 0.1
Surface area

Figure 4. The strength N of the quadrature rule needed to compute the Zernike moment associated

with a triangle of the surface mesh representing a shape is plotted against the surface area of this

triangle.

points, leading to an overall time complexity O(Mx N 5). Quadrature rules, however, are
known to converge fast. As such, it is often not necessary to go to the maximum strength
that is required for an exact computation. If we are willing to accept a finite precision, a
more efficient procedure can be derived, as described in algorithm 3. Briefly, the Zernike
moments ¢, over a triangle T are evaluated over quadrature rules of increasing strengths.
When the difference between those Zernike moments computed over two successive rules
falls below a tolerance, the quadrature is deemed to have converged and the computation
stops.

There is a second limitation of algorithm 1 that remains a problem for algorithm 3:
if the strongest quadrature rule (in our case, 101) is not enough to compute the Zernike
moments exactly or to reach the desired tolerance, the algorithms fail. It is expected
that the quadrature strength needed to compute correctly the Zernike moments for a
tetrahedron (O, A, B, C) is related to the size of the corresponding triangle (A, B, C). To
verify this assumption, we performed the following experiment. We considered 8 different
discrete spheres represented with a triangular surface mesh. The first mesh corresponds
to an icosahedron, while the following meshes are generated consecutively by successive
subdivisions of all triangles of the previous mesh. All those meshes are scaled so that
they fit within the unit ball, with a maximum radius of 0.75. We applied algorithm
TRIANGLEADAPT to all facets of all those meshes, and compared the maximum order on
exit of the procedure to the surface area of the corresponding triangle. Results are shown in
figure 4.

Algorithm 4 Recursive computation of Zernike moments associated with one triangle of a surface
mesh
procedure TRIANGLEREC(N, A, B, C, TOL)
Input: N: The maximum order for the 3D Zernike moments. A, B, C: The three vertices defining the triangle.
The tolerance TOL for finite precision computation.
(1) Compute (INFO, ¢/, (T) =TRIANGLEADAPT(N, A, B,C, TOL)
if INFO==true then

| (RETURN ¢ (T)
else
(3) Find A’, B/, C’ the middle points of segment BC, AC, CA
(4) Compute
a) CZ’Z (1) =TRIANGLEREC(N, A, C’, B/, TOL)
b) C’”"] (2) =TRIANGLEREC(N, B, A’,C’, TOL)
C) c(3) =TRIANGLEREC(N, C, B/,A’, TOL)
d) Cr[4) =TRIANGLEREC(N, A/, B’,C’, TOL)
(5) RETURN ¢/ (T) = ¢ (1) + i (2) 4 ¢l (3) + ¢l (4).

end if
end procedure

14 of 28

Algorithm 5 Finite precision Zernike moments for surface triangular meshes

Input: The triangular mesh with M facets supposed to fit inside the unit ball. The maximum order N for the 3D
Zernike moments. The tolerance TOL for finite precision computation.
Initialize: Set ¢}, = 0
fork=1,...,Mdo
(1) Define (A, B, C) the three vertices of triangle k.
2) Compute ch (T) TRIANGLEREC(N, A, B,C, TOL)
(3) Update ¢t = ¢} + ¢ (T).
end for
Output: The finite precision Zernike moments cJ;, of the shape.

Figure 4 shows that the larger the triangle, the higher the strength of the quadrature.
This result hints to a simple procedure to alleviate the second problem described above:
if the procedure TRIANGLEADAPT fails, split the triangle into four smaller triangles,
possibly recursively. We have implemented this procedure in algorithm 4.

The finite precision algorithm for computing the Zernike moments of a shape to a
finite precision TOL is then given by algorithm 5.

4. Reconstructing a shape from its 3D Zernike moments

Recall that once a shape S has been characterized with its Zernike moments ¢}, its
density p(x) at any point x in R3 can be reconstructed using equation 14

(33)
; 2 clv/2n + 3R,y (r)Y[" (6, ¢),

m=

where (1,6, ¢) are the spherical coordinates of x. The reconstruction is exact when N — +-co.
While the Zernike moments ¢!, and the Zernike polynomials are complex, the reconstruction
p(x) is real.

The equation above defines a simple algorithm for reconstructing the shape density
in R3. If the points x are chosen to be the nodes of a 3D grid, a surface mesh can then
be reconstructed using the marching tetrahedron algorithm [39]. We note, however, that
special care is needed when evaluating the radial polynomials R,;(r) and the spherical
harmonics Y}" (6, ¢) to avoid numerical instabilities when is large. This is described below
in the Implementation section.

5. Implementation

The computation of the Zernike moments of a shape described by a surface triangular
mesh is performed either with the exact algorithm 2 or with the finite precision algorithm 5.
Both algorithms rely heavily on the functions that compute the geometric moment associ-
ated with a triangle of the mesh, TRIANGLE (algorithm 1) and TRIANGLEREC (algorithm
4). We identify three elements that are essential for the implementations of those algorithms:

1) Definitions of the quadrature rules for integration on a triangle,

2) Efficient computations of R, (r) and Q,;(r),

3) Efficient computations of the spherical harmonics Y/" (6, ¢)

We describe the specifics for those three elements.

