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Abstract

An automatic evidential segmentation method based on Dempster-Shafer theory and deep
learning is proposed to segment lymphomas from three-dimensional Positron Emission To-
mography (PET) and Computed Tomography (CT) images. The architecture is composed
of a deep feature-extraction module and an evidential layer. The feature extraction module
uses an encoder-decoder framework to extract semantic feature vectors from 3D inputs. The
evidential layer then uses prototypes in the feature space to compute a belief function at
each voxel quantifying the uncertainty about the presence or absence of a lymphoma at this
location. Two evidential layers are compared, based on different ways of using distances to
prototypes for computing mass functions. The whole model is trained end-to-end by min-
imizing the Dice loss function. The proposed combination of deep feature extraction and
evidential segmentation is shown to outperform the baseline UNet model as well as three
other state-of-the-art models on a dataset of 173 patients.

Keywords: medical image analysis, Dempster-Shafer theory, evidence theory, belief
functions, uncertainty quantification, deep learning

1. Introduction1

Positron Emission Tomography - Computed Tomography (PET-CT) scanning is an ef-2

fective imaging tool for lymphoma segmentation with application to clinical diagnosis and3

radiotherapy planning. The standardized uptake value (SUV), defined as the measured ac-4

tivity normalized for body weight and injected dose to remove variability in image intensity5

between patients, is widely used to locate and segment lymphomas thanks to its high sen-6

sitivity and specificity to the metabolic activity of tumors [1]. However, PET images have7

a low resolution and suffer from the partial volume effect blurring the contours of objects8

[2]. For that reason, CT images are usually used jointly with PET images because of their9

anatomical feature-representation capability and high resolution. Figure 1 shows 3D PET-10

CT views of a lymphoma patient. The lymphomas are marked in black as well as the brain11

and the bladder. As we can see from this figure, lymphomas vary in intensity distribution,12

shape, type, and number.13
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Figure 1: Example of a patient with lymphomas in 3D PET-CT views. The lymphomas are the dark areas
circled in red.

Approaches to lymphoma segmentation. Techniques for lymphoma segmentation can be di-14

vided into three classes: SUV-based, region-growing-based and deep learning-based methods.15

For PET images, it is common to segment lymphomas with a set of fixed SUV thresholds.16

The so-called SUV-based methods [3][4] are fast but lack flexibility in boundary delineation17

and requires domain knowledge to locate the region of interest. Region-growing-based meth-18

ods [5][6] have been proposed to optimize boundary delineation by taking texture and shape19

information into account. By setting the specific growing function and stopping condition,20

the tumor region grows step by step until it reaches the stopping condition. However,21

those methods still need clinicians to locate the seeds for region growing [5] and they are22

time-consuming, especially when applied to 3D images. Lymphoma segmentation with deep23

learning has become a popular research topic thanks to its high feature representation ability24

[7][8].25

Deep-learning-based methods. Long et al. [9] were the first authors to show that a fully con-26

volutional network (FCN) could be trained end-to-end for semantic segmentation, exceeding27

the state-of-the-art when the paper was published. UNet [10], a successful modification and28

extension of FCN, has become the most popular model for medical image segmentation29

in recent years. Driven by different tasks and datasets, several extended and optimized30

variants of UNet have been proposed for medical image segmentation, including VNet [11],31

SegResNet [12], and nnUNet [13]. VNet is a variant of UNet that introduces short residual32

connections at each stage. Compared with UNet, SegResNet contains an additional vari-33

ational autoencoder branch. Finally, nnUNet is more flexible than UNet in three aspects:34

(1) residual connection in convolution blocks, (2) anisotropic kernel sizes and strides in each35

layer, and (3) deep supervision heads. Deep learning has been applied to lymphoma segmen-36

tation, yielding promising results. In [7], Li et al. proposed a DenseX-Net-based lymphoma37

segmentation model with a two-flow architecture for 3D PET-CT images: a segmentation38

flow (DenseU-Net) for lymphoma segmentation and a reconstruction flow (encoder-decoder)39

for learning semantic representation of different lymphomas. In [8], Hu et al. introduced40
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a multi-source fusion model for lymphoma segmentation with PET images. First, three41

2D and one 3D segmentation models were trained with three orthogonal views and one 3D42

image, respectively. The four segmentation maps were then fused by a convolutional layer43

to get a final result. In [14], Blanc-Durand et al. proposed a nnUNet-based lymphoma44

segmentation network with additional validation of total metabolic tumor volume for 3D45

PET-CT images. In [15], Huang et al. proposed to fuse the outputs of two UNets trained46

on CT and PET data, using Dempster’s rule of combination [16], a combination operator of47

Dempster-Shafer theory (DST) (see Section 2 below). However, the outputs of the UNets48

were probabilities and this approach did not harness the full power of DST.49

Uncertainty. In spite of the excellent performance of deep learning methods, the issue of50

quantifying prediction uncertainty remains [17]. This uncertainty can be classified into51

three types: distribution, model, and data uncertainty. Distribution uncertainty is caused52

by training-test distribution mismatch (dataset shift) [18]. Model uncertainty arises from53

limited training set size and model misspecification [19][20][21]. Finally, sources of data un-54

certainty include class overlap, label noise, and homo or hetero-scedastic noise [22]. Because55

of the limitations of medical imaging and labeling technology, as well as the need to use56

a large nonlinear parametric segmentation model, PET-CT image segmentation results are57

particularly tainted with uncertainty, which limits the reliability of the segmentation. Figure58

2 shows examples of PET and CT image slices for one patient with lymphomas. As can59

be seen, lymphomas in PET images usually correspond to the brightest pixels, but organs60

such as the brain and bladder are also located in bright pixel areas, which may result in61

segmentation errors. Moreover, lymphoma boundaries are blurred, which makes it hard to62

delineate lymphomas precisely.63

Approaches to uncertainty modeling. Early approaches to uncertainty quantification in ma-64

chine learning were based on Bayesian theory [23][24]. The popularity of deep learning65

models has revived research of model uncertainty estimation and has given rise to specific66

methods such as variational dropout [25][26]. In this paper, we explore a different approach67

based on DST [27][16] [28], a theoretical framework for reasoning with imperfect (uncertain,68

imprecise, partial) information. DST was first introduced by Dempster [27] and Shafer [16]69

and was further popularized and developed by Smets [29]. Applications in machine learning70

were first introduced by Denœux [30, 31, 32]. DST is based on the representation of ele-71

mentary items of evidence by belief functions, and their combination by a specific operator72

called Dempster’s rule of combination. In recent years, DST has generated considerable73

interest and has had great success in various fields, including information fusion [33][34][35],74

classification [36][37][38], clustering [28][39][40], and image segmentation [41][42][43].75

