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Abstract

The 3D Zernike polynomials form an orthonormal basis of the unit ball. The associated 3D
Zernike moments have been successfully applied for 3D shape recognition; they are popular in
structural biology for comparing protein structures and properties. Many algorithms have been
proposed for computing those moments, starting from a voxel-based representation or from a
surface based geometric mesh of the shape. As the order of the 3D Zernike moments increases,
however, those algorithms suffer from decrease in computational efficiency and more importantly
from numerical accuracy. In this paper, new algorithms are proposed to compute the 3D Zernike
moments of a homogeneous shape defined by an unstructured triangulation of its surface that
remove those numerical inaccuracies. These algorithms rely on the analytical integration of the
moments on tetrahedra defined by the surface triangles and a central point and on a set of
novel recurrent relationships between the corresponding integrals. The mathematical basis and
implementation details of the algorithms are presented and their numerical stability is evaluated.
We show that moments up to order 300 can be computed with a finite precision of 10−10. The
corresponding free software is available at https://github.com/jerhoud/zernike3d.

1 Introduction

Finding efficient algorithms to describe, measure and compare shapes is a central problem in
image processing. This problem arises in numerous disciplines that generate extensive quanti-
tative and visual information. Among these, biology occupies a central place [1]. In cellular
biology for example, the measurements of cell morphology and dynamics by imaging techniques
such as light or fluorescent microscopy yield large amounts of 2D and 3D images that need to
be segmented and quantified [2–5]. Measuring shapes, computing the contribution of a shape
to a potential, and more generally quantifying the effect of a vector field on a shape are also
common problems for geodesists and physicists.

In a chapter titled “The Comparison of Related Forms”, Thompson explored how differences
in the forms of related animals can be described by means of simple mathematical transforma-
tions [6]. This inspired the development of several shape comparison techniques, whose aim is
to define a map between two shapes that can be used to measure their similarity. An alternate
and popular method is to derive features (also called shape descriptors or signatures) for each
shape separately that can then be compared using standard distance functions, and those that
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directly attempt to map one surface onto the other, thereby providing both local and non-local
elements for comparison. In this paper, we are concerned with this approach.

One particular powerful technique for generating shape signatures is based on moment-based
representations of a shape. Those representation form a class of shape recognition techniques
that have been used widely for pattern recognition [7–9]. These moments not only provide
measures of the shapes, such as volume and surface areas, they also allow for the encoding of a
shape with descriptors that are amenable to fast analysis. The most common of these moments
are geometric:

Gijk =

∫
V

f(x, y, z)xiyjzkdV (1)

where the integration is performed over the volume V of the shape S considered, N = i+ j + k
is the order of the moment, and f(x, y, z) is a vector field over S that may represent a potential,
a grey scale for image processing, or an indicator function such that f(x, y, z) = 1 inside the
shape and 0 otherwise. These geometric moments and their invariant extensions have been used
extensively in pattern recognition (for review, see for example [10]). They are usually easy to
compute, though at a high computational costs.

Spherical harmonics [11,12] and their rotational invariants [13] form another class of moment-
based descriptors for analyzing star-shaped objects that are topologically equivalent to a sphere.
They are becoming increasingly popular in cellular bio-imaging for example, as it is usually safe
to assume that cells observed through a microscope are topologically closed and equivalent
to a sphere; this prior makes it possible to parametrize their shape mathematically, thereby
simplifying the definition of their surface and provide a shape description (see for example [3]
for representing cell organelles and more recently [14] for studies of cell dynamics).

In many cases however, the hypothesis that the object is star-shaped does not hold. The
Zernike moments, first introduced in two dimensions by Dutch Nobel price Frederic Zernike in
1934 [15], circumvent this problem through the introduction of a radial term. They have proved
to be superior in 2D image retrieval (see for example [16]). After they were generalized to 3D
by Canterakis [17], they have been applied in many domains, such as tools for shape retrieval
in computer graphics [18, 19] or terrain matching and building reconstruction [20, 21],. As for
geometric moments, most current applications are related to biology, including protein shape
comparison [22], protein docking [23] and the analyses of protein interfaces [24–26]. In this
paper, we are concerned with the computation of these 3D Zernike moments.

Many algorithms have been proposed for computing the 3D Zernike moments of a shape.
Most of these methods, especially those used for image analysis, rely on a representation of the
shape as a volumetric grid. These algorithms usually proceed in two steps, namely computing
the geometric moments of the shape first, and then expressing the Zernike moments as linear
combinations of those moments (see Refs [18,27], and background section below). They do suffer
from three major drawbacks. First, the computation of each moment has a cubic computational
complexity (N3

V , where NV is the number of voxels in each dimension of the grid). Second, the
volume integral in equation 1 is approximated by a discrete sum over the voxels, where each
voxel contributes as a point-like object, usually located at its center. It is easy to see that this
discretization error increases as the order of the moment increases. Finally, the relationships
between geometric moments and Zernike moments lead to numerical instabilities, limiting the
order N of the moments that can be computed accurately, usually with N < 50 (see [18,28]).

While it is often the case that the volumetric grid is the only representation available for a
given shape, alternate methods that are exact and efficient exist for computing homogeneous
3D moments over a shape whose boundary can be represented with a polygonal mesh (where
homogeneity refers to the fact that the function f(x, y, z) in equation 1 can be considered
constant). An exact formula for computing geometric moments on 3D polyhedra was originally
proposed by Lien and Kajiya [29]; it has been reformulated and extended to general dimensional
polyhedra several times since then (for a complete discussion of the state of the art in this
field, see [30]). Pozo et al. used those ideas and derived efficient recursive algorithms for
computing geometric moments for shapes defined by a triangulation of their surfaces [30]; those
algorithms were further refined and optimized to be optimal with respect to the order of the
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moments [31]. Pozo et al. then used those geometric moments to derive the 3D Zernike moments
of such shapes. As mentioned above, however, the numerical instabilities associated with the
relationships between geometric and Zernike moments limit the order with which those can be
derived.

Recently Deng and Gwo proposed a new, stable algorithm to accurately compute Zernike
moments for shapes represented as 3D grid [32]. Their algorithm proceeds by computing these
moments directly, without using the geometric moments, using recurrence relations that provide
stability and efficiency. Our work presented in this paper is a counterpart to the work of Deng
and Gwo. We propose a new exact algorithm for the computation of Zernike moments for shapes
represented by surface meshes. Similar to Deng and Gwo, we do not use the conversion from
geometric moments to Zernike moments to avoid numerical instabilities.

The paper is organized as follows. In the next section, we give some background on moments
of 3D shapes, especially geometric moments and Zernike moments. We show how the former
can be used to compute the latter, but explain why this may lead to numerical instabilities,
especially for high order moments. The following section introduce our new, stable algorithms
for computing Zernike moments of 3D shapes represented by surface-based triangular meshes.
The results section introduce some experiments to validate both algorithms on synthetic data.

2 Moments from 3D shapes

In this section, we briefly introduce the concept of moments of a shape, with three examples, the
geometric moments (GM), the spherical harmonics moments (SPHM), and the Zernike moments
(ZM). We show that ZM are extensions of the SPHM, and that they can be computed from the
GM, but with potential problems that we describe.