5.1. Quadrature rules for integration over a triangle

A quadrature rule over a domain D is defined through its ability to integrate exactly
over D the set of basis polynomials of degree n < N, PN. This set has an infinite number of
representations. The simplest of those representations is to consider monomials. In two

15 of 28

dimensions, those monomials are {x'y/,i + j < N}. Unfortunately, monomials of high
degrees are extremely sensitive to small perturbations. This gives rise to systems which are
poorly conditioned and hence difficult to solve numerically [40]. We have used instead the
approach of Witherden and Vincent [41] to derive our quadrature rules. They proposed to
use orthogonal polynomials ¥;; as a basis of PN with i 4+ j < N, such that

/D i (%) (x)dx = 53051,

where ¢ is the Kronecker delta. By taking g (x) = 1/c¢, they define the error associated
with a quadrature rule with N, points as:

Np 2
X*(N) = Z{ Y witpij(xie) — 051'0(5]'0} : (34)
i k=1

In Witherden and Vincent’s schemes, constructing an N, rule of strength N is then akin
with finding a set of points x; and associated weights wy that minimize x*(N). They
provided an open source software package, PolyQuad (available at https:/ /github.com/
PyFR/Polyquad) for this task. We have run PolyQuad for strengths between 3 and 101
to generate the quadrature rules that we have used for computing Zernike moments. In
appendix C, we list the number of points required for each strength. The actual number of
points is found to be similar to the empirical bound of [(N + 1)(N + 2)/6] proposed by
Xiao and colleagues [38].

5.2. Efficient computations of the polynomials R,,;(r) and Q,,;(r)

As described in section 2, it is crucial to compute the radial polynomials R,;(r) ac-
curately. A naive computation using its monomial decomposition does not achieve this
accuracy for high order n. Instead, we have used the recurrence 20 that is derived from the
properties of Jacobi polynomials (see section 2).

The polynomial Q,,(r) are the indefinite integrals of the radial polynomials R,;(r)
weighted by 2. Properties 1 and 2 (major results of this paper) provide simple recurrence
for computing those integrals.

5.3. Efficient computations of the spherical harmonics Y|" (6, ¢)

The spherical harmonics are related to the associated Legendre polynomials, from
which they inherit many properties. In particular, they can be computed recursively. We
have used the following recurrences:

Proposition 3. For non negative integers | and m with 0 < m < [the following relationships
hold:

i) Forl>1land0<m<I-—1:

(21 +1)(21 —1)

Y/"(0,9) = Txm)(—m) cos 0Y;" (0, 9)

(35)

@+ +m=-1)(-m—-1),,
_\/ @+ tm—m 29

i) Forl>0andm=1-1:

YI71(0,¢) = V21 + 1cos 0Y, 7 (6,9). (36)

https://github.com/PyFR/Polyquad
https://github.com/PyFR/Polyquad

16 of 28

iii) Forl>0Qandm = 1I:

20T
Y/ (6,¢) = —sind Te“”Yllill(Q,gb). (37)

With the initialization Y3 (0, ¢) = 1/+/4m, equations 35 to 37 provide an efficient scheme for
computing all spherical harmonics at angles (6, ¢).

5.4. Efficient reconstruction of a shape from its Zernike moments

As given by equation 33, the Zernike moments can be used to reconstruct a field p(x)
for x within the unit ball. This field is expected to be 0 or 1 outside or inside of the shape to
be reconstructed, respectively. The summation over all orders of the Zernike moment is
performed using the same recursions that are used to compute the Zernike moments. A
triangulated surface is then constructed as an isosurface of this field, usually at the level
p(x) = 0.5. We chose the regularized marching tetrahedra algorithm [42] to generate this
surface.

6. Numerical results

We have derived new algorithms for computing the Zernike moments of a shape
represented by a surface mesh, respectively. In this section, we analyze the computational
complexity of both. We propose experiments to measure the numerical stability of the pro-
grams that implement these algorithms. Finally we show examples of shape reconstructions
based on high order Zernike moments derived with these algorithms.

6.1. Accuracy of the computed 3D Zernike moments: comparison with other algorithms

In the specific case of a homogeneous shape, the version of the Parseval’s theorem
for Zernike moments allows us to monitor the convergence of the computations of these
moments. Indeed, for an homogenous shape, f2(x) is constant. Taking this constant to 1,
we get

1

LYY [= [fax [ax

n=0 m=—

n 3 n
&, = /B FR)Zotx = [./v dx.

In parallel, we have:

Therefore,

- ! m |2 4r 0
Y2) lemlf = 3 Coo- (38)
] !

n=0 m=—
This implies that the Euclidean norm of the Zernike moments up to order N converges

to a factor times \/% when N increases, which can be used as a test for the numerical
stability of the algorithm. Figure 5 shows this convergence for three different programs
for computing the Zernike moments, for maximum order up to 150. All calculations are
performed on a discretized sphere represented with a mesh of 20480 triangles (this mesh
was generated from the regular icosahedron with 5 consecutive subdivisions of its facet).
This sphere is scaled inside the unit ball such that its maximum radius is 7y = 0.75. The
computations were performed on one thread of a Linux server, with a Xeon Platinum 8168
CPU running at 2.7GHz.

The first program we use implements the computation of the Zernike moments from
the geometric moments of the shapes, using the PK algorithm proposed by Pozo et al. [30],
with the modified computation of geometric moments proposed by Koehl [31]. All calcu-
lations are performed in double precision. As seen in figure 5, the convergence breaks

17 of 28

1 ”X(i L
PK-double

lﬂh(i L

PK-GMP
10% 4

Convergence (R)

]OZU L

Shape2Zernike

0 50 100 150
Order (n)

10°

Figure 5. Numerical stability of the computation of Zernike moments. We plot the ratio of the sum

of the norms of the Zernike moments to the value of cgo ; this ratio should converge to \/g (see
equation 38). We use three different programs, PK-double that implements the PK algorithm which
is a computation of the Zernike moments from the geometric moments of the shape using double
precision artihmetic, PK-GMP that implements the same calculation using full arbitrary precision
arithmetic, and Shape2Zernike based on algorithm 5 of this study.

down at N = 50; this is similar to the behavior described by Pozo et al. [30] for their own
algorithm, and for the alternate algorithm proposed by Novotni and Klein [18]. We believe,
in par with their comments, that the divergence is due both to the summations needed
for computing the Zernike moments from the geometric moments that involve terms with
alternating signs, and to the accuracy with which both high order monomials and high
order binomial coefficients are computed.