In this paper1, we propose a 3D PET-CT diffuse large B-cell lymphoma segmentation76

model based on DST and deep learning, which not only focuses on lymphoma segmenta-77

tion accuracy but also on uncertainty quantification using belief functions. The proposed78

1This paper is an extended version of the short paper presented at the 6th International Conference on
Belief Functions (BELIEF 2021) [44].
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Figure 2: Example of a patient with lymphomas. The first and second rows show, respectively, PET and
CT slices for one patient in axial, sagittal and coronal views.

segmentation model is composed of a UNet module for feature extraction and an eviden-79

tial segmentation module for uncertainty quantification and decision-making. End-to-end80

learning is performed by minimizing the Dice loss function.81

The rest of the paper is organized as follows. The main concepts of DST are first recalled82

in Section 2, and two approaches for computing belief functions in classification tasks are83

described in Section 3. The proposed model is then introduced in Section 4, and experimental84

results are reported in Section 5. Finally, Section 6 concludes the paper.85

2. Dempster-Shafer theory86

In this section, we first recall some necessary notations and definitions regarding DST.87

Let Ω = {ω1, ω2, . . . , ωK} be a finite set of all possible answers some question, called the88

frame of discernment. Evidence about the question of interest can be represented by a mass89

function m, defined as a mapping from the power set 2Ω to [0, 1] such that90 ∑
A⊆Ω

m(A) = 1 (1)

and m(∅) = 0, where ∅ denotes the empty set. Subsets A ⊆ Ω such m(A) > 0 are called the91

focal sets of m. Each mass m(A) represents a share of a unit mass of belief allocated to focal92

set A, and which cannot be allocated to any strict subset of A. The mass m(Ω) allocated93

to the whole frame can be seen as a degree of ignorance. Full ignorance is represented by94
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the vacuous mass function m? verifying m?(Ω) = 1. A mass function is said to be Bayesian95

if its focal sets are singletons, and logical if it has only one focal set.96

Discounting. Let m be a mass function on Ω and s a coefficient in [0, 1]. The discounting97

operation [16] with discount rate 1 − s transforms m into a weaker, less informative mass98

function defined as follows:99

sm = sm+ (1− s)m?. (2)

As shown in [45], coefficient s can be interpreted as a degree of belief that the source of100

information providing mass function m is reliable.101

Simple mass functions. A mass function m is said to be simple if it can be obtained by102

discounting a logical mass function; it thus has the following form:103

m(A) = s, m(Ω) = 1− s, (3)

for some A ⊂ Ω such that A 6= ∅ and some s ∈ [0, 1], called the degree of support in A.104

The quantity w = − ln(1− s) is called the weight of evidence associated to m [16, page 77].105

In the following, a simple mass function with focal set A and weight of evidence w will be106

denoted as Aw.107

Belief and plausibility. Given a mass functionm, belief and plausibility functions are defined,108

respectively, as follows:109

Bel(A) =
∑
B⊆A

m(B) (4)

and110

Pl(A) =
∑

B∩A 6=∅

m(B) = 1−Bel(Ac), (5)

for all A ⊆ Ω, where Ac denotes the complement of A. The quantity Bel(A) can be111

interpreted as a degree of support for A, while Pl(A) can be interpreted as a measure of112

lack of support for the complement of A.113

Dempster’s rule. Two mass functions m1 and m2 derived from two independent items of114

evidence can be combined by considering each pair of a focal set B of m1 and a focal set C115

of m2, and assigning the product m1(B)m2(C) to the intersection B ∩ C. A normalization116

step is then necessary to ensure that the mass of the empty set is equal to zero. This117

operation, called Dempster’s rule of combination [16] and denoted as ⊕, is formally defined118

by (m1 ⊕m2)(∅) = 0 and119

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), (6)

for all A ⊆ Ω, A 6= ∅, where κ represents the degree of conflict between m1 and m2 equal to120

κ =
∑

B∩C=∅

m1(B)m2(C). (7)
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The combined mass m1 ⊕m2 is called the orthogonal sum of m1 and m2. It can easily be121

checked that the orthogonal sum of two simple mass functions Aw1 and Aw2 with the same122

focal set A is the simple mass function Aw1+w2 : Dempster’s rule thus adds up weights of123

evidence.124

Decision-making. After aggregating all the available evidence in the form of a mass function,125

it is often necessary to make a final decision. Decision-making based on belief functions for126

classification tasks has been studied in [46], and, more recently, by Ma and Denœux in127

[47]. The reader is referred to Ref. [48] for a recent review of decision methods based on128

belief functions. Here, we briefly introduce the approach used in this paper. Consider a129

classification task with K classes in the set Ω = {ω1, . . . , ωK}. Assume that the utility130

of selecting the correct class is 1, and the utility of an error is 0. As shown in [46], the131

lower and upper expected utilities of selecting class ωk are then, respectively, Bel({ωk}) and132

Pl({ωk}). A pessimistic decision-maker (DM) maximizing the lower expected utility will133

then select the class with the highest degree of belief, while an optimistic DM minimizing134

the upper expected utility will select the most plausible class. Alternatively, the Hurwicz135

criterion consists in maximizing a weighted sum of the lower and upper expected utility. In136

the decision context, we then select the class ωk such that (1 − ξ)Bel({ωk}) + ξP l({ωk})137

is maximum, where ξ is an optimism index. Another approach, advocated by Smets in the138

Transferable Belief Model [45], is to base decisions on the pignistic probability distribution,139

defined as140

pm(ω) =
∑

{A⊆Ω:ω∈A}

m(A)

|A|
(8)

for all ω ∈ Ω.141

3. Evidential classifiers142

In this section, we review two methods for designing classifiers that output mass func-143

tions, referred to as evidential classifiers. The evidential neural network (ENN) classifier144

introduced in [31] is first recalled in Section 3.1. A new model based on the interpretation145

of a radial basis function (RBF) network as combining of simple mass functions by Demp-146

ster’s rule, inspired by [49], is then described in Section 3.2. The two models are compared147

experimentally in Section 3.3.148

3.1. Evidential neural network149

In [31], Denœux proposed the ENN classifier, in which mass functions are computed150

based on distances to prototypes. The basic idea is to consider each prototype as a piece of151

evidence, which is discounted based on its distance to the input vector. The evidence from152

different prototypes is then pooled by Dempster’s rule (6). We provide a brief introduction153

to the ENN model in this section.154

The ENN classifier is composed on an input layer of H neurons (where H is the dimension155

of input space), two hidden layers and an output layer (Figure 3). The first input layer is156
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Figure 3: Evidential neural network.