We start with notations. Any point p within a domain D ⊂ R3 can be parametrized either
in terms of its vector of Cartesian coordinates x = (x, y, z) with respect to an origin, or in terms
of its spherical coordinates (r, θ, φ) where r is the distance from p to the sphere center, and θ
and φ are the inclination and azimuthal angles, respectively. A shape S in the domain D is
represented through its density f(x) at all points in the domain. We assume that f is square
integrable over the domain D, i.e. f ∈ L2. In the special case that the shape is homogeneous,
it is represented with an indicator function fS(x) with value 1 if x is inside the shape, and 0
otherwise.

2.1 Moments of a shape

The moments µi of a shape are the projections of the function f over a set of basis functions
Ψ = {ψi}:

µi = 〈f, ψi〉 =

∫
D

f(x)ψi(x)dx

The properties of a particular moment based representation are therefore determined by the set
of functions Ψ. There are two properties of this set that are desirable, namely:

i) Orthonormality. The set of functions Ψ is orthonormal if

〈ψi, ψj〉 = δij

for all ψi and ψj in Ψ (δ is the Kronecker symbol, i.e. δi,j = 1 if i = j, and zero otherwise).

ii) Completeness. The set of functions Ψ is complete if for all functions f ∈ L2,

lim
n→+∞

||f −
n∑
i=0

〈f, ψi〉ψi|| = 0

.

The orthonormality property is important as it guarantees the mutual independence of the
computed moments. The completeness property implies that we are able to reconstruct approx-
imations of the original shape from its moments.
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2.2 Basis function: monomials

A very popular set of functions Ψ are the monomials xiyjzk, where i, j, k are positive integers.
The corresponding moments are referred to as geometric moments, Gijk, and defined by

Gijk =

∫
D

f(x)xiyjzkdx, (2)

The geometric moments are easy to compute, both for grid-based and surface-based represen-
tations of shapes. The geometric monomials, however, are neither orthonormal, nor complete.

2.3 Basis function: Laplace spherical harmonics

If the domain is the sphere S2 ⊂ R3, a point p is characterized by its inclination angle θ and
azimuthal angle φ only. A function f on S2 can then be represented through its spherical
harmonics. They form a Fourier basis on a sphere much like the familiar sines and cosines do
on a line. The spherical harmonic Y ml is defined by

Y ml (θ, φ) = Nm
l P

m
l (cos θ)eimφ (3)

where Nm
l is a normalization factor:

Nm
l =

√
2l + 1

4π

(l −m)!

(l +m)!

and Pml are the associated Legendre polynomial. Y ml is defined for l positive integer, and m
integer such that −l ≤ m ≤ l. It is enough, however, to compute the spherical harmonics for
m ≥ 0, as we have the relationship,

Y ml (θ, φ) = (−1)mY −ml (θ, φ)

where Y ml stands for the complex conjugate of Y ml . We note the definition of the harmonic
polynomial,

eml (x) = rlY ml (θ, φ) (4)

where x is the point with spherical coordinates (r, θ, ψ).
The spherical harmonics moments fml are defined as:

fml =

∫ π

θ=0

∫ 2π

φ=0

f(θ, φ)Y ml (θ, φ) sin θdφdθ. (5)

Note that these moments are complex, as the spherical harmonics are complex.
The spherical harmonics are orthonormal:∫ π

θ=0

∫ 2π

φ=0

Y ml (θ, φ)Y m
′

l′ (θ, φ) sin θdφdθ = δmm′δll′ (6)

where δmn is the Kronecker delta (i.e. δmn = 1 if m = n and 0 otherwise).
Just like Fourier series are complete, the spherical harmonics are complete on the sphere. It

is important to notice, however, that they cannot be computed on a volumetric shape without
some modifications, such as the use of solid harmonics, or with the introduction of Zernike
polynomials, which are presented in the following subsection.
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2.4 Basis function: the Zernike polynomials

The spherical harmonics are defined on the sphere. Zernike [15] in 2D and later Canterakis [17]
in 3D have shown that they can be expanded to account for the whole ball by using the Zernike
polynomials. Let x be a point inside the unit ball B with spherical coordinates (r, θ, φ). The
value of Zernike polynomial Zmnl at x is given by:

Zmnl(x) =
√

2n+ 3Rnl(r)Y
m
l (θ, φ) (7)

where Y ml are the spherical harmonics define above, and Rnl are polynomials in the radial
coordinate r:

Rnl(r) =

k∑
ν=0

Qnlνr
2ν+l (8)

where

Qnlν = (−1)k+ν
(
2k
k

)(
k
ν

)(
2(k+l+ν)+1

2k

)
4k
(
k+l+ν
k

) (9)

The positive integer n is the order the of Zernike polynomial, l is an integer that is restricted
so that 0 ≤ l ≤ n and (n − l) be an even number, k = (n − l)/2, and −l ≤ m ≤ l. The
coefficients in Rnl were chosen to guarantee that the Zernike polynomials are orthonormal, a
property expressed in the following equation:∫

B
Zmnl(x)Zm

′
n′l′(x)dx = δnn′δll′δmm′ (10)

The Zernike moments of a shape S whose density inside the unit ball is defined by the square
integrable function f are then defined as

Ωmnl =

∫
B
f(x)Zmnl(x)dx (11)

Note that m can be positive or negative, as it belongs to [−l, l]. It is enough, however, to
compute the moments for m positive as we have (see for example [18]):

Ω−mnl = (−1)mΩmnl (12)

Reconstruction. The Zernike polynomial form a complete basis of L2. It is therefore possible
to approximate the original function f by a finite number of 3D Zernike moments:

f̂(x) =

N∑
n

∑
l

l∑
m=−l

ΩmnlZ
m
nl(x) (13)

where l is an integer that is restricted so that 0 ≤ l ≤ n and (n − l) be an even number. The
approximation is exact when N → +∞.

2.5 Computing the Zernike polynomials from the Geometric moments

Although the Zernike polynomials are usually defined with respect to spherical coordinates, they
are actually polynomial functions on Cartesian coordinates (x, y, z). To show this, let us first
rewrite the Zernike polynomials,

Zmnl(x) =
√

2n+ 3Rnl(r)Y
m
l (θ, φ) (14)

=
√

2n+ 3

k∑
ν=0

Qnlν(x2 + y2 + z2)νrlY ml (θ, φ) (15)

=
√

2n+ 3

k∑
ν=0

Qnlν(x2 + y2 + z2)νeml (x) (16)
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where k = (n − l)/2 and eml is the harmonic polynomial (see equation 4) and x = (x, y, z) =
(r, θ, φ). The harmonic polynomial can be expressed in Cartesian coordinates [18]:

eml (x) = cml r
l(
ix− y

2
)m
b l−m

2 c∑
µ=0

(−1)µ
(
l

µ

)(
l + µ

m+ µ

)
(r2 − z2)µzl−m−2µ

where cml is a normalization factor,

cml =

√
(2l + 1)(l +m)!(l −m)!

l!