One option to circumvent this divergence problem is to increase the precision with
which real numbers are represented. The second program we have used is a rewrite
of the first program that makes full use of the GNU Multiple Precision (GMP) library.
The calculations of the geometric moments involve linear recursions; they can therefore
be performed using arbitrary precision integer arithmetics. The conversion to Zernike
moments is then performed with floats with 512 bit accuracy. As seen in figure 5, this full
GMP implementation converges for order up to 100. It still fails, however, for order higher
than 100. In addition, the computational cost however is high: the full GMP calculation
required 4200 seconds for N = 100, while the double precision float calculation only
requires 100 seconds.

The third program with have used is Shape2Zernike implementing algorithm 5 in-
troduced in this paper. Compared to the two other programs, it computes the Zernike
moments directly, without relying on the geometric moments. It is found to be stable over
a wide range of order (we have tested it up to order 400). It has a moderate computational
cost (220s).

6.2. Accuracy of the computed 3D Zernike moments: comparison with exact values

In the previous section, we have looked at the stability of the algorithm. To assess its
accuracy, we considered a sphere centered at the origin with radius rg with 0 < rg < 1. The
Zernike moments of such a sphere are defined as

7 T 27T
i = Va3 [driRy(r) [sinode [ag¥T6,9).

Let us recall first the orthonormality of the spherical harmonics:

T 27 J—
/ sin d6 / dgY!" (0, 8) Y (6,9) = Suumr iy (39)
0 0

Applying this equation for m’ = 0 and I’ = 0, and using the fact that Y§ = 1/v/47, we get

18 of 28

10—(» L L L L L L
0 2 4 6 8 10 12 14

Number of triangles in mesh x10°

Figure 6. Numerical stability of the exact algorithm when computing the Zernike moments of discrete
spheres. We plot the error in the numerical Zernike moments compared to the reference exact Zernike
moments for a sphere (computed with equation 40) as a function of the number of triangles in the
mesh represented the discrete sphere.

T 21
/ sin 60 / dPYT (6,) = VAT modi-
0 0

The integral on the left is therefore non zero only for / = 0 and m = 0, in which case it is
equal to v/47t. The Zernike moments ¢, of a sphere are then non zero only for [= 0 and
m=0:

cuolref) = VAmy/2n +3 /0 r*Ruo(r)dr = V47v/2n +3Quo(r0), (40)

where Q)9 is defined in equation 27. Note finally that, as I = 0 is even, n needs also to be
even.

The exact algorithm (algorithm 2) and the finite precision algorithm (algorithm 5,
with TOL set to 10~%) have been applied to compute the Zernike moments of order 100
of triangle meshes representing the sphere with radius rg = 0.75. Those meshes were
constructed from successive subdivisions of the icosahedron, leading to eight meshes with
80 facets for the coarser, and 1310720 facets for the finer. The error has been measured using
the Euclidean distance between the Zernike moments computed numerically with the exact
or with the finite precision algorithm, and the reference Zernike moments computed from
equation 40, divided by the Euclidean modulus of the reference:

o VTl —atrep)

v/ St [(ref) |

Results for the exact algorithms are shown in figure 6. Those for the finite precision
algorithm are indistiguishable. As expected, the error decreases as the number of triangles
in the mesh decrease. The meshes we have used do not represent the sphere exactly; the
representation improves, however, as the number of triangles increase. The errors observed
in figure 6 relate to this discretization error. The error associated with computing the
Zernike polynomial are minimal compared to those.

As discussed above, while it is possible to compute the Zernike moments for a sphere
analytically, representation of a sphere with a discrete 3D mesh is only approximate. To
further analyze the accuracy of our algorithms, we considered a second simple shape, a
cube. Such a cube can be represented exactly with a triangular mesh: we considered a

19 of 28

PK-double

101
o= 10°
105}
1075f Shape2Zernike
0 20 40 60 80 100

Order (n)

Figure 7. Accuracy of the computation of Zernike moments for a cube with 12 facets as a function of
the order n. The reference values were computed symbolically using a symbolic algebra system. The
approximate algorithm is indistinguishable from the exact one.

cube with 12 facets aligned with the Cartisian axes and just fitting in the unit ball (thus
with edges of size 2/ \/§), There are no analytical formula for the Zernike moments of a
cube. However, they can be computed symbolically using a symbolic algebra system (we
have used Mathematica [43]). To achieve this, we generated the monomial expansion of
the Zernike polynomials and then integrated them symbolically over the volume of the
cube. This provided an exact symbolic result for each moment which was then evaluated to
double precision. We compared the results of the double precision program PK (see above),
of the exact algorithm (algorithm 2), and of the finite precision algorithm (algorithm 5, with
TOL set to 10~8) (both implemented in Shape2Zernike) with those exact values for Zernike
moments up to order 100, using the following error function

1
en=[)_ Y |c"(computed) — ™ (exact)|?. (41)
1

m=—I

Results are shown on figure 7. The two new algorithms perform extremely well at all orders
with an error of order 10~1° compared to these exact values.