composed of I units, whose weights vectors are prototypes π1, . . . ,πI in input space. The157

activation of unit i in the prototype layer is158

si = αi exp(−γid2
i ), (9)

where di = ‖x− πi‖ is the Euclidean distance between input vector x and prototype πi,159

γi > 0 is a scale parameter, and αi ∈ [0, 1] is an additional parameter.160

The second hidden layer computes mass functions mi representing the evidence of each
prototype πi, using the following equations:

mi({ωk}) = uiksi, k = 1, ..., K (10a)

mi(Ω) = 1− si, (10b)

where uik is the membership degree of prototype i to class ωk, and
∑K

k=1 uik = 1. Mass161

function mi can thus be seen as a discounted Bayesian mass function, with discount rate162

1−si; its focal sets are singletons and Ω. The mass assigned to Ω increases with the distance163

between x and πi. Finally, the third layer combines the I mass functions m1, . . . ,mI using164

Dempster’s rule (6). The output mass function m =
⊕I

i=1 mi is a discounted Bayesian mass165

function that summarizes the evidence of the I prototypes. Because the focal sets of m are166

singletons and Ω, the class with the highest degree of belief also has the highest plausibility167

and pignistic probability: consequently, the decision rules recalled in Section 2 are equivalent168

in this case.169

Let θ denote the vector of all network parameters, composed of the I prototypes πi,170

their parameters γi and αi, and their membership degrees uik, k = 1, . . . , K. In [31], it171

was proposed to learn these parameters by minimizing the regularized sum-of-squares loss172

function173

LSS(θ) =
N∑

n=1

K∑
k=1

(pnk − ynk)2 + λ

I∑
i=1

αi, (11)
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where pnk is the pignistic probability of class ωk for instance n, N is the number of training174

instances, and ynk = 1 if the true class of instance n is ωk, and ynk = 0 otherwise. The175

second term on the right-hand side of (11) is a regularization term, and λ is hyperparameter176

that can be tuned by cross-validation.177

The idea of applying the above model to features extracted by a convolutional neural178

network (CNN) was first proposed by Tong et al. in [50]. In this approach, the ENN module179

becomes a “evidential layer”, which is plugged into the output of a CNN instead of the usual180

softmax layer. The feature extraction and evidential modules are trained simultaneously.181

A similar approach was applied in [43] to semantic segmentation. In the next section, we182

present an alternative approach based on a radial basis function (RBF) network and weights183

of evidence.184

3.2. Radial basis function network185

As shown in [49], the calculations performed in the softmax layer of a feedforward neural186

network can be interpreted in terms of combination of evidence by Dempster’s rule. The187

output class probabilities can be seen as normalized plausibilities according to an underlying188

belief function. Applying these ideas to a radial basis function (RBF) network, it is possible189

to derive an alternative evidential classifier with properties similar to those of the ENN190

model recalled in Section 3.1.191

Consider an RBF network with I prototype (hidden) units. The activation of hidden192

unit i is193

si = exp(−γid2
i ), (12)

where, as before, di = ‖x− πi‖ is the Euclidean distance between input vector x and194

prototype πi, and γi > 0 is a scale parameter. For the application considered in this paper,195

we only need to consider the case of binary classification with K = 2 and Ω = {ω1, ω2}.196

(The case where K > 2 is also analyzed in [49]). Let vi be the weight of the connection197

between hidden unit i and the output unit, and let wi = sivi be the product of the output198

of unit i and weight vi. The quantities wi can be interpreted as weights of evidence for class199

ω1 or ω2, depending on the sign of vi:200

• If vi ≥ 0, wi a weight of evidence for class ω1;201

• If vi < 0, −wi is a weight of evidence for class ω2.202

To each prototype i can, thus, be associated the following simple mass function:203

mi = {ω1}w
+
i ⊕ {ω2}w

−
i ,

where w+
i = max(0, wi) and w−i = −min(0, wi) denote, respectively, the positive and nega-204

tive parts of wi. Combining the evidence of all prototypes in favor of ω1 or ω2 by Dempster’s205

rule, we get the mass function206

m =
I⊕

i=1

mi = {ω1}w
+ ⊕ {ω2}w

−
, (13)
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with w+ =
∑I

i=1w
+
i and w− =

∑I
i=1w

−
i . In [49], the normalized plausibility of ω1 corre-207

sponding to mass function m was shown to have the following expression:208

p(ω1) =
Pl({ω1})

Pl({ω1}) + Pl({ω2})
=

1

1 + exp(−
∑I

i=1 visi)
, (14)

i.e., it is the output of a unit with a logistic activation function. When training an RBF
network with a logistic output unit, we thus actually combine evidence from each of the
prototypes, but the combined mass function remains latent. In [49], mass function m defined
by (13) was shown to have the following expression:

m({ω1}) =
[1− exp(−w+)] exp(−w−)

1− κ
(15a)

m({ω2}) =
[1− exp(−w−)] exp(−w+)

1− κ
(15b)

m(Ω) =
exp(−w+ − w−)

1− κ
=

exp(−
∑I

i=1 |wi|)
1− κ

, (15c)

where209

κ = [1− exp(−w+)][1− exp(−w−)] (15d)

is the degree of conflict between mass functions {ω1}w
+

and {ω2}w
−

.210

In the approach, we thus simply need to train a standard RBF network with I prototype211

layers and one output unit with a logistic activation function, by minimizing a loss function212

such as, e.g., the regularized cross-entropy loss213

LCE(θ) = −
N∑

n=1

(yn log pn + (1− yn) log(1− pn)) + λ
I∑

i=1

w2
i , (16)

where pn is the normalized plausibility of class ω1 computed from (14) for instance n, yn is214

class label of instance n (yn = 1 if the true class of instance n is ω1, and yn = 0 otherwise),215

and λ is a hyperparameter. We note that increasing λ has the effect of decreasing the weights216

of evidence and, thus, obtaining less informative mass functions.217

3.3. Comparison between the two models218

To compare the RBF model described in Section 3.2 with the ENN model recalled in219

Section 3.1, we consider the two-class dataset shown in Figure 4. The two classes are ran-220

domly distributed around half circles with Gaussian noise and are separated by a nonlinear221

boundary. A learning set of size N = 300 and a test set of size 1000 were generated from222

the same distribution.223

An ENN and a RBF network were initialized with I = 6 prototypes generated by the k-224

means algorithm and were trained on the learning data. Figures 5a and 5b show, respectively,225

the test error rate and the mean uncertainty (defined as the average mass assigned to the226

frame Ω), as functions of hyperparameter λ in (11) and (16), for 10 different runs of both227
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algorithms with different initializations. As expected, uncertainty increases with λ for both228

models, but the ENN model appears to be less sensitive to λ as compared to the RBF model.229