The Zernike polynomial Zmnl can then be expressed as:

Zmnl(x) =
√

2n+ 3
cml
2m

k∑
ν=0

Qnlν

ν∑
α=0

(
ν

α

) ν−α∑
β=0

(
ν − α
β

) m∑
u=0

(−1)m−u
(
m

u

)
iu×

b l−m
2 c∑

µ=0

(−1)µ
(
l

µ

)(
l + µ

m+ µ

) µ∑
v=0

(
µ

v

)
x2(v+α)+uy2(µ−v+β)+m−uz2(ν−α−β−µ)+l−m (17)

We set r = 2(v + α+ u), s = 2(µ− v + β) +m− u, t = 2(ν − α− β − µ) + l −m, and

χrstnlm =
√

2n+ 3
cml
2m

k∑
ν=0

Qnlν

ν∑
α=0

(
ν

α

) ν−α∑
β=0

(
ν − α
β

) m∑
u=0

(−1)m−u
(
m

u

)
iu×

b l−m
2 c∑

µ=0

(−1)µ
(
l

µ

)(
l + µ

m+ µ

) µ∑
v=0

(
µ

v

)
δr,2(v+α+u)δs,2(µ−v+β)+m−uδt,2(ν−α−β−µ)+l−m. (18)

Note that r+s+t = 2ν+ l ≤ 2k+ l = n. Replacing in the expression for the Zernike polynomial,
we have

Zmnl(x) =
∑

r+s+t≤n

χrstnlmx
ryszt (19)

Finally, after replacing the Cartesian expression for Zmnl (equation 17) into equation (11), we
get:

Ωmnl =
∑

r+s+t≤n

χrstnlmGrst

where G refers to the geometric moment (see equation 2). This allow for a simple algorithm
for computing the Zernike moments of a shape from its geometric moments. Similar algorithms
have been proposed [18,30] for the same task. Such an algorithm is theoretically very efficient,
once the geometric moments have been computed, as it is independent of the size of the mesh
representing the shape or the number of grid point in a voxel representation of the shape. There
are, however, numerical issues with this formula that we discuss below.

2.6 Numerical instabilities associated with the Zernike polynomials

Let us first look at the radial polynomials. Rnl is a polynomial of degree n. For large values of
n, special care is needed for computing them, and direct application of Equation 8 is bound to
numerical instabilities, as described in figure 1.

The values of R80,0(r) as a function of r, based on a stable evaluation of the polynomial
function vary in the interval [−1.57, 7.20], where the largest value is reached for r = 0. Direct
application of Equation 8 shows however, that R80,l(r) varies in the interval [−4149, 4 × 1013]
(results not shown). This is due to the fact that the coefficients Q80,0,ν are large (up to 1029),
as illustrated in panel B of figure 1. Those coefficients alternate from positive to negative due
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Figure 1: Instabilities in evaluating the Rnl radial polynomials. In panel A, we show the values
of R80,0(r) as a function of r, based on a stable evaluation of the polynomial function (see text
for details). In panel B, we show the values of the coefficients Q80,l,ν , the monomial expansion of
R80,0(r).

to the presence of the term (−1)ν , leading to large cancellations and ultimately to a small
value for the polynomial. Computing correctly those cancellations requires very high precision
usually not available with standard double precision in programming languages. It is possible
to use arbitrary precision libraries to solve this issue, but it is in fact not necessary. As was
noticed multiple times for the 3D Zernike radial polynomials (see for example [33,34]) the radial
polynomial Rnl can be expressed as a Jacobi polynomial:

Rnl(r) = rlP
(0,l+3/2)
n−l
2

(2r2 − 1) (20)

Equation 20 allows the results available in the literature for the Jacobi polynomials to be trans-
lated for the 3D radial functions. In particular, we have the following recurrence relation (it
was also derived in [32])

Rnl(r) = (K1(n, l)r2 +K2(n, l))Rn−2,l(r) +K3(n, l)Rn−4,l(r) (21)

where the coefficients Ki are defined as:

k0 = (n− l)(n+ l + 1)(2n− 3)

k1 = (2n− 1)(2n+ 1)(2n− 3)

k2 =
1

2
(−2n+ 1)(2l + 1)2 − k1

2
k3 = −(n− l − 2)(n+ l − 1)(2n+ 1)

K1(n, l) =
k1
k0
, K2(n, l) =

k2
k0
, K3(n, l) =

k3
k0

(22)

This recursive formula is only strictly valid for l ≤ n − 4. This can be addressed by noticing
that

Rnn(r) = rn

Rn,n−2(r) = (n+
1

2
)rn − (n− 1

2
)rn−2 (23)

This recurrence allows for a stable computation of all Rnl(r), even for large orders.
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Figure 2: Instabilities in evaluating the χrstnlm factors. We show the maxima (in blue) and minima
(in red) for the χrstnlm for a given n, as a function of n.

The geometric moments of a shape can be computed accurately even for large orders, see
for example [30,31]. Those moments can then be used to evaluate the 3D Zernike moments, as
described in the section above. Converting the geometric moments to Zernike moments require,
however, that the factor χrstnlm be computed (where nlm refers to the indices for the Zernike
moments, while rst refers to the indices for the geometric moments). As defined in 18, the
factors χrstnlm depend on the coefficients Qnlν and therefore they are bound to suffer from the
same numerical instabilities. We illustrate this in Figure 2.

As expected, the χrstnlm vary significantly over a large range of values. This was already
observed by Berjón and colleagues in their attempts to parallelize the computation of Zernike
moments [28] and is the main reason that the computation of Zernike moments is usually limited
to order below N = 40. One solution to solve this problem would be to derive recurrence
relationships for the χrstnlm. Pozo et al. provided such a recurrence. However, their relationships
still involve the computations of the factors Qnlν (see their equation (13e)) and as such do not
solve the numerical instabilities.

Deng and Gwo [32] proposed a different approach in their attempt to compute Zernike
moments for a shape described on a grid, which is to bypass the computation of the geometric
moments. In the following, we propose a similar approach for computing Zernike moments for
a shape described by a surface-based triangular mesh.

3 Algorithms for computing the 3D Zernike moments for
a surface triangular mesh

3.1 Zernike moments over a shape defined by a triangular surface
mesh

Let us consider a shape S, covering a volume V . The shape is assumed to be represented by
a triangle mesh that defines its boundary. Each facet (triangle) T is defined by three vertices,
A, B and C that are oriented consistently counter-clockwise when seen from the exterior of
the shape. As the Zernike polynomials are complete and orthonormal over the unit ball B, the
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Figure 3: Parameterization of a tetrahedron. Let T = (A,B,C) be a triangle in the surface mesh,
and σT = (0, A,B,C) be the associated tetrahedron where 0 is the origin.Any point P within σT
with spherical coordinates (r, θ, φ) is projected the triangle T , setting P0. P0 is defined by its
distance to O, r0, and its barycentric coordinates within T , α0, β0, γ0 with α0 + β0 + γ0 = 1.

shape is assumed to fit within this ball. This is obtained by centering the mesh to the origin O,
and scaling the mesh such that the longest distance between a vertex of the mesh and O is set
to one.

Assuming that this shape is homogeneous (i.e. represented by a constant scalar field, with
the constant set to one), its Zernike moments Ωmnl are given by:

Ωmnl =

∫
V

Zmnl(x)dx (24)

where n is the order of the moment, l is a positive integer smaller or equal to n, with the same
parity as n, and m an integer with −l ≤ m ≤ l..

