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Abstract

A well-established methodology to capture interphases in heterogeneous materials is to replace them by a zero-

thickness interface model. Commonly accepted interface models intuitively assume that to satisfy the angular momen-

tum balance, interfaces must coincide with the mid-layer of their corresponding interphases. Recently, via adopting

weighted averages, an extended general interface model has been developed that allows for arbitrary interface posi-

tions while fulfilling the angular momentum balance. This manuscript incorporates this novel interface model into

the Mori–Tanaka method within the framework of homogenization. Analytical solutions are developed to determine

effective properties as well as average local fields for fiber-reinforced and particle-reinforced composites. Compu-

tational simulations using the finite element method (FEM) are carried out to compare with the analytical solutions.

Through a set of numerical examples, the significance of the interface position on the overall response of heteroge-

neous materials is highlighted. Our extended framework clarifies various ambiguous observations originating from

the trivial assumption of restricting the interface position to the mid-plane. One advantage of the current interface

model is that it covers both the elastic and cohesive interface models at its limits and therefore the analytical solutions

are widely applicable regardless of the interface type.

Keywords: Mori–Tanaka Homogenization, Composites, Extended general interface, Size effects

1. Introduction

In almost all heterogeneous materials, different factors such as manufacturing imprecisions, poor chemical adherence,

coating or damage, give rise to the formation of imperfections between the constituents. As a result, when analyzing

such media, an intermediate interphase region between the constituents shall be introduced to account for the imper-

fections. Interphases significantly influence the overall behavior of heterogeneous materials since they play a crucial
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role in force transfer between the constituents. Among the early works on the topic, the concept of an interphase in

composites was introduced by Papanicolaou et al. [1, 2] where they investigated the thermomechanical properties of

an interphase layer in various composites via comparing the experimental data against the results obtained from the

rule of mixture.

1.1. Interphase models

The primary idea to study interphases in heterogeneous materials was to consider them as a homogeneous independent

phase between the constituents [3–5]. A modified Mori–Tanaka method was proposed in [6, 7] where the elastic

fields within the constituents of composites with coated fibers and particles were determined. Benveniste et al. [8,

9] employed the Mori–Tanaka method to obtain the effective moduli and the local stresses in the constituents of a

composite with coated fibers. Duan et al. [10] developed a methodology to determine the stress and strain fields within

arbitrarily oriented spheroidal inhomogeneities surrounded by interphases within an infinite heterogeneous medium.

Further studies on the overall response of composites embedding homogeneous interphases can be found in [11–15]. A

more generic model to study interphases is to assume the interphase to possess spatially variable properties. Examples

of such interphases include inhomogeneous interphases, graded interphases, or multilayered interphases. A pioneering

work on these interphase types was carried out on a fiber-reinforced polymer composite by Papanicolaou et al. [16]

where they investigated the adhesion efficiency between the matrix and fiber in the presence of an inhomogeneous

interphase. Inhomogeneous continuum modelling of functionally graded interphases has been developed by Ostaja-

Starzewski et al. [17] where they accounted for local anisotropy and randomness of the constitutive laws. Theocaris

et al. [18, 19] proposed a multi-cylinder model to determine the overall properties of fiber composites with variable

interphase properties. Dasgupta and Bhandarkar [20] utilized the generalized self-consistent method and the Mori–

Tanaka method to determine thermo-mechanical properties of composites with multiply coated cylindrical fibers,

see [21] for a similar study on ellipsoidal fibers. Further studies on the overall response of composites embedding

inhomogeneous or graded interphases include [22–28].