Both models achieve similar minimum error rates for λ around 10−3, and have similar mean230

uncertainties for λ = 10−4.231

As shown in [31], the robustness of the ENN model arises from the fact that, when the232

input x is far from all prototypes, the output mass function m is close to the vacuous mass233

function. This property, in particular, makes the network capable of detecting observations234

generated from a distribution that is not represented in the learning set. From (15c), we can235

expect the RBF network model to have a similar property: if x is far from all prototypes, all236

weights of evidence wi will be small and the mass m(Ω) will be close to unity. To compare237

the mass functions computed by the two models, not only in regions of high density where238

training data are present, but also in regions of low density, we introduced a third class in239

the test set, as shown in Figure 6. Figure 7 shows scatter plots of masses on each of the focal240

sets computed for the two models trained with λ = 10−3 and applied to an extended dataset241

composed of the learning data and the third class. We can see that the mass functions are242

quite similar. Contour plots shown in Figure 6 confirm this similarity.243

4. Proposed model244

The main idea of this work is to hybridize a deep medical image segmentation model245

with one of the evidential classifiers introduced in Section 3. Figure 8 shows the global246

lymphoma segmentation architecture, composed of an encoder-decoder feature extraction247

module (UNet), and an evidential layer based one of the two models described in Section 3.248
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Figure 5: Test error rates (a) and mean uncertainty (b) for the ENN and RBF models, as functions of
regularization parameter λ.

The input is the concatenated PET-CT image volume provided as a tensor of size 2× 256×249

256 × 128, where 2 corresponds to the number of modality channels, and 256 × 256 × 128250

is the size of each input volume. The PET-CT image volumes are first fed into the feature251

extraction module, which outputs high-level features in the form of a tensor of size 256 ×252

256 × 128 ×H, where H is the number of features computed at each voxel. This tensor is253

then fed into the evidential layer, which outputs mass functions representing evidence about254

the class of each voxel, resulting in a tensor of size 256× 256× 128× (K + 1), where K + 1255

is the number of masses (one for each class and one for the frame of discernment Ω). The256

whole network is trained end-to-end by minimizing a regularized Dice loss. The different257

components of this model are described in greater detail below.258

Feature extraction module. The feature extraction module is based on a UNet [10] with259

residual encoder and decoder layers [51], as shown in Figure 9. Each down-sampling layer260

(marked in blue) is composed of convolution, normalization, dropout and activation blocks.261

Each up-sampling layer (marked in green) is composed of transpose convolution, normal-262

ization, dropout and activation blocks. The last layer (marked in yellow) is the bottom263

connection which does not down or up-sample the data. In the experiments reported in Sec-264

tion 5, the channels (number of filters) were set as (8, 16, 32, 64, 128) with kernel size equal265

to 5 and convolutional strides equal to (2, 2, 2, 2). The spatial dimension, input channel and266

output channel of the module were set, respectively, as 3, 2, and the number H of extracted267

features. (Experiments with several values of H are reported in Section 5.2). The dropout268

rate was set as 0 and no padding operation was applied. Instance normalization [52] was269

used to perform intensity normalization across the width, height and depth of a single fea-270
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Figure 6: Contours of the mass assigned to {ω1}, {ω2} and Ω by the RBF (left column) and ENN (right
column) models. The training data are displayed in blue and red, and the third class (absent from the
training data) is shown in green. Training was done with λ = 0.001 for the two models.
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Figure 7: Masses computed by the RBF network (horizontal axis) versus the ENN model (vertical axis) for
the extended dataset.
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Figure 8: Global lymphoma segmentation model.

ture map of a single example. The Parametric Rectified Linear Unit (PReLU) function [53],271

which generalizes the traditional rectified unit with a slope for negative values, was used as272

the activation function. For each input voxel, the feature extraction module outputs a 1×H273

feature vector, which is fed into the evidential layer.274

Evidential layer. A probabilistic network with a softmax output layer may assign voxels a275

high probability of belonging to one class while the segmentation uncertainty is actually276

high because, e.g., the feature vector describing that voxel is far away from feature vectors277

presented during training. Here, we propose to plug-in one of the evidential classifiers278

described in Section 3 at the output of the feature extraction module. The ENN or RBF279

classifier then takes as inputs the high-level feature vectors computed by the UNet and280

computes, for each voxel n, a mass function mn on the frame Ω = {ω1, ω2}, where ω1 and281

ω2 denote, respectively, the background and the lymphoma class. We will use the names282

“ENN-UNet” and “RBF-UNet” to designate the two variants of the architecture.283

Loss function. The whole network is trained end-to-end by minimizing a regularized Dice284

loss. We use the Dice loss instead of the original cross-entropy loss in UNet because the285

quality of the segmentation is finally assessed by the Dice coefficient. The Dice loss is defined286

as287

lossD = 1− 2
∑N

n=1 SnGn∑N
n=1 Sn +

∑N
n=1Gn

, (17)

where N is the number of voxels in the image volume, Sn is the output pignistic probability288

of the tumor class (i.e., mn({ω2}) +mn(Ω)/2) for voxel n, and Gn is ground truth for voxel289

n, defined as Gn = 1 if voxel n corresponds to a tumor, and Gn = 0. The regularized loss290

function is291

loss = lossD + λR, (18)

where λ is the regularization coefficient and R is a regularizer defined either as R =
∑

i αi292

if the ENN classifier is used in the ES module, or as R =
∑

i v
2
i if the RBF classifier is used.293
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The regularization term allows us to decrease the influence of unimportant prototypes and294

avoid overfitting.295

5. Experiments296

The model introduced in Section 4 was applied to a set of PET-CT data recorded on297

patients with lymphomas2. The experimental settings are first described in Section 5.1. A298

sensitivity analysis with respect to the main hyperparameters is first reported in Section299

5.2. We then compare the segmentation accuracy and calibration of our models with those300

of state-of-the-art models in Sections 5.3 and 5.4, respectively.301

5.1. Experimental settings302

Dataset. The dataset considered in this paper contains 3D images from 173 patients who303

were diagnosed with large B-cell lymphomas and underwent PET-CT examination. (The304

study was approved as a retrospective study by the Henri Becquerel Center Institutional305

Review Board). The lymphomas in mask images were delineated manually by experts and306

considered as ground truth. All PET/CT data were stored in the DICOM (Digital Imaging307

and Communication in Medicine) format. The size and spatial resolution of PET and CT308

images and the corresponding mask images vary due to the use of different imaging machines309

and operations. For CT images, the size varies from 267 × 512 × 512 to 478 × 512 × 512.310