Using the origin O of the coordinate frame as a reference point, each facet T defines a
tetrahedron, σT = (O,A,B,C). We set A = ~OA, with similar notations for B and C. As these
tetrahedra are oriented, the integral over the whole shape is simply the sum of the integrals over
them. Therefore,

Ωmnl =
∑
σT

sign(V (σT ))

∫
σT

Zmnl(x)dx (25)

The volume of the oriented tetrahedron is given by:

V (σT ) =
1

6
det (A,B,C) =

1

6

∣∣∣∣∣∣
xA xB xC
yA yB yC
zA zB zC

∣∣∣∣∣∣
3.2 Basic idea

Our task is then to evaluate the integrals of the Zernike polynomials over a tetrahedron σT =
(0, A,B,C). The first step is to perform a change of basis, parameterizing the tetrahedron in
terms of the barycentric coordinates of the triangle T and the fractional distance to the origin
(see figure 3).

A point P with spherical coordinates (r, θ, ψ) inside the tetrahedron can be characterized by
its projection from the origin to the triangle T . Let P0 be this point. The spherical coordinates
of this point are (r0, θ, φ). Note that r0 is a function of θ and φ. The integration over the
tetrahedron proceeds in two steps, first a radial integration over r from 0 to r0, and then an
integration over the triangle only.

Imnl =

∫
σT

Zmnl(x)dx =
3V (σT )

S(T )

∫
T

1

r30

(∫ r0

0

r2Rnl(r)dr

)
Y ml (θ, φ)dP0
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This expression defines a basic 2-step process for evaluating those integrals and therefore the
Zernike moments:

i) For a given P0 inside the triangle T with radius r0, compute the radial integral

Qnl(r0) =

∫ r0

0

r2Rnl(r)dr

ii) Integrate over all points P0 in the triangle T to get:

Imnl =
3V (σT )

S(T )

∫
T

Qnl(r0)

r30
Y ml (θ, φ)dP0

In the following, we provide recurrence relationships to evaluate the Qnl and describe a
numerical way to evaluate exactly the integral in Imnl , using quadrature.

3.3 Computing the integrals Qnl

We consider the different integrals Sknl(r) of the radial functions Rnl(r):

Sknl(r) =

∫ r

0

ρkRnl(ρ)dρ

Prata and Rusch have derived relationships for similar integrals for the 2D Zernike radial poly-
nomials [35]. We expand their results here. In appendix A, we show the following proposition
that allows us to compute S0

nl(r):

Property 1. For non negative integers n and l with l ≤ n − 2 and n − l ≡ 0 (mod 2), the
following relationship hold:

S0
nl(r) =

2l + 3

(2n+ 3)(l + 1)

(
Rn+1,l+1(r)−Rn−1,l+1(r)

)
− l + 2

l + 1
S0
n,l+2(r) (26)

for l = n, we need additionally:

S0
nn(r) =

rn+1

n+ 1

In appendix B, we then establish a recurrence on the Sknl(r), in steps of 2 in k:

Property 2. For non negative integers n and l with l ≤ n− 2 and n− l ≡ 0 (mod 2), and for
positive k, the following relationship hold:

K1(n+ 2, l)Sk+2
nl (r) = −Skn+2,l() +K2(n+ 2, l)Sknl(r) +K3(n+ 2, l)Skn−2,l(r) (27)

where K1, K2, and K3 are defined in Equation 22.

The special case k = 0 leads to the following recurrence for the integral Qnl(r) = S2
nl(r):

Qnl(r) =
(n+ 2− l)(n+ l + 3)

(2n+ 3)(2n+ 5)
S0
n+2,l(r)

+
1

2

(
(2l + 1)2

(2n+ 5)(2n+ 1)
+ 1

)
S0
nl(r) +

(n− l)(n+ l + 1)

(2n+ 3)(2n+ 1)
S0
n−2,l(r) (28)

for l = n, we need additionally:

Qnn(r) =
rn+3

n+ 3

Finally, we show that for all positive integer n, and all positive integer l with 0 ≤ l ≤ n and
n and l of the same parity, there exists a polynomial function Unl of degree n− l such that

Qnl(r) = rl+3Unl(r) (29)
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The proof is simple. First, we notice that Rnl is written as :

Rnl(r) = rlVnl(r) (30)

where V is a Jacobi polynomial (see equation 20) of degree n− l. Then,

Qnl(r) =

∫ r

0

ρl+2Vnl(ρ)dρ (31)

Using the expansion of Vnl, it is easy to show that Qnl(r) is a polynomial function of degree
n+ 3, with rl+3 as a factor.

3.4 Computing the integrals Imnl

Recall that the triangle is defines as T = (A,B,C) and that we need to compute over this
triangle the integral

Imnl =
3V (σT )

S(T )

∫
T

1

r30
Qnl(r0)Y ml (θ, φ)dP0

Let us define

gmnl(P0) =
1

r30
Qnl(r0)Y ml (θ, φ). (32)

Note that there is a function g for all triplets (n, l,m). We need to compute as exactly as
possible,

1

S(T )

∫
T

gmnl(P0)dP0

This integral can be approximated with a 2D Gaussian quadrature [36],

1

S(T )

∫
T

gmnl(P0)dP0 ≈
L∑
i=1

wig
m
nl(αiA+ βiB + γiC), (33)

The sum is computed over Np points on the triangle, with each point Pi defined by its barycentric
coordinates (αi, βi, γi) with respect to (A,B,C), and wi is a weight. The points and weights
are said to define a quadrature rule. A rule is said to be of strength N if it is capable of exactly
integrating any polynomial of maximal degree N over the domain (here the triangle). To apply
such a scheme for our application, we need to consider two elements:

a) Exactness. As mentioned above, a 2D Gaussian quadrature may be exact if it is applied
on a polynomial. This is our case. Indeed, recall that Qnl(r0) is a polynomial function of
degree n+ 3, with rl+3

0 as a factor. The function g can then be rewritten as

gmnl(x) =
1

r3
Qnl(r)Y ml (θ, φ)

= rlUnlY ml (θ, φ)

= Unleml (x)

where eml (x) are the harmonic polynomials (see equation 4). As Unl is of degree n− l and
eml is of degree l, the function g is a 2D polynomial function of degree n. A quadrature
rule of strength n will therefore integrate g exactly.

b) Number of points for the quadrature. While it is well known that an n-point Gaussian rule
is exact for all polynomials of degrees up to 2n− 1 in one dimension, the situation is more
complex in higher dimensions. Xiao and Gimbutas [37] proposed an empirical rule for the
minimal number of points N∗p to integrate exactly a polynomial of order n:

N∗p =
(n+ 1)(n+ 2)

6
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3.5 Two algorithms for computing Zernike moments

The previous subsections provide the elements for computing the contribution of one triangle of
a surface mesh to the 3D Zernike moments of the shape enclosed with this mesh. We summarize
those elements in Algorithm 1.