6.3. Reconstructing a shape from its 3D Zernike moments: example of the sphere

The reconstruction of a shape function p(x) can be carried out starting from equation 33.
For the sphere with radius r, the triple summation in this equation converges to a step
function equal to 1 for r < rg and 0 for r > ry. We assessed the quality of this reconstruction
for the discrete sphere of radius g = 0.75 represented with a triangular mesh with 1310720
facets. We computed D(r) at a set of points x whose spherical coordinates are (7,0,0). In
figure 8 we show D, for N = 20, 50 and 200. Note that all reconstructions have a value
near 0.5 for r = r(. This observation indicates that general shape reconstruction consists of
computing a field over the unit sphere with the field value at a point x being the summation
in equation 33 for n = 0 up to a maximum preset value N, and then taking the isosurface at
level 0.5 of this field to define the surface of the reconstructed object.

6.4. Reconstructing a shape from its 3D Zernike moments: importance of the order N

Figure 9 shows the quality of reconstruction of a shape from its Zernike moments at
different orders, for different objects.

The first row corresponds to a model of a gargoyle, available at the repository
AIMS@SHAPE (http:/ /visionair.ge.imati.cnr.it/). The original mesh includes 50,002 ver-
tices and 100,000 triangles. We computed the Zernike moments of this shape using the
finite precision algorithm with a tolerance of 108, up to order 300. We then reconstructed
the shape by computing a field over the unit ball, where each node in the field is assigned a
value corresponding to equation 33, with different orders of N and then identifying the

http://visionair.ge.imati.cnr.it/

20 of 28

12

—N=20

D(r)

-0.2

Figure 8. Summation of the series in equation 33 for n up to N with N = 20,50 and 200 for a scaled
sphere with radius of 7y = 0.75. The series converges to a straight line at value 1 between the origin
and r(, and vanishes beyond. Note the presence of overshoots, similar to oscillations in truncated

Fourier expansions. Those overshoots concentrate as N increases.

Original Order 20 Order 50 Order 300

Figure 9. Reconstruction of a gargoyle (top row), a statue (middle row), and of the head of an
ogre from the Zernike moments computed from a triangle mesh representing their boundaries. We
compare the reconstructions generated from three different maximum order N, N = 20, N = 50, and
N = 300. The original shape is shown on the left. All figures were generated with MeshLab [44]

21 of 28

FINITE PRECISION

—=N=20
4 f|==N=50
107 F—=N=100

CPU time (s)
CPU time (s)

10" ¢

107 10* 10* 10°
Number of triangles in mesh Number of triangles in mesh

Figure 10. CPU times required to compute the Zernike moments of a sphere as a function of the
number of triangles in the meshes that represent this sphere. We compare the exact algorithm (left)
with the finite precision algorithm (right). While the time complexity for the former is found to be
strictly linear with respect to the number of triangles, it deviates from linearity for the latter. We
observe the same behavior for different maximum order N (20, 50 and 100) at which the Zernike

moments are computed .

surface of the reconstructed shape with the 0.5 isosurface of this field. The isosurface is
built using the regularized marching tetrahedra algorithm [42]. As expected, the quality
of the reconstruction depends on the maximum order N considered. For N = 20, the
reconstructed surface only shows the global envelope with no details. For N = 50, the
shape of the gargoyle is better defined; however, fine details are still missing. For example,
we do not see any texture in the wings. N = 300 gives us a more accurate representation of
the shape, with fine details within the wings and in the mane of the gargoyle.

The second row corresponds to a statue of the bust of Ippolita Sforza, sculpted by
Francesco Laurana. It is available as part of the package MeshLab [44]. The mesh includes
27861 vertices and 49954 triangles. We computed its Zernike moments using the finite
precision algorithm with a tolerance of 1078, up to order 300. We then reconstructed its
shape using the same procedure described above for the gargoyle, with orders 20, 50, and
300. For N = 20, the reconstructed bust is incomplete, with no details on its surface. For
N = 50, we start seeing faint features within the face, but the bottom of the bust is still
incomplete. N = 300 gives us a much more accurate representation of the model, especially
in the face.

The third row corresponds to the smiling version of Jerry the Ogre, introduced by
Carr et. al. It is available at the 3D model repository of Keenan Crane (https://www.cs.
cmu.edu/~kmcrane/Projects/ModelRepository/. The mesh includes 27861 vertices and
49954 triangles. We computed its Zernike moments using the finite precision algorithm
with a tolerance of 10~8, up to order 300. We then reconstructed its shape using the same
procedure described above for the gargoyle and the bust by Laurana, with orders 20, 50,
and 300. For N = 20, the reconstructed face of Jerry has no features. For N = 50, we start
seeing faint features within the face; some elements such as the eye are still missing. For
N = 300 the face is reconstructed reasonable accurateluy.

All three examples show above highlight the same conclusions: at low order, up to
N = 50, the Zernike moments only capture the global features of a shape. Order 50 is
usually the limit to which Zernike moments can be computed for a shape represented
by triangular meshes. The new algorithms presented in the paper allow for computing
Zernike moments at much higher order. With N = 300, we observe reconstructed meshes
that capture the local features of the original shapes.

https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/
https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/

22 of 28

6.5. Computational complexity for geometric moments and 3D Zernike moments

The algorithm (algorithm 2) introduced in section 3 for the exact computation of the
Zernike moments of a shape represented by a triangular mesh of its boundary is of order
O(M x N°) where M is the number of facets in the surface mesh, and N is the maximum
order considered. The linear complexity with respect to the total number of facets coincides
with the complexity of discrete algorithms that approximate the moments by applying a
summation over the 3D image grid instead of computing an integral (considering constant
value for the function over each grid cell). The second algorithm (algorithm 5), which
computes the Zernike moments with a finite precision is also of order M with respect to
the number of facets.