For PET images, the size varies from 276× 144× 144 to 407× 256× 256.311

2Our code is available at https://github.com/iWeisskohl.
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Pre-processing. Several pre-processing methods were used to process the PET/CT data. At312

first, the data in DICOM format were transferred into the NIFTI (Neuroimaging Informatics313

Technology Initiative) format for further processing. Second, the PET, CT and mask images314

were normalized: (1) for PET images, we applied a random intensity shift and scale of each315

channel with the shift value of 0 and scale value of 0.1; (2) for CT images, the shift and316

scale values were set to 1000 and 1/2000; (3) for mask images, the intensity value was317

normalized into the [0, 1] interval by replacing the outside value by 1. Third, PET and318

CT images were resized to 256 × 256 × 128 by linear interpolation, and mask images were319

resized to 256× 256× 128 by nearest neighbor interpolation. Lastly, the registration of CT320

and PET images was performed by B-spline interpolation. All the prepossessing methods321

can be found in the SimpleITK [54][55] toolkit. During training, PET and CT images322

were concatenated as a two-channel input. We randomly selected 80% of the data for323

training, 10% for validation and 10% for testing. This partition was fixed and used in all324

the experiments reported below.325

Parameter initialization. For the evidential layer module, we considered two variants based326

on the ENN classifier recalled in Section 3.1 on the one hand, and on an RBF network as327

described in Section 3.2 on the other hand. Both approaches are based on prototypes in328

the space of features extracted by the UNet module. When using ENN or RBF classifiers329

as stand-alone classifiers, prototypes are usually initialized by a clustering algorithm such330

as the k-means. Here, this approach is not so easy, because the whole network is trained in331

an end-to-end way, and the features are constructed during the training process. However,332

k-means initialization can still be performed by a four-step process:333

1. A standard UNet architecture (with a softmax output layer) is trained end-to-end;334

2. The k-means algorithm is run in the space of features extracted by the trained UNet;335

3. The evidential layer is trained alone, starting from the initial prototypes computed by336

the k-means;337

4. The whole model (feature extraction module and evidential layer) is fine-tuned by338

end-to-end learning with a small learning step.339

As an alternative method, we also considered training the feature extraction module and340

the evidential layer simultaneously, in which case the prototypes were initialized randomly341

from a normal distribution with zero mean and identity covariance matrix. For the ENN342

module, the initial values of parameters αi and γi were set, respectively, at 0.5 and 0.01, and343

membership degrees uik were initialized randomly by drawing uniform random numbers and344

normalizing. For the RBF module, the initial value of the scale parameter γi of RBF was345

set to 0.01, and the weight vi were drawn randomly from a standard normal distribution.346

Learning algorithm. Each model was trained on the learning set with 100 epochs using347

the Adam optimization algorithm. The initial learning rate was set to 10−3. An adjusted348

learning rate schedule was applied by reducing the learning rate when the training loss did349

not decrease in 10 epochs. The model with the best performance on the validation set350

was saved as the final model for testing. All methods were implemented in Python with the351
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PyTorch-based medical image framework MONAI, and were trained and tested on a desktop352

with a 2.20GHz Intel(R) Xeon(R) CPU E5-2698 v4 and a Tesla V100-SXM2 graphics card353

with 32 GB GPU memory.354

Evaluation criteria. The evaluation criteria most commonly used to assess the quality of
medical image segmentation algorithms are the Dice score, Sensitivity and Precision. These
criteria are defined as follows:

Dice(P, T ) =
2× TP

FP + 2× TP + FN
,

Sensitivity(P, T ) =
TP

TP + FN
,

Precision(P, T ) =
TP

TP + FP
,

where TP , FP , and FN denote, respectively, the numbers of true positive, false positive,355

false negative voxels (See Figure 10). The reported results in the following sections were356

obtained by calculating these three criteria for each test 3D image and then averaging over357

the patients. The Dice score is a global measure of segmentation performance. It is equal358

to twice the volume of the intersection between the predicted and actual tumor regions,359

divided by the sum of the volumes of these regions. Sensitivity is the proportion, among360

actual tumor voxels, of voxels correctly predicted as tumor. Precision is the proportion,361

among predicted tumor voxels, of voxels that actually belong to the tumor region; it is,362

thus, an estimate of the probability that the model is correct when it predicts that a voxel is363

in a lymphoma region. We note that neither sensitivity, nor precision are global performance364

criteria. We can increase sensitivity by predicting the tumor class more often (at the expense365

of misclassifying a lot of background pixels), and we can increase precision by being very366

cautious and predicting the tumor class only when it has a high probability (at the expense367

of missing a lot of tumor voxels). These two criteria, thus, have to be considered jointly.368

Finally, we can also remark that a forth criterion can also be defined: specificity, which is369

the proportion, among background voxels, of voxels correctly predicted as background (i.e.,370

TN/(TN + FP )). However, as there are much more background voxels than tumor ones,371

this criterion is not informative in tumor segmentation applications (it is always very close372

to 1).373

In addition to quality of the segmentation, we also wish to evaluate the calibration of374

output probabilities or belief functions (see Section 5.4). For that purpose, we will use an375

additional evaluation criterion, the Expected Calibration Error (ECE) [56]. The output376

pignistic probabilities from the evidential layer are first discretized into R equally spaced377

bins Br, r = 1, . . . , R (we used R = 10). The accuracy of bin Br is defined as378

acc(Br) =
1

| Br |
∑
i∈Br

1(Pi = Gi), (19)
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Figure 10: Geometric interpretation of the numbers of true positive (TP), false positive (FP), true negative
(TN) and false negative (TN) used for the definition of evaluation criteria.

where Pi and Gi are, respectively, the predicted and true class labels for sample i. The379

average confidence of bin Br is defined as380

conf(Br) =
1

| Br |
∑
i∈Br

Si, (20)

where Si is the confidence for sample i. The ECE is the weighted average of the difference381

in accuracy and confidence of the bins:382

ECE =
R∑

r=1

| Br |
N
| acc(Br)− conf(Br) |, (21)

whereN is the total number of elements in all bins, and | Br | is the number of elements in bin383

Br. A model is perfectly calibrated when acc(Br) = conf(Br) for all r ∈ {1, . . . , R}. Through384

the bin-size weighting in the ECE metric, the highly confident and accurate background385

voxels significantly affect the results. Because our dataset has imbalanced foreground and386

background proportions, we only considered voxels belonging to the tumor to calculate the387