Algorithm 1 Zernike moments associated with one triangle of a surface mesh

procedure TRIANGLE(N,A,B,C,R)
Input: N : The maximum order for the 3D Zernike moments. A,B,C: The three vertices

defining the triangle. R: The 2D Gauss quadrature rule
Initialize: N(R) number of points in R. Initialize Imnl = 0. Compute V , the signed volume

of the tetrahedron (O,A,B,C)
for i = 1, . . . , N(R) do

(1) Define (ri, θi, φi) for point Pi in the quadrature rule.
(2) Evaluate Qnl(ri) over all n ∈ [0, N ], l with 0 ≤ l ≤ n and n and l of same parity
(3) Evaluate Y m

l (θi, φi) for all l with 0 ≤ l ≤ N and all m with 0 ≤ m ≤ l
(4) Compute all gmnl(Pi) based on equation 32
(5) Update Imnl = Imnl + 3V wig

m
nl(Pi)

end for
Output: The Zernike moments Imnl associated with triangle (A,B,C).

end procedure

Briefly, given a Gauss quadrature rule R defined by a set of weighted points Pi, the algo-
rithm proceeds by computing the functions gmnl(Pi) over all those weighted points, and then
accumulating the results based on the quadrature rule given by equation 33. The functions
gmnl(Pi) are computed from the Qmnl(ri) at ri, the radial distance of Pi, and from the Y ml (θi, φi),
at the inclination angle θi and azimuthal angle φi of Pi. The corresponding procedure is defined
as TRIANGLE. Details on its implementation are provided in the section below.

Given the procedure TRIANGLE, there are two possible algorithms that can then be used
to compute the Zernike moments of a shape defined by a surface triangle mesh, one for an exact
computation, and one for finite precision. We summarize them in algorithm 2 and algorithm 4,
respectively.

Algorithm 2 Exact Zernike moments for surface triangular meshes

Input: The triangular mesh characterized by its number of vertices Nv and its number of facets
M . The maximum order N for the 3D Zernike moments.
Initialize: Center and scale the mesh. Given N , define the 2D Gauss quadrature rule R to be
applied on all triangles. Initialize Ωm

nl = 0
for k = 1, . . . ,M do

(1) Define (A,B,C) the three vertices of triangle k.
(2) Compute Imnl = TRIANGLE(N,A,B,C,R)
(3) Update Ωm

nl = Ωm
nl + Imnl .

end for
Output: The exact Zernike moments Ωm

ln of the shape.

As described on the previous subsection, the 2D Gauss quadrature rule of strength N will
define exact Zernike moments of order up to N on any triangle of the surface mesh. For a given
N , if a quadrature rule R with this strength exists, it is then sufficient to use the procedure
TRIANGLE defined in algorithm 1 on all triangles of the surface mesh and then accumulate
the results. As described below, we were able to generate quadrature rules for N up to 101.

12



The corresponding algorithm is of order O(M ×N5), where M is the number of triangles in the
mesh and N the Zernike order. This can be derived as follows. The computation is performed
independently on all triangles of the mesh, hence the factor M . For each facet, we need a
quadrature rule R of strength N , which itself requires a number of points NR that is empirically
of order N2 (see for example [37]). As N3 functions gmnl need to be evaluated for each point in
the quadrature rule, we get the overall time complexity O(M ×N5)

Algorithm 3 Approximate Zernike moments associated with one triangle with recursional splitting

procedure TRIANGLESPLIT(N,A,B,C,R, S)
Input: N : The maximum order for the 3D Zernike moments. A,B,C: The three vertices

defining the triangle. R: The 2D Gauss quadrature rule. S the number of times to split.
if S = 0 then

(1) Set Imnl = TRIANGLE(N,A,B,C,R)
else

(2) Compute the middles A′, B′, C ′ of segments BC, CA, AB
(3) Set Jmnl = TRIANGLESPLIT(N,A,C ′, B′, R, S − 1)
(4) Set Km

nl = TRIANGLESPLIT(N,B,A′, C ′, R, S − 1)
(5) Set Lmnl = TRIANGLESPLIT(N,C,B′, A′, R, S − 1)
(6) Set Mm

nl = TRIANGLESPLIT(N,A′, B′, C ′, R, S − 1)
(7) Set Imnl = Jmnl +Km

nl + Lmnl +Mm
nl

end if
Output: The Zernike moments Imnl associated with triangle (A,B,C).

end procedure

While algorithm 2 is deemed exact, it suffers from two major limitations. First, it requires
quadrature rules with large strengths. Second, such rules include large number of sampling
points, leading to an overall time complexity O(M × N5). Quadrature rules, however, are
known to converge fast. As such, it is often not necessary to go to the maximum strength that
is required for an exact computation. If we are willing to accept a finite precision, a more efficient
procedure can be derived, as described in algorithm 4. Briefly, the Zernike moments Imnl over
a triangle T are evaluated over quadrature rules of increasing strengths. When the difference
between those Zernike moments computed over two successive rules falls below a tolerance, the
quadrature is deemed to have converged and the computation stops. If the strongest quadrature
rule (here 101) is not enough to reach the desired tolerance, we repeatedly split the triangle in
four equal triangles and we sum the results.

We will show that in general, this method converge significantly faster than the exact al-
gorithm. It is not possible, however, to provide an expected time complexity for this method
with finite precision as the order of the approximation used depends on N and on each facet, in
particular its size.

4 Reconstructing a shape from its 3D Zernike moments

Recall that once a shape S has been characterized with its Zernike moments Ωmnl, its density
ρS(x) at any point x in R3 can be reconstructed using equation 13

ρS(x) =

N∑
n

∑
l

l∑
m=−l

ΩmnlZ
m
nl(x)

=

N∑
n

∑
l

l∑
m=−l

Ωmnl
√

2n+ 3Rnl(r)Y
m
l (θ, φ)

(34)
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Algorithm 4 Approximate Zernike moments for surface triangular meshes

Input: The triangular mesh characterized by its number of vertices Nv and its number of facets
M . The maximum order N for the 3D Zernike moments. L the list of succesive quadratures to
try. TOL: tolerance for convergence
Initialize: Center and scale the mesh. Initialize Ωm

nl = 0
for k = 1, . . . ,M do

(1) Define (A,B,C) the three vertices of triangle k.
(2) Initialize Imnl(old) = 0
for R ∈ L do

(3) Compute Imnl(R) = TRIANGLE(N,A,B,C,R)
(4) Compute err = ||Imnl(R)− Imnl(old)||
(5) If err < TOL, break
(6) Set Imnl(old) = Imnl(R)

end for
if err < TOL then

(7) Set Imnl = Imnl(R).
else

for S = 1, . . . do
(8) Set Imnl(S) = TRIANGLESPLIT(N,A,B,C,R, S)
(9) Compute err = ||Imnl(S)− Imnl(old)||
(10) If err < TOL, break
(11) Set Imnl(old) = Imnl(S)

end for
(12) Set Imnl = Imnl(S).

end if
(13) Update Ωm

nl = Ωm
nl + Imnl .

end for
Output: The Zernike moments Ωm

nl of the shape.

where (r, θ, φ) are the spherical coordinates of x. The reconstruction is exact when N → +∞.
While the Zernike moments Ωmnl and the Zernike polynomials are complex, the reconstruction
ρS(x) is real. Indeed, recall that for an m∗ negative,