We implemented the two algorithms in a C++ program, Shape2Zernike, using double
precision float arithmetics and tested their computational complexities on the simple case
of a discrete sphere with radius 0.75, centered on the origin. We computed the Zernike
moments for this sphere up to order 100 for the exact algorithm and for the finite precision
algorithm, with the boundary of the sphere being represented with meshes with up to 1.3
million triangles. The experiments were run on an AMD Ryzen Threadripper PRO 3975WX
processor with 193 GB of memory; each calculation was run as a single thread. Results are
shown in figures 10 and 11.

The running time for the exact algorithm is found to be strictly linear with respect to
the number of triangles in the mesh, as expected. The finite precision algorithm deviates
from the linearity for meshes with small number of meshes. This is not unexpected. Indeed,
the triangles of such meshes have larger surface area, requiring higher quadrature strengths
for computing accurately the Zernike moments (see figure 4). The finite precision algorithm
remains significantly faster than the exact algorithm.

Similar trends are observed as we analyze the running time with respect to the max-
imum order of the Zernike moments (figures 11). The apparent complexity of the exact
algorithm with respect to the maximum order N of the Zernike moments are O(N*?), differ-
ent from the theoretical order O(N®). This can be understood as follows. For a given facet
in the mesh, we sum the g7} over O(N?) points (i.e. the number of points needed for the
strength of the quadrature that provides an exact integration on the facet). Computations
of the g7} for each point proceed in two main steps. First, we need to compute the integrals
Qy and the spherical harmonics Ylm, both of complexity O(N 2), and second, we need to
assemble the g, from those numbers. The second step is order O(N?), corresponding to the
number of moments. Computing one Q,,; or one Y;" is significantly slower than assembling

EXACT FINITE PRECISION

104 104 3
g £
- 1
E 102 E 10
Q O

100 ‘ ‘
20 40 60 80 100 20 40 60 80 100
Maximum order of Zernike coefficients Maximum order of Zernike coefficients

Figure 11. CPU times required to compute the Zernike moments of a sphere as a function of the
maximum order N of those Zernike moments. We computed the Zernike moments for three discrete
representations of the sphere, each given by a triangular mesh. The corresponding meshes include
20480, 81920 (black line), and 327680 (red line) triangles, respectively. Linear fits to these curves
give slopes of 4.2 for the exact algorithm and 2.4 for the finite algorithm, corresponding to apparent
complexities of O(N*?) andO(N?#) for those two algorithms.

23 of 28

30

—e—N=50

—e—N=100
| |—e—N=150
—e—N=300

[o]
[

[\S3
[=)
T

S
:

Speedup (compared to 1 thread)
o

W
T

0 5 10 15 20 25 30 35
Number of threads

Figure 12. CPU time required to compute the Zernike moments of the gargoyle The speedup in clock
time is plotted against the number of CPU or threads used by the parallel version of the approximate
algorithm, for different maximum order (50, 100, 150, and 300). The speedup is obtained as an average
over 5 independent runs.

one g7, however. For small enough N the two steps take similar computing times. Hence
at small N the apparent complexity is close to O(N*). At larger values of N (i.e. N > 100),
the O(N®) complexity would be recovered. This situation does not occur as the maximum
strength of the quadratures on a facet is 101, i.e. corresponds to N at most 100.

The apparent complexity of the finite algorithm is significantly better, of order O(N?4).
To understand the differences with the theoretical complexity of O(N®), we need to remem-
ber Figure 4. The actual strength of the quadrature needed to compute Zernike moments
with a very small error (TOL < 10~8) is much smaller than the exact strength, especially
for triangles with small areas. The spheres considered in our tests have more than 20000
facets, all scaled so that the sphere is with radius 0.75. We found that for nearly all those
triangles, the actual maximum strength was constant at the value 7, corresponding to only
13 points in the quadrature. This leads to a significant speedup of the algorithm. We note
that this is the complexity expected in practical use of the algorithms, as shapes represented
with triangular meshes are usually characterized by a large number of triangles, and those
triangles have small areas when the shape is scaled to fit in the unit ball.

The algorithm maintains the independence of the contribution from each facet to the
moments of the whole shape. This allows for an easy parallelization, which we imple-
mented using POSIX threads. We tested the parallel version of Shape2Zernike on a Linux
server, with Xeon Platinum 8168 CPU at 2.7GHz with 96 cores and 396 GB of memory. The
apparent speedups observed are reported in figure 12. The calculations were performed on
the gargoyle (see above), represented by a mesh with 100,000 triangles, for four maximum
moment orders. The speedup factors were derived as an average over five independent
runs, to minimize spurious fluctuations. For maximum orders up to N = 100, the speedup
remains fairly linear over the whole range of cores requested by the program. For a max-
imum order of N = 150, a saturation appears, and the largest speedup factor is 8 for 16
cores used by the program. For a maximum order N = 300, the same saturation occurs,
and the maximum speedup factor is only 8, independent of the number of threads. We
believe that the saturation effect observed is related to cache thrashing issues on each core,
as the total storage required for large N values becomes important (a maximum order of
150 represents a total of 2306676 moments to be computed).