ECE, similar to [57][58]. For each patient in the test set, we defined a bounding box covering388

the lymphoma region and calculated the ECE in this bounding box. We are interested in389

the patient-level ECE and thus reported the mean patient ECE instead of the voxel-level390

ECE (i.e., considering all voxels in the test set to calculate the ECE).391

5.2. Sensitivity analysis392

We analyzed the sensitivity of the results to the main design hyperparameters, which are:393

the numberH of extracted features, the number I of prototypes and the regulation coefficient394

λ. The influence of the initialization method was also be studied. In all the experiments395

reported in this section as well as in Section 5.3, learning in each of the configurations was396

repeated five times with different random initial conditions.397

Influence of the number of features. Table 1 shows the means and standard deviations (over398

five runs) of the three performance indices for ENN-UNet and RBF-UNet with different399

numbers of features (H ∈ {2, 5, 8}). The number of prototypes and the regularization400

coefficient were set, respectively, to I = 10 and λ = 0. The prototypes were initialized401
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Table 1: Means and standard deviations (over five runs) of the performance measures for different input
dimensions H, with I = 10 randomly initialized prototypes and λ = 0. The best values are shown in bold.

Model H Dice score Sensitivity Precision
Mean SD Mean SD Mean SD

ENN-UNet
2 0.833 0.009 0.819 0.019 0.872 0.018
5 0.831 0.012 0.817 0.016 0.870 0.011
8 0.829 0.006 0.816 0.010 0.877 0.019

RBF-UNet
2 0.824 0.009 0.832 0.008 0.845 0.016
5 0.825 0.006 0.817 0.016 0.862 0.010
8 0.821 0.011 0.813 0.010 0.862 0.022

Table 2: Means and standard deviations (over five runs) of the performance measures for different values of
the regularization coefficient λ, with I = 10 randomly initialized prototypes and H = 2 features. The best
values are shown in bold.

Model λ Dice score Sensitivity Precision
Mean SD Mean SD Mean SD

ENN-UNet
0 0.833 0.009 0.819 0.019 0.872 0.018

1e-4 0.822 0.007 0.818 0.026 0.839 0.035
1e-2 0.823 0.004 0.817 0.023 0.856 0.023

RBF-UNet
0 0.824 0.009 0.832 0.008 0.845 0.016

1e-4 0.825 0.011 0.811 0.022 0.869 0.020
1e-2 0.829 0.010 0.818 0.022 0.867 0.016

randomly. ENN-UNet achieves the highest Dice score and sensitivity with H = 2 features,402

but the highest precision with H = 8. However, the differences are small and concern only403

the third decimal point. Similarly, RBF-UNet had the best values of the Dice score and404

precision for H = 5 features, but again the differences are small. Overall, it seems that only405

two features are sufficient to discriminate between tumor and background voxels.406

Influence of the regularization coefficient. In the previous experiment, the networks were407

trained without regularization. Tables 2 and 3 show the performances of ENN-UNet and408

RBF-UNet for different values of λ, with I = 10 randomly initialized prototypes and, re-409

spectively, H = 2 and H = 8 inputs. With both settings, ENN-UNet does not benefit from410

regularization (the best results are obtained with λ = 0). In contrast, RBF-UNet is more411

sensitive to regularization, and achieves the highest Dice score with λ = 0.01. This find-412

ing confirms the remark already made in Section 3.3, where it was observed that an ENN413

classifier seems to be less sensitive to regularization than an RBF classifier (see Figure 5a).414

Influence of the number of prototypes. The number I of prototypes is another hyperpa-415

rameter that may impact segmentation performance. Table 4 shows the performances of416

ENN-UNet and RBF-UNet with 10 and 20 randomly initialized prototypes, the other hy-417

perparameters being fixed at H = 2 and λ = 0. Increasing the number of prototypes beyond418

10 does not seem to improve the performance of ENN-UNet, while it does slightly improve419
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Table 3: Means and standard deviations (over five runs) of the performance measures for different values of
the regularization coefficient λ, with I = 10 randomly initialized prototypes and H = 8 features. The best
values are shown in bold.

Model λ Dice score Sensitivity Precision
Mean SD Mean SD Mean SD

ENN-UNet
0 0.829 0.006 0.811 0.010 0.877 0.019

1e-4 0.827 0.008 0.809 0.019 0.873 0.024
1e-2 0.822 0.009 0.807 0.021 0.867 0.011

RBF-UNet
0 0.821 0.010 0.813 0.010 0.862 0.022

1e-4 0.827 0.004 0.830 0.005 0.852 0.012
1e-2 0.832 0.006 0.825 0.022 0.867 0.020

Table 4: Means and standard deviations (over five runs) of the performance measures for different numbers
I of randomly initialized prototypes, with H = 2 features and λ = 0. The best values are shown in bold.

Model I Dice score Sensitivity Precision
Mean SD Mean SD Mean SD

ENN-UNet
10 0.833 0.009 0.819 0.019 0.872 0.018
20 0.823 0.007 0.804 0.006 0.864 0.012

RBF-UNet
10 0.824 0.009 0.832 0.008 0.845 0.016
20 0.830 0.007 0.810 0.012 0.867 0.010

the performance of RBF-UNet in terms of Dice score and precision, at the expense of an420

increased computing time.421

Influence of the prototype initialization method. Finally, we compared the two initialization422

methods mentioned in Section 5.1. For k-means initialization, in the first step, a UNet model423

was trained with the following settings: kernel size=5, channels =(8, 16, 32, 64, 128) and424

strides=(2, 2, 2, 2). The spatial dimension, input and output channel were set, respectively,425

3, 2, and 2. This pre-trained UNet was used to extract H = 2 features, and 10 prototypes426

were obtained by running the k-means algorithm in the space of extracted features. These427

prototypes were fed into ENN or RBF layers, which were trained separately, with fixed428

features. For this step, the learning rate was set to 10−2. Finally, the whole model was fine-429

tuned end-to-end, with a smaller learning rate equal to 10−4. Table 5 shows the performances430

of ENN-UNet and RBF-UNet with random and k-means initialization. Both ENN-UNet and431

RBF-UNet achieve a higher Dice score when using the k-means initialization method, and432

the variability of the results is also reduced with this method.433

Not only does the k-means initialization method slightly improve the performances of434

ENN-UNet and RBF-UNet quantitatively, but it also tends to position the prototypes in435

regions of high data density. As a result, a high output mass m(Ω) signals that the input436

data is atypical. In that sense, the output mass function is more interpretable. This point437

is illustrated by Figures 11 and 12, which show the contours, in the two-dimensional feature438

space, of the masses assigned to the background, the tumor class and the frame of discern-439
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Table 5: Means and standard deviations (over five runs) of the performance measures for different ini-
tialization methods, with I = 10 prototypes, H = 2 features and λ = 0. The best values are shown in
bold.