Ωm∗nl = (−1)m∗Ω−m∗nl

Y m∗l = (−1)m∗Y −m∗l

and that Y 0
l (θ, φ) = Nm

l P
m
l (cos(θ)) is real. Then,

ρS(x) =

N∑
n

√
2n+ 3

∑
l

Rnl(r)

(
Ω0
nlY

0
l (θ, φ) +

l∑
m=1

(ΩmnlY
m
l (θ, φ) + ΩmnlY

m
l (θ, φ))

)

=

N∑
n

√
2n+ 3

∑
l

Rnl(r)

(
Ω0
nlY

0
l (θ, φ) + 2

l∑
m=1

<(ΩmnlY
m
l (θ, φ))

)

where < indicates the real part.
The equation above defines a simple algorithm for reconstructing the shape density in R3. If

the points x are chosen to be the nodes of a 3D grid, a surface mesh can then be reconstructed
using the marching tetrahedron algorithm [38]. We note, however, that special care is needed
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when evaluating the radial polynomials Rnl(r) and the spherical harmonics Y ml (θ, φ) to avoid
numerical instabilities when n is large. This is described below in the Implementation section.

5 Implementation

The computation of the Zernike moments of a shape described by a surface triangular mesh
is performed either with the exact algorithm 2 or with the finite precision algorithm 4. Both
algorithms rely heavily on the function that computes the geometric moment associated with a
triangle of the mesh, TRIANGLE (algorithm 1). We identify four elements that are essential
for the implementations of those algorithms:

1) Definitions of the quadrature rules for integration on a triangle,

2) Efficient computations of Rnl(r) and Qnl(r),

3) Efficient computations of the spherical harmonics Y ml (θ, φ)

4) Efficient computations of gmnl

We describe the specifics for those elements.

5.1 Quadrature rules for integration over a triangle

A quadrature rule over a domain D is defined through its ability to integrate exactly over D
the set of basis polynomials of degrees n ≤ N , PN . This set has an infinite number of repre-
sentations. The simplest of those representations is to consider monomials. In two dimensions,
those monomials are {xiyj , i+ j ≤ N}. Unfortunately, monomials of high degrees are extremely
sensitive to small perturbations. This gives rise to systems which are poorly conditioned and
hence difficult to solve numerically [39]. We have used instead the approach of Witherden and
Vincent [40] to derive our quadrature rules. They proposed to use orthogonal polynomials ψij
as a basis of PN with i+ j ≤ N , such that∫

D

ψij(x)ψkl(x)dx = δikδjl

where δ is the Kronecker delta. By taking ψ00(x) = 1/c, they define the error associated with
a quadrature rule with Np points as:

χ2(N) =
∑
ij


Np∑
k

wkψij(xk)dx− cδi0δj0


2

(35)

In Witherden and Vincent’s schemes, constructing an Np rule of strength N is then akin with
finding a set of points xk and associated weights wk that minimize χ2(N). They provided an
open source software package, PolyQuad (available at https://github.com/PyFR/Polyquad)
for this task. We have run PolyQuad for strengths between 3 and 101 to generate the quadrature
rules that we have used for computing Zernike moments. In appendix C, we list the number
of points required for each strength. The actual number of points is found to be similar to the
empirical bound of (N + 1)(N + 2)/6 proposed by Xiao and colleagues [37].

5.2 Efficient computations of the polynomials Rnl(r) and Qnl(r)

As described in section 2, it is crucial to compute the radial polynomials Rnl(r) accurately. A
naive computation using its monomial decomposition does not achieve this accuracy for high
order n. Instead, we have used the recurrence 21 that is derived from the properties of Jacobi
polynomials (see section 2).

The polynomial Qnl(r) are the indefinite integrals of the radial polynomials Rnl(r) weighted
by r2. Properties 1 and 2 (major results of this paper) provide simple recurrence for computing
those integrals.
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5.3 Efficient computations of the spherical harmonics Y m
l (θ, φ)

The spherical harmonics are related to the Legendre polynomials, from which they inherit
many properties. In particular, they can be computed recursively. We have used the following
recurrences:

Property 3. For non negative integers l and m with 0 ≤ m ≤ l the following relationships
hold:

i) For l > 1 and 0 ≤ m < l − 1:

Y ml (θ, φ) =

√
(2l + 1)(2l − 1)

(l +m)(l −m)
cos θY ml−1(θ, φ)

−

√
(2l + 1)(l +m− 1)(l −m− 1)

(2l + 3)(l +m)(l −m)
Y ml−2(θ, φ) (36)

ii) For l > 0 and m = l − 1:

Y l−1l (θ, φ) =
√

2l + 1 cos θY l−1l−1 (θ, φ) (37)

iii) For l > 0 and m = l:

Y ll (θ, φ) = − sin θ

√
2l + 1

2l
eiφY l−1l−1 (θ, φ) (38)

With the initialization Y 0
0 (θ, φ) = 1/

√
4π, equations 36 to 38 provide an efficient scheme

for computing all spherical harmonics at angles (θ, φ).

For sake of completeness, we provide a proof of this property in Appendix D.

5.4 Efficient computation of the product gmnl

At step 4 of the TRIANGLE procedure, we must form the product given in Equation 32. As we
have managed to compute Qnl and Y nl in time O(N2), this is where most of the computation
time will go, since there are of order N3 terms to compute. To streamline this very simple
computation (it is a simple product), we have optimized the ordering of the terms.

Remember that n and l must have the same parity, one may then order the Qnl terms (and
likewise for Rnl) like this (l varying first and n varying last) Q00, Q11, Q20, Q22, Q31, Q33, Q40,
Q42 and so on. The problem here is that the l are out of order which is bad for computing the
gmnl efficiently.

We choose this alternative ordering: we interleave the successive even and odd values of n:
Q00, Q11, Q20, Q31, Q22, Q33, Q40, Q51 and so on. Now the l are in order, we no longer separate
the even and odd l values.

6 Numerical results

6.1 Testing accuracy

In this article, we propose two new algorithms to accurately compute 3D Zernike moments for
triangular surface meshes. To sustain our claim of accuracy, we need tools to measure this
accuracy. We propose three such tools.

To build them, we define the signatures of a family of Zernike moments by

σn{Ω} =

n∑
l=0

l∑
m=−l

|Ωmnl|2. (39)
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Again the sum on l runs only for l and n with the same parity. It is easy to check that the σn
are invariant by rotation. These signatures allow to summarize information for each value of n.

The first test (”against exact”) is a comparison of the computed moments with exact re-
sults. Of course this test is limited to very particular shapes for which we are able to com-
pute exact results to high order. For this test we chose a cube with vertices of coordinates
(±1/

√
3,±1/

√
3,±1/

√
3). To compute the Zernike moments exactly, we use a symbolic algebra

system (namely Mathematica) to exactly compute the integrals of Eq. 11 up to n = 100 (this
took 3 full days of computation running in parallel on a 4 core every day computer). We thus
obtained the Zernike moments of the cube to machine precision. We thus have our first accuracy
test

αn = σn{Ω(computed)− Ω(exact)}. (40)

This test scales like ε2 where ε is the error made on the computed moments.
The second test (”against self”) is an auto coherent test. It compares rotation invariants

computed from the Zernike moments, for two different orientations of the same shape. This
gives us our second accuracy test

βn = |σn{Ω(original)} − σn{Ω(rotated)}|. (41)

This test scales like ε.
The third test (”reconstruction”) is a visual test. We compute the Zernike moments of the

shape and we reconstruct a new shape from these moments, and we visually compare the two.
For this, we use the regularized marching tetrahedra algorithm as described in [41]. Note that
for the reconstruction, accuracy is also an issue and it is important to evaluate the Zernike
polynomials using the same procedure as before.