7. Conclusions

We have proposed two new algorithms for the computation of the homogeneous
Zernike moments of a solid shape from a triangular mesh representing its boundary. Many
algorithms have been proposed for computing such Zernike moments of a shape. Most of

24 of 28

these methods usually proceed in two steps, namely computing the geometric moments of
the shape first, and then expressing the Zernike moments as linear combinations of those
moments. We have showed that this approach works well if the maximum order of the
moments is small but fails for large order, due to numerical stability issues associated with
computing the Zernike moments from the geometric moments. The new algorithms we
propose circumvent this problem by computing directly from the shape. They rely on the
analytical integration of the moments on tetrahedra defined by the surface triangles and
a central point and on a set of novel recurrent relationships between the corresponding
integrals. The first algorithm is exact. performing the computation of integrals over the
triangles using quadratures of appropriate order. This algorithm, however, is mostly of
academic interest due to its limitations. it requires quadrature rules with large strengths.
Such rules include large number of sampling points, leading to an overall time complexity
O(M x N°), making it impractical. Quadrature rules, however, are known to converge
fast. As such, it is not necessary to go to the maximum strength that is required for an
exact computation. The second algorithm implements this idea. We have shown that it
is fast, accurate, and allows for computations of moments of very high orders. We have
shown also that this program can be easily parallelized, based on the independence of
the contribution of each triangle in the boundary mesh. We did note however that as the
number of moments that are computed increase, the memory requirement for each thread
increases, leading to saturation effects in the parallelization speedup factor. This limitation
related to memory would hinder a naive implementation of this algorithm on GPU. We
are currently working on solutions to this problem. The free software implementing these
algorithms is available at https://github.com/jerhoud

Author Contributions: conceptualization,].H and PK.; methodology,].H and P.K.; software,]. H.
and PK.; formal analysis,].H and P.K.; investigation,].H. and PK; writing: original draft preparation,
J.H. and PK.

Funding: “This research received no external funding”
Data Availability Statement: “Not applicable”

Acknowledgments: The work discussed here originated from a visit by PK. at the Institut de
Physique Théorique, CEA Saclay, France, during the fall of 2018. He thanks them for their hospitality
and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. A recurrence for 521 (r)

We start with an integral representation of the 3D Zernike radial polynomials [35]:

2 n—l

Ry (r) = —(=1) >

too '
pe /0 jnt1(q)ji(rg)qdg, (A1)

where j; are spherical Bessel functions. The derivative of R, (r) with respect to r is then

dR 2 nol [T aji (r
M) = 20 [a2 gy (a2)

Using the following relationship for spherical Bessel functions ([45], equation 10.51.1)

Qjn+1(9) = (21 +1)ju(q) — qjn-1(q),

we get

https://github.com/jerhoud

25 of 28

T =207 [a0 g
=2 T ey [g g - 205 [g0 g
~ 2 ey [T g+ B2l),

(A3)

We use now the following relationship for spherical Bessel functions ([45], equation 10.51.1)

djl(x) - l . l+ 1.
e m]l—l(x) - m]lﬂ(x)r (A4)
to get
ARy, . 2 n-l Too L. [+1.
b0 = 20T @) [i) (grpiiea) = g (09) Jadg
an72,l
+ 7 (r). (A5)
This equation leads to
dR 2n+ 1)l 2n+1)(1+1 dR,_»;
d:l (r) = % n-11-1(r) + (21—3_(1>Rn71,l+1(r) + Zr 2L (r).
After integration over [0, rg]
(2n+1)I 2n+1)(1+1)
Rui(ro) = msﬂ,u,l(m) + ngq,zﬂ(’b) + Ry—2,(r0). (A6)
Shiftingn —n+1land! — [+1, we get
(2n+3)(1+1) 2n43)(1+2
Ryt1,4+1(r0) = ngl(m) + %59%2(70) +Ry_1,42(r0). (A7)
This leads to
2143 142
Shi(ro) = m(&zﬂ,lﬂ(m) — Ry_1,142(r0)) — msg,uz(ro)/ (A8)

which concludes the proof of equation 25, the recurrence over the S,;(0, 7).
The initialization follows from

n+1

T T
/ORnn(i’)drz/Or”dr: "o
0 0

Spu(ro) = n+1

where we have used equation 22 for Ry, (r).

Appendix B. A recurrence for S, ()

We start from the recurrence over the R, () (equation 20 in the main body of the text)

Ry (r) = Ky(n,1)r*Ry—p (r) + Ko (1, 1)Ryy— 1 (r) + K3 (1,)Ry (r), (B1)

26 of 28

where Kj, Ky, and K3 were defined in equation 21 in the main text. Let k be a non negative
integer. After multiplication with ¥, we get

Ry (r) = Ky (, 1)P* 2R,y o1 (r) + ¥ Ko (1, 1) Ryy—p 1 (r) 4 K3 (n,)Ry _y (1), (B2)

which we integrate over [0, 7]
Sypi(ro) = Ky(n,1)SETS (ro) + Ka(n,1)Sk_5 1 (r0) + Ka(n,1)SK_y (o). (B3)

Shifting n — n + 2, we get

Sk 2i(r0) = Ky(n+2,1)S52(r0) + Ka(n + 2,1)S% (r0) + Ka(n + 2,1)S5_, (r0). (B4)

This then yields equation 27.

Starting with S, (r), repeated use of equation B4 allows us to compute all S, (r) for k
even. While this is enough for recurrence required in this paper, for sake of completeness,
we show how the same integrals can be evaluated for k odd.

The recurrence on R,;; expressed in equation 20 has a coefficient with r to the power 2,
leading to the even recurrence. Janssen in his work on generalized Zernike functions [35]
derived a different recurrence on R,;; (his equation 80):

2n+3 [(21+2 21 n—+2
Ryi1(r) = (

= 2 \ a0+ g 1R”"1<r)> ~ i Reul). (BY)

Note that applications of this recurrence require the initialization Roy(r) = 1, and setting
R,; = 0 when n < . After integration over [0, 7], we get

2n+3/21+2 21 n+2
Sy 1(ro) = 2 (21“ wir1(ro) + 21“%,11(%)) - msg—u(r)/ (B6)
which we rewrite as
I+1 (2n+2)(20 +1)
1 _ 1 0
Sni—1(ro) = =—=5y 141 (ro) + Wsn+l,l(r0)

(2n+4)(21+1)
ngql(fo)- (B7)

Equation B7 provides a recurrence for computing S!,(rg) from S, (ro). Integrals Sk, (ro)
with k odd, k > 1 can then be derived by repeated use of equation B4, starting with S, (o).