Model Initialization Dice score Sensitivity Precision
Mean SD Mean SD Mean SD

ENN-UNet
Random 0.833 0.009 0.819 0.019 0.872 0.018
k-means 0.846 0.002 0.830 0.004 0.879 0.008

RBF-UNet
Random 0.824 0.009 0.832 0.008 0.845 0.016
k-means 0.839 0.003 0.824 0.001 0.879 0.008

ment when using k-means initialization (with λ = 10−2 and I = 10) with, respectively,440

ENN-UNet and RBF-Unet. For both models, the prototypes are well distributed over the441

two classes, and the mass on Ω decreases with the distance to the data, as expected. In442

contrast, when using random initialization (as shown in Figure 13 for the ENN-UNet model443

– results are similar with the RBF-UNet model), the prototypes are located in the back-444

ground region, and the mass m(Ω) does not have a clear meaning (although the decision445

boundary still ensures a good discrimination between the two classes).446

From this sensitivity analysis, we can conclude that the performances of both ENN-447

UNet and RBF-UNet are quite robust to the values of the hyperparameters, and that the448

two models achieve comparable performances. The k-means initialization method seems to449

yield better results, both quantitatively and qualitatively. The next section is devoted to a450

comparison with alternative models.451

5.3. Comparative analysis: segmentation accuracy452

In this section, we compare the performances of the ENN-UNet and RBF-UNet models453

with those of the baseline model, UNet [10], as well as three state-of-the-art models reviewed454

in Section 1: VNet [11], SegResNet [12] and nnUNet [13]. For all compared methods, the455

same learning set and pre-processing steps were used. All the compared methods were456

trained with the Dice loss function (17). Details about the optimization algorithm were457

given in Section 5.1. All methods were implemented based on the MONAI framework3
458

and can be called directly. For UNet, the kernel size was set as 5 and the channels were459

set to (8, 16, 32, 64, 128) with strides=(2, 2, 2, 2). For nnUNet, the kernel size was set as460

(3, (1, 1, 3), 3, 3) and the upsample kernel size was set as (2, 2, 1) with strides ((1, 1, 1), 2, 2, 1).461

For SegResNet [12] and VNet [11], we used the pre-defined model without changing any462

parameter. The spatial dimension, input channel and output channel were set, respectively,463

3, 2, and 2 for the four compared models. As for other hyperparameters not mentioned464

here, we used the pre-defined value given in MONAI. As shown by the sensitivity analysis465

performed in Section 5.2, the best results for ENN-UNet and RBF-UNet are achieved with466

λ = 0, I = 10, H = 2 and k-means initialization.467

3More details about how to use those models can be found from MONAI core tutorials https://monai.
io/started.html#monaicore.
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Figure 11: Contours in feature space of the masses assigned to the background (a), the tumor class (b)
and the frame of discernment (c) by the ENN-UNet model initialized by k-means. Training was done with
λ = 10−2, H = 2 and I = 10. Sampled feature vectors from the tumor and background classes are marked
in gray and red, respectively.
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Figure 12: Contours in feature space of the masses assigned to the background (a), the tumor class (b)
and the frame of discernment (c) by the RBF-UNet model initialized by k-means. Training was done with
λ = 10−2, H = 2 and I = 10. Sampled feature vectors from the tumor and background classes are marked
in gray and red, respectively.
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Figure 13: Contours in feature space of the masses assigned to the background (a), the tumor class (b)
and the frame of discernment (c) by the ENN-UNet model initialized randomly. Training was done with
λ = 10−2, H = 2 and I = 10. Sampled feature vectors from the tumor and background classes are marked
in gray and red, respectively.
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Table 6: Means and standard deviations (over five runs) of the performance measures for ENN-UNet,
RBF-UNet and four reference methods. The best result is shown in bold, and the second best is underlined.

Model Dice score Sensitivity Precision
Mean SD Mean SD Mean SD

UNet [51] 0.753 0.054 0.782 0.048 0.896 0.047
nnUNet [13] 0.817 0.008 0.838 0.028 0.879 0.032
VNet [11] 0.820 0.016 0.831 0.021 0.901 0.056

SegResNet [12] 0.825 0.015 0.832 0.042 0.876 0.051
ENN-UNet 0.846 0.002 0.830 0.004 0.879 0.008
RBF-UNet 0.839 0.003 0.824 0.001 0.879 0.008

Table 7: Conover-Iman test of multiple comparisons between the Dice scores obtained by the six models:
t-test statistics and p-values. P-values less than 0.01 are printed in bold.

ENN-UNet nnUnet RBF-UNet SegResNet UNet
nnUnet 6.759

0.0000
RBF-UNet 2.156 -4.602

0.0857 0.0004
SegResNet 5.349 -1.410 3.193

0.0001 0.3282 0.0088
UNet 10.283 3.524 8.127 4.934

0.0000 0.0043 0.0000 0.0002
VNet 6.054 -0.705 3.898 0.705 -4.229

0.0000 0.8091 0.0019 0.8669 0.0009

The means and standard deviations of the Dice score, sensitivity and precision over five468

runs with random initialization for the six methods are shown in Table 6, and the raw values469

are plotted in Figure 14. We can see that ENN-UNet and RBF-UNet achieve, respectively,470

the highest and the second highest mean Dice score. A Kruskal-Wallis test performed on471

the whole data concludes to a significant difference between the distributions of the Dice472

score for the six methods (p-value = 0.0001743), while the differences are not significant for473

sensitivity (p-value = 0.2644) and precision (p-value = 0.9496). Table 7 shows the results of474

the Conover-Iman test of multiple comparisons [59][60] with Benjamini-Yekutieli adjustment475

[61]. We can see that the differences between the Dice scores obtained by ENN-UNet and476

RBF-UNet on the one hand, and the four other methods on the other hand are highly477

significant (p-values < 10−2), while the difference between ENN-UNet and RBF-UNet is478

only weakly significant (p-value = 0.0857).479

Figure 15 shows two examples of segmentation results obtained by ENN-UNet and UNet,480

corresponding to large and isolated lymphomas. We can see, in these two examples, that481

UNet is more conservative (it correctly detects only a subset of the tumor voxels), which482

may explain why it has a relatively high precision. However, the tumor regions predicted483
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Figure 14: Values of the Dice score (a), sensitivity (b) and precision (c) for five runs of the six methods.