6.2 Results of the tests

We will compare three algorithms: (i) the Pozo et al. algorithm [30] modified by Koehl [31]. We
call it the PK algorithm. It is the state of the art of the algorithms using the geometric moments
(ii) our exact algorithm presented above, (iii) our approximate algorithm, also presented above,
the requested global precision was set to 10−6 divided by the number of facets.

In Fig. 4, we show the results of the tests against exact using maximum order required
N = 100. Only even order Zernike moments are shown as the others are null. In this case,
the approximate algorithm reaches the maximum triangle quadrature order n = 101 which is
exact for all facets and thus gives the same results as the exact algorithm. We clearly see that
both our algorithms perform perfectly, whereas the PK algorithm steadily loses precision as n
increases, it becomes meaningless around n = 45.

For the next two tests, we use two triangulated objects as shown of figure 5. We call the
first one ”rings” and the second one ”man”.

The results for the tests against self are shown on Figure 6 for ”rings” and on Figure 7
for ”man”. We used N = 100 for the three algorithms. Again, we see that the PK algorithm
completely loses precision around N = 45 whereas both our algorithms stay stable. Note how
our approximate algorithm usually achieves a much better precision than requested (here we
asked for p = 10−6, but obtained around 10−12).

Finally, examples of reconstructions are shown on Figure 8 and 9 for the approximate algo-
rithm. Similar results are found for the exact algorithm in the range it can cover. Note how
the finest details are visible at N = 300: the ripples on object ”rings” present on the original,
or the face and foot details on ”man”.

6.3 Speed

For the first algorithm, we have run some speed tests varying the objects and the requested N .
Our measures are coherent with a computation time roughly equal to τMN5. On our computer
(an intel core i5-3470 at 3.2 GHz), we get τ ≈ 30ps. There are fluctuations to this computation
time depending whether the chosen integration schemes fits closely or not.
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Figure 4: Test against exact for the three algorithms. The approximate algorithm is indistinguish-
able from the exact one in this case and is thus not shown.

Figure 5: Our test objects ”rings” and ”man”, with respectively M = 9792 and M = 48918 facets.
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Figure 6: Test against self for the three algorithms for object ”rings”.
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Figure 7: Test against self for the three algorithms for object ”man”.

Figure 8: Reconstruction test for the approximate algorithm for object ”rings”. The pictures
corresponds to N = 50, N = 100, N = 200, N = 300 from left to right and top to bottom.
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Figure 9: Reconstruction test for the approximate algorithm for object ”man”. The pictures
corresponds to N = 50, N = 100, N = 200, N = 300 from left to right and top to bottom.
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Figure 10: Computation time (in seconds) of the approximate algorithm with N = 50 on a cube
with different number of facets. The line has equation 0.073M0.568.

For the second algorithm, we have tested the M dependence, because the larger the number
of facets, the smaller the facets and the lower we need to go in the approximation ladder. To
do this, we took the cube and repeatedly split each facets in four, at each steps we ran our
approximate algorithm with N = 50 and precision p = 10−6 divided by the number of facets.
The results are presented on Figure 10. These measurements give a size dependence in Mµ with
µ ≈ 0.57 that is approximately

√
M .

The precision dependence of the computation time is small but discontinuous, since the
convergence of the procedure is very fast. Thus the computation time will stay constant on
large domains of precision and will suddenly jump by a factor 2, when the algorithm needs to
go one step further.

Globally the computation time of the approximate algorithm is very roughly consistent with
τ
√
MN5. On our computer, we have τ ≈ 600ps (but it fluctuates quite a lot). This means that

for a typical objects with 10 000 facets the approximate algorithm is roughly 5 times faster than
the exact one, and the larger the number of facets the larger the gain in computation time.

7 Conclusion

We have introduced two stable algorithms to accurately compute 3D Zernike moments for objects
defined by a triangular mesh surface. In opposition, to the previous state of the art algorithm
which typically completely loses precision around order N = 45, both algorithms do not lose
precision with growing order.

The first algorithm is exact and works up to N = 101 with complexity O(MN5). It is limited
by the availability of quadrature rule on the triangle with sufficient order of exactness.

The second algorithm is approximate but can compute the moments to a given precision. It is
significantly faster than the exact algorithm with an effective complexity of roughly O(

√
MN5).

This algorithm has no limitation in the maximum order N except the duration of the compu-
tation. Here we have presented results up to N = 300. We believe that this second algorithm is
nearly always preferable to the first.

We have shown several tests of accuracy for our algorithm, a test against exact results, an
auto coherent test and a reconstruction test.

The free software implementing these algorithms is available at https://github.com/jerhoud/
zernike3d
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Appendix A: A recurrence for Snl(0, r)

We start with an integral representation of the 3D Zernike radial polynomials [34]:

Rnl(ρ) =
2

π
(−1)

n−l
2

∫ +∞

0

jn+1(q)jl(ρq)qdq (A1)

where jk are spherical Bessel functions. The derivative of Rnl(ρ) with respect the ρ is then:

dRnl
dρ

(ρ) =
2

π
(−1)

n−l
2

∫ +∞

0

jn+1(q)
∂jl(ρq)

∂ρ
qdq (A2)

Using the following relationship for spherical Bessel functions ( [42], equation 10.51.1):

qjn+1(q) = (2n+ 1)jn(q)− qjn−1(q))

we get:

dRnl
dρ

(ρ) =
2

π
(−1)

n−l
2

∫ +∞

0

qjn+1(q)
∂jl(ρq)

∂(ρq)
qdq

=
2

π
(−1)

n−l
2 (2n+ 1)

∫ +∞

0

jn(q)
∂jl(ρq)

∂(ρq)
qdq − 2

π
(−1)

n−l
2

∫ +∞

0

qjn−1(q)
∂jl(ρq)

∂(ρq)
qdq

=
2

π
(−1)

n−l
2 (2n+ 1)

∫ +∞

0

jn(q)
∂jl(ρq)

∂(ρq)
qdq +

dRn+2,l

dρ
(ρ)

(A3)

We use now the following relationship for spherical Bessel functions ( [42], equation 10.51.1):

djl(x)

dx
=

l

2l + 1
jl−1(x)− l + 1

2l + 1
jl+1(x) (A4)

to get:

dRnl
dρ

(ρ) =
2

π
(−1)

n−l
2 (2n+ 1)

∫ +∞

0

jn(q)

(
l

2l + 1
jl−1(x)− l + 1

2l + 1
jl+1(x)

)
qdq

+
dRn+2,l

dρ
(ρ) (A5)