27 of 28

Appendix C. Characteristics of the triangle quadrature rules used in this work

Strength N | #points N, | bound N;™" E
*3 4 4 1
*5 7 7 1
*7 13 12 | 0.92

9 19 19 1
*11 28 26 | 0.93
13 37 35 | 0.95
*17 60 57 | 0.95
21 87 85 | 0.98
*25 120 117 | 0.98
31 181 176 | 0.97
*37 255 247 | 0.97
43 348 330 | 0.95
*51 501 460 | 0.92
65 814 737 | 091
*73 1030 925 | 0.90
81 1263 1135 | 0.90
*101 2007 1751 | 0.87

Table C1. Characteristics of the triangle quadrature rules used in our algorithms. All those rules
were constructed with the program PolyQuad (https://github.com/PyFR/Polyquad) by Witherden
and Vincent [41]. Stars near strengths identify the rules that are used in the finite precision algorithm.
The bound N;,“i“ (third column) is the empirically proposed bound on the number of points, N;,“i“ =
[(N+1)(N+2)/6], as proposed by Xiao and Gimbutas [38]. E (fourth column) is the “efficiency",
defined as: E = N;,“in / Np. Efficient quadrature rules have E close to 1.

References

1. Zelditch, M.; Swiderski, D.; Sheets, H. Geometric Morphometrics for Biologists. A Primer; Elsevier: Academic Press: London, 2012.

2. Peng, H. Bioimage informatics: a new area of engineering biology. Bioinformatics 2008, 24, 1827-1836.

3. Khairy, K.; Howard, J. Spherical harmonics-based parametric deconvolution of 3D surface images using bending energy
minimizations. Med. Image Anal. 2008, 12, 217-227.

4. Shamir, L.; Delaney, J.; Orlov, N.; Eckley, D.; Goldberg, I. Pattern recognition software and techniques for biological image
analysis. PLoS Comput. Biol. 2010, 6, €1000974.

5. Toomre, D.; Bewersdof,]. A new wave of cellular imaging. Annu. Rev. Cell. Dev. Biol. 2010, 26, 285-314.

6. Thompson, D. On growth and form; University Press: Cambridge, 1917.

7. Hu, M. Visual pattern recognition by moment invariants. IRE Trans. Infor. Theory 1962, 8, 179-187.

8. Teague, M. Image analysis via the general theory of moments. J. Opt. Soc. Amer. 1980, 70, 920-930.

9. Teh, C.; Chin, R. On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Machine Intell. 1988, 10, 496-513.

10. Prokop, R.; Reeves, A. A survey of moment-based techniques for unoccluded object representation and recognition. Graphical
models and image processing 1992, 54, 438—460.

11. Hobson, E. The Theory of Spherical and Ellipsoidal Harmonics; Chelsea Co.: New York, NY, 1955.

12. Byerly, WE. An Elementary Treatise on Fourier’s Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications
to Problems in Mathematical Physics. In Proceedings of the Spherical Harmonics; Dover: New York, NY, 1959; pp. 195-218.

13. Kazhdan, M.; Funkhouser, T.; Rusinkiewicz, S. Rotation invariant spherical harmonic representation of 3D shape descriptors. In
Proceedings of the Eurographics Symp. Geometric Proc., 2003, pp. 156-164.

14. Medyukhina, A.; Blickensdorf, M.; Cseresnyés, Z.; Ruef, N.; Stein,].V.; Figge, M.T. Dynamic spherical harmonics approach for
shape classification of migrating cells. Scientific reports 2020, 10, 1-12.

15. Zernike, F. Beugungstheorie des Schneidenver-fahrens und seiner verbesserten Form, der Phasenkontrastmethode. Physica 1934,
1, 689-704.

16. Toharia, P; Robles, O.D.; Rodriguez, A.; Pastor, L. A study of Zernike invariants for content-based image retrieval. In Proceedings
of the Pacific-Rim Symposium on Image and Video Technology. Springer, 2007, pp. 944-957.

17. Canterakis, N. 3D Zernike moments and Zernike affine invariants for 3D image analysis and recognition. In Proceedings of the

Proc. 11th Scandinavian Conf. Image Anal., 1997, pp. 85-93.

https://github.com/PyFR/Polyquad

28 of 28

18.

19.
20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.
44.

45.

Novotni, M.; Klein, R. 3D Zernike descriptors for content based shape retrieval. In Proceedings of the Proc. ACM symposium on
solid and physical modeling, 2003, pp. 216-225.

Novotni, M.; Klein, R. Shape retrieval using 3D Zernike descriptors. Computer Aided Design 2004, 36, 1047-1062.

Wang, K.; Zhu, T.; Gao, Y.; Wang, J. Efficient terrain matching with 3-D Zernike moments. IEEE Trans. Aerosp. Elec. Sys. 2018,
55,226-235.

Ma, B.; Zhang, Y.; Tian, S. Building Reconstruction Using Three-Dimensional Zernike Moments in Digital Surface Model. In
Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018, pp. 1324-1327.

Sael, L.; Li, B.; La, D.; Fang, Y.; Ramani, K.; Rustamov, R.; Kihara, D. Fast protein tertiary structure retrieval based on global
surface shape similarity. Proteins: Struct. Func. Bioinfo. 2008, 72, 1259-1273.