26



by ENN-UNet better overlap the ground-truth tumor region, which is also reflected by the484

higher Dice score.485

5.4. Comparative analysis: calibration486

Besides segmentation accuracy, another important issue concerns the quality of uncer-487

tainty quantification. Monte-Carlo dropout (MCD) [25] is a a state-of-the-art technique488

for improving uncertainty quantification capabilities of deep networks. In this section, we489

compare the ECE (21) achieved by UNet (the baseline), SegResNet (the best alternative490

method found in Section 5.3), and our proposals: ENN-UNet, and RBF-UNet, with and491

without MCD. For the four methods, the dropout rate was set to 0.5 and the sample num-492

ber was set to 20; we averaged the 20 output probabilities (the pignistic probabilities for the493

two evidential models) at each voxel as the final output of the model.494

The results are reported in Table 8. We can see that MCD enhances the segmentation495

performance (measured by the Dice index) of UNet et SegResNet, and improves the cali-496

bration of all methods, except SegResNet. Overall, the smallest average ECE is achieved497

by RBF-UNet and ENN-UNet with MCD, but the standard deviations are quite large. A498

Kruskal-Wallis test concludes to a significant difference between the distributions of ECE499

for the eight methods (p-value = 0.01). The p-values of the Conover-Iman test of multi-500

ple comparisons with Benjamini-Yekutieli adjustment reported in Table 9 show significant501

differences between the ECE of RBF-UNet with MCD one the one hand, and those of RBF-502

UNet without MCD, SegResNet with MCD, and UNet without MCD on the other hand.503

We also tested the pairwise differences between the ECE values obtained by RBF-UNet and504

ENN-UNet with MCD on the one hand, and UNet with and without MCD as well as Seg-505

ResNet with and without MCD on the other hand using the Wilcoxon rank sum test. The506

corresponding p-values are shown in Table 10. We find significant differences between the507

ECE RBF-UNet with MCD and those of the other methods, but only a weakly significant508

difference between ENN-UNet with MCD and UNet without MCD. In summary, there is509

some evidence that MCD improves calibration, even for evidential models, and that the best510

calibration is achieved by the RBF-UNet model, but this evidence is not fully conclusive511

due to the limited size of the dataset; our findings will have to be confirmed by further512

experiments with larger datasets.513

6. Conclusion514

An evidential framework for segmenting lymphomas from 3D PET-CT images with un-515

certainty quantification has been proposed in this paper. Our architecture is based on the516

concatenation of a UNet, which extracts high-level features from the input images, and517

an evidential segmentation module, which computes output mass functions for each voxel.518

Two versions of this evidential module, both involving prototypes, have been studied: one519

is based on the ENN model initially proposed as a stand-alone classifier in [31], while the520

other one relies on an RBF layer and the addition of weight of evidence. The whole model521

is trained end-to-end by minimizing the Dice loss. The initialization of prototypes has been522

shown to be a crucial step in this approach. The best method found has been to pre-train523
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PET image ENN-UNet UNet

Figure 15: Two examples of segmentation results by ENN-UNet and UNet. The first and the second row
are, respectively, representative of large and isolated small lymphomas. The three columns correspond, from
left to right, to the PET images and the segmentation results obtained by ENN-UNet and UNet. The white
and red region represent, respectively, the ground truth and the segmentation result.
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Table 8: Means and standard deviations (over five runs) of the Dice score and ECE for UNet, SegResNet,
ENN-UNet andRBF-UNet, with and without MCD. The best results are shown in bold, the second best are
underlined.

Model Dice score ECE(%)
Mean SD Mean SD

UNet 0.754 0.054 2.22 0.205
SegResNet 0.825 0.015 1.97 0.488
ENN-UNet 0.846 0.002 1.99 0.110
RBF-UNet 0.839 0.003 2.12 0.028

UNet with MC 0.828 0.005 1.93 0.337
SegResNet with MC 0.844 0.009 2.53 0.973
ENN-UNet with MC 0.841 0.003 1.53 0.075
RBF-UNet with MC 0.840 0.003 1.52 0.041

Table 9: Conover-Iman test of multiple comparisons between the ECE obtained by UNet, SegResNet, ENN
and RBF, with and without MCD: t-test statistics and p-values. P-values less than 0.01 are printed in bold.

ENN ENN-MC RBF RBF-MC SegRes SegRes-MC UNet
ENN-MC 0.926

1.0000
RBF -1.191 -2.118

0.7403 0.2892
RBF-MC 2.812 1.886 4.004

0.1145 0.3419 0.0095
SegRes 0.695 -0.232 1.886 -2.117

1.0000 1.0000 0.3761 0.3305
SegRes-MC -0.860 -1.787 0.331 -3.673 -1.555

1.0000 0.3530 1.0000 0.0159 0.4756
UNet -1.357 -2.283 -0.165 -4.169 -2.051 -0.496

0.6337 0.2677 1.0000 0.0119 0.2962 1.0000
UNet-MC 0.430 -0.496 1.621 -2.382 -0.265 1.290 1.787

1.0000 1.0000 0.4507 0.2564 1.0000 0.6667 0.3824

Table 10: P-values for the Wilcoxon rank sum test applied to the comparison of ECE obtained by ENN-
UNet and RBF UNet with MCD on the one hand, and the four other methods on the other hand (UNet
and SegResNet with and without MCD).

UNet UNet-MC SegRes SegRes-MC
ENN-MC 0.095 0.67 0.69 0.31
RBF-MC 0.0079 0.012 0.055 0.0079
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a UNet with a softmax output layer, initialize the prototype with the k-means algorithm524

in the space of extracted features, train the evidential layer separately, and fine-tune the525

whole network. Our model has been shown to outperform the baseline UNet model as well526

as other state-of-the-art segmentation method on a dataset of 173 patients with lymphomas.527

Preliminary results also suggest the outputs of the evidential models (in particular, the one528

with an RBF layer) are better calibrated and that calibration error can be further decreased529

by Monte Carlo dropout. These results, however, will have to be confirmed by further530

experiments with larger datasets.531

This work can be extended in many directions. One of them is to further evaluate532

the approach by applying it to other medical image segmentation problems. One of the533

potential problems that may arise is related to the dimensionality of the feature space. In534

the application considered in this paper, good results where obtained with only two extracted535

features. If some other learning tasks require a much larger number of features, we may need536

a much higher number of prototypes and learning may be slow. This issue could be addressed537

by adapting the loss function as proposed, e.g., in [62]. We also plan to further study the538

calibration properties of the belief functions computed by our approach (using calibration539

measures specially designed for belief functions), as well as the novelty detection capability540

of our model.541
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