This equation leads to,

dRnl
dρ

(ρ) =
(2n+ 1)l

2l + 1
Rn−1,l−1(ρ) +

(2n+ 1)(l + 1)

2l + 1
Rn−1,l+1(ρ) +

dRn+2,l

dρ
(ρ)

After integration over [0, r],

Rnl(r) =
(2n+ 1)l

2l + 1
Sn−1,l−1(0, r) +

(2n+ 1)(l + 1)

2l + 1
Sn−1,l+1(0, r) +Rn+2,l(r) (A6)

which concludes the proof of Equation 26, the recurrence over the Snl(0, r).
The initialization follows from

Sn,n(0, r) =

∫ r

0

Rn,n(ρ)dρ =

∫ r

0

ρndρ =
rn+1

n+ 1
(A7)

24



Appendix B: A recurrence for Snl(k, r)

We start from the recurrence over the Rnl(r) (21 in the main body of the text):

Rnl(ρ) = K1(n, l)ρ2Rn−2,l(ρ) +K2(n, l)Rn−2,l(ρ) +K3(n, l)Rn−4,l(ρ) (B1)

where K1, K2, and K3 were defined in equation 22 in the main text. Let k be a positive integer.
After multiplication with ρk, we get:

ρkRnl(ρ) = K1(n, l)ρk+2Rn−2,l(ρ) + ρkK2(n, l)Rn−2,l(ρ) + ρkK3(n, l)Rn−4,l(ρ) (B2)

which we integrate over [0, r],

Snl(k, r) = K1(n, l)Sn−2,l(k + 2, r) +K2(n, l)Sn−2,l(k, r) +K3(n, l)Sn−4,l(k, r) (B3)

Shifting n← n− 2, we get:

K1(n+ 2, l)Snl(k, r) = Sn+2,l(k + 2, r)−K2(n+ 2, l)Snl(k, r)

−K3(n+ 2, l)Sn−2,l(k, r) (B4)

This then yields equation 28.
Starting with Snl(0, r), repeated use of equation B4 allows us to compute all Snl(k, r) for

k even. While this is enough for this paper, for sake of completeness, we show how the same
integrals can be evaluated for k odd.

The recurrence on Rnl expressed in Equation 21 has a coefficient with ρ to the power 2,
leading to the even recurrence. Janssen in his work on generalized Zernike functions derived a
different recurrence on Rnl (his equation 80):

Rn+l,l(ρ) =
2n+ 3

2n+ 2
ρ

(
2l + 2

2l + 1
Rn,l+1(ρ) +

2l

2l + 1
Rn,l−1(ρ)

)
− n+ 2

n+ 1
Rn−1,l(ρ) (B5)

Applications of the recurrence require the initialisation R0,0(ρ) = 1, and setting Rnl ≡ 0 when
n < l. After integration over [0, r], we get

Sn+l,l(0, ρ) =
2n+ 3

2n+ 2

(
2l + 2

2l + 1
Sn,l+1(1, ρ) +

2l

2l + 1
Sn,l−1(1, ρ)

)
− n+ 2

n+ 1
Sn−1,l(0, ρ) (B6)

which we rewrite as

Sn,l−1(1, ρ) = − l + 1

l
Sn,l+1(1, ρ) +

(2n+ 2)(2l + 1)

(2n+ 3)(2l)
Sn+1,l(0, ρ)

+
(2n+ 4)(2l + 1)

(2n+ 3)(2l)
Sn−1,l(0, ρ) (B7)

Equation B7 provides a recurrence for computing Snl(1, r) from Snl(0, r). Integrals Snl(k, r)
with k odd, k > 1 can then be derived by repeated use of equation B4, starting with Snl(1, r).
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Appendix C: Characteristics of the triangle quadrature rules
used in this work

Strength N #points Np bound, B E

*3 4 4 0.83
*5 7 7 1
*7 13 12 1
9 19 19 0.96

*11 28 26 1
13 37 35 0.94

*17 60 57 0.95
21 87 85 0.97

*25 120 117 0.97
31 181 176 0.97

*37 255 247 0.97
43 348 330 0.95

*51 501 460 0.92
65 814 737 0.90

*73 1030 925 0.90
81 1263 1135 0.90

*101 2007 1751 0.87

Table 1: Characteristics of the triangle quadrature rules used in our algorithms. All those rules were
constructed with the program PolyQuad (https://github.com/PyFR/Polyquad) by Witherden
and Vincent [40]. Stars near strengths identify the rules that are used in the finite precision
algorithm. The bound B (third column) is the empirically proposed bound on the number of
points, B = d(N + 1)(N + 2)/6e, as proposed by Xiao and Gimbutas [37]. E (fourth column) is the
“efficiency”, defined as: E = (N + 1)(N + 2)/(6 ∗Np). Efficient quadrature rules have E close to 1.
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Appendix D: A recurrence for Y m
l (θ, φ)

We will prove property 3 that establishes a recurrence on the spherical harmonics. Recall that

Y ml (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ (D1)

where Pml are the associated Legendre polynomials. We will look at three cases:

i) l > 1 and m < l − 1

For those values of l and m, the associated Legendre polynomials follow the simple recur-
rence

(l −m)Pml (x) = (2l − 1)xPml−1(x)− (l +m− 1)Pml−2(x) (D2)

Replacing equation D2 into D1, we get,

Y ml (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eimφ

(
2l − 1

l −m
cos θPml−1(cos θ)− l +m− 1

l −m
Pml−2(cos θ)

)

=

√
2l + 1

4π

(l −m)!

(l +m)!

2l − 1

l −m
eimφ cos θPml−1(cos θ)

−

√
2l + 1

4π

(l −m)!

(l +m)!

l +m− 1

l −m
eimφPml−2(cos θ)

(D3)

Replacing in this equation the expressions for Y ml−1(θ, φ) and Y ml−2(θ, φ) lead to equation 36,
after basic algebra.

ii) l > 0 and m = l − 1

For those values of l and m, equation D2 remains valid, but with the second term dropped:

P l−1l (x) = (2l − 1)xP l−1l−1 (x) (D4)

Replacing into D1, we get,

Y l−1l (θ, φ) =

√
2l + 1

4π(2l − 1)!
(2l − 1) cos θei(l−1)φP l−1l−1 (cos θ)

=
√

2l + 1 cos θ

√
2l − 1

4π(2l − 2)!
ei(l−1)φP l−1l−1 (cos θ)

=
√

2l + 1 cos θY l−1l−1 (θ, φ)

(D5)

which concludes the proof of equation 37.

iii) l > 0 and m = l

For those values of l and m, the Legendre polynomials satisfy

P ll (x) = −(2l − 1)
√

1− x2P l−1l−1 (x) (D6)

Replacing into D1, we get,

Y ll (θ, φ) = −

√
2l + 1

4π(2l)!
(2l − 1) sin θeilφP l−1l−1 (cos θ)

= −
√

2l + 1

2l
eiφ sin θ

√
2l − 1

4π(2l − 2)!
ei(l−1)φP l−1l−1 (cos θ)

= −
√

2l + 1

2l
eiφ sin θY l−1l−1 (θ, φ)

(D7)

which concludes the proof of equation 37.
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