Venkatraman, V.; Yang, Y.; Sael, L.; Kihara, D. Protein-protein docking using region-based 3D Zernike descriptors. BMC
Bioinformatics 2009, 10, 407.

Daberdaku, S.; Ferrari, C. Exploring the potential of 3D Zernike descriptors and SVM for protein—protein interface prediction.
BMC Bioinformatics 2018, 19, 35.

Daberdaku, S.; Ferrari, C. Antibody interface prediction with 3D Zernike descriptors and SVM. Bioinformatics 2019, 35, 1870-1876.
Di Rienzo, L.; Milanetti, E.; Alba, J.; D’Abramo, M. Quantitative characterization of binding pockets and binding complementarity
by means of zernike descriptors. J. Chem. Infor. Model. 2020, 60, 1390-1398.

Hosny, K.; Hafez, M. An algorithm for fast computation of 3D Zernike moments for volumetric images. Math. Probl. Eng. 2012,
2012.

Berjon, D.; Arnaldo, S.; Morén, F. A parallel implementation of 3D Zernike moment analysis. In Proceedings of the Parallel
Processing for Imaging Applications. SPIE, 2011, Vol. 7872, pp. 83-89.

Lien, S.; Kajiya, J. Symbolic method for calculating the integral properties of arbitrary nonconvex polyhedra. IEEE Comput. Graph.
Appl. 1984, 4, 35-41.

Pozo,].; Villa-Uriol, M.C.; Frangi, A. Efficient 3D geometric and Zernike moments computation from unstructured surface
meshes. IEEE Trans. Pattern Anal. Machine Intell. 2011, 33, 471-484.

Koehl, P. Fast Recursive Computation of 3D Geometric Moments from Surface Meshes. IEEE Trans. Pattern Anal. Mach. Intell.
2012, 34, 2158-2163. https://doi.org/10.1109/TPAMI.2012.23.

Deng, A.W.; Gwo, C.Y. A Stable Algorithm Computing High-Order 3D Zernike Moments and Shape Reconstructions. In
Proceedings of the Proceedings of the 2020 4th International Conference on Digital Signal Processing; Association for Computing
Machinery: New York, NY, USA, 2020; ICDSP 2020, p. 38—-42.

Tough, R.J.A.; Stone, A.]J. Properties of the regular and irregular solid harmonics. J. Phys. A 1977, 10, 1261-1269.

Mathar, R.J. Zernike basis to Cartesian transformations. arXiv preprint arXiv:0809.2368 2008.

Janssen, A. Generalized 3D Zernike functions for analytic construction of band-limited line-detecting wavelets. arXiv preprint
arXiv:1510.04837 2015.

Prata, A.; Rusch, W. Algorithm for computation of Zernike polynomials expansion coefficients. Applied Optics 1989, 28, 749-754.
Stroud, A. Approximate calculation of multiple integrals; Prentice-Hall: Englewood Cliffs, NJ, 1971.

Xiao, H.; Gimbutas, Z. A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions.
Comput. Math. with Appl. 2010, 59, 663-676.

Doi, A.; Koide, A. An efficient method of triangulating equi-valued surfaces by using tetrahedral cells. IEICE Trans. Infor. Sys.
1991, 74, 214-224.

Zhang, L.; Cui, T; Liu, H. A set of symmetric quadrature rules on triangles and tetrahedra. J. Comput. Math. 2009, pp. 89-96.
Witherden, E; Vincent, P. On the identification of symmetric quadrature rules for finite element methods. Comput. Math. with
Appl. 2015, 69, 1232-1241.

Treece, G.; Prager, R.; Gee, A. Regularised marching tetrahedra: improved iso-surface extraction. Comput. Graph. 1999, 23, 583-598.
Inc., W.R. Mathematica, Version 13.1. Champaign, IL, 2022.

Cignoni, P; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: an Open-Source Mesh Processing
Tool. In Proceedings of the Eurographics Italian Chapter Conference; Scarano, V.; De Chiara, R.; U.Erra., Eds. The Eurographics
Association, 2008.

NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.6 of 2022-06-30. E. W.]J. Olver, A. B. Olde
Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

https://doi.org/10.1109/TPAMI.2012.23

	Introduction
	Moments from 3D shapes
	Moments of a shape
	Basis function: monomials
	Basis function: Laplace spherical harmonics
	Basis function: the Zernike polynomials
	Computing the Zernike polynomials from the Geometric moments
	Numerical instabilities associated with the Zernike polynomials

	Algorithms for computing the 3D Zernike moments for a surface triangular mesh
	Zernike moments over a shape defined by a triangular surface mesh
	Basic idea
	Computing the integrals Qnl
	Computing the integrals cnlm(T)
	Two algorithms for computing Zernike moments
	Exact Zernike moments for shapes described by surface triangular meshes
	Finite precision Zernike moments for shapes described by surface triangular meshes

	Reconstructing a shape from its 3D Zernike moments
	Implementation
	Quadrature rules for integration over a triangle
	Efficient computations of the polynomials Rnl(r) and Qnl(r)
	Efficient computations of the spherical harmonics Ylm(,)
	Efficient reconstruction of a shape from its Zernike moments

	Numerical results
	Accuracy of the computed 3D Zernike moments: comparison with other algorithms
	Accuracy of the computed 3D Zernike moments: comparison with exact values
	Reconstructing a shape from its 3D Zernike moments: example of the sphere
	Reconstructing a shape from its 3D Zernike moments: importance of the order N
	Computational complexity for geometric moments and 3D Zernike moments

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