1.2. Interface models

A well-established methodology to capture finite-thickness interphases is to replace them by a zero-thickness interface

model characterized by certain field jumps. Within the framework of elasticity, the pertinent interfacial field jumps

are traction and displacement jumps. This idea was originally proposed by Sanchez-Palencia and Pham-Huy [29, 30]

and later extended by Benveniste [31, 32], Karlbring [33, 34], Hashin [35–37] and Bövik [38]. There exist two main

approaches to determine the correlation between the interphase and interface properties and jump conditions: the

asymptotic approach and the phenomenological approach. This contribution mainly focuses on the latter.
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The asymptotic approach is mainly based on exploiting the formal asymptotic expansion via Taylor series and

imposing it on the displacement and traction fields within the finite-thickness interphase [32, 39–42]. The resulting

expressions are then truncated, in many cases to first order with respect to the interphase thickness. Afterwards, via

the transmission conditions at the interphase boundaries, a series of jump conditions at the interface are obtained in

terms of the primal and secondary fields defined in the bulk neighbors [43–46]. Since the interfacial conditions are

determined based on the interphase thickness-dependent quantities, no further assumptions are required to define the

tangential or orthogonal behavior of the interface. As a result, the displacement or traction jump across the interface

become a function of the displacement and traction fields in the bulk. While the majority of the contributions on

asymptotic approach have studied flat interphases with first order expansions, only few took the interphase curvature

into account and considered higher order jump conditions [47–50]. The phenomenological approach assumes the

interface as an independent energetic lower dimension medium. Therefore, the interface possesses its own elastic

parameters representing its tangential and orthogonal behavior. Among the well-established interface models based

on the phenomenological approach, the elastic (stress-type or membrane type) interface model, the cohesive (spring-

type) interface model and the general interface model are the most widely adopted ones. In the elastic interface

model [51–53] the displacement remains continuous across the interface while the traction field experiences a jump

due to the interface elasticity. In the cohesive interface model [54–56] a displacement jump occurs across the interface

while the traction field remains continuous. In the general interface model [57, 58] both displacement and traction

jumps across the interface are admissible. Note, the elastic and cohesive interface models can be interpreted as two

limit cases of the general interface model. Table 1 gathers a selection of relevant contributions on interface models

based on the phenomenological approach within the scope of mechanical problems.

Remark on the physical meaning of energetic surfaces and interfaces: Aside from capturing the interphase be-

havior, surfaces and interfaces play a crucial role in determining the overall behavior of materials at small scales.

Several nano-structured materials exhibit qualitatively different physical, mechanical and chemical behavior due to

their large area-to-volume ratio. For instance, it has been shown experimentally that the electric performance of a

particle can be improved with surface modification at nano-scales [59], or it is observed that the melting temperature

of particles is suppressed at nano-scales [60]. Such extraordinary behavior rendered by materials at small scales is

rationalized by invoking the concept of surface/interface energy. Within the framework of elasticity, there exist two

common strategies to formulate the surface/interface energy. First, to assume that the interface energy is a function of

the interface strain/stress which gave rise to the development of the elastic interface model. Second, to assume that the

interface energy is a function of the deformation jump across the interface which gave rise to the development of the

cohesive interface model. While the elastic interface is a well-established model to account for surface tension, the

3



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

cohesive interface model is commonly adopted to tackle problems involving discontinuities, cracks or dislocations.

The term “general” in the general interface model indicates that the interfacial energy depends on both deformation

jump across the interface and interface strain/stress. For complex problems involving both interface elasticity and in-

terfacial deformation discontinuity, the general interface has proven to be an accurate model. Thus, both the cohesive

interface model and elastic interface model can be understood as two limits of the general interface model.

1.3. Significance of the interface position

As mentioned earlier, we substitute a non-zero thickness interphase with an interface of zero thickness which could

be located at any positions throughout the thickness of the associated interphase. The interface could either coincide

with the mid-plane of the corresponding interphase or be closer to any of the bulk constituents. While there exist

numerous contributions in the literature investigating interface effects on the overall behavior of materials, only very

few studies are available elaborating on interface position and its role on the material response. This, perhaps, stems

from the fact that for the two most widely adopted interface models, cohesive and elastic interface models, the interface

position does not play any role in determining the interfacial behavior. Classical cohesive interface models [56,

96, 97, 101–103] commonly adopt the standard traction-separation law in which the displacement jump across the

interface determines the average cohesive tractions. For the elastic interface model, the interface is geometrically

Table 1: Selection of relevant contributions on interface models within the scope of mechanical problems.

co
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e

Barenblatt [55, 61], Dugdale [54], Mal and Bose [62], Theocaris et al. [63], Benveniste [31], Benveniste and Miloh [64], Aboudi [65,
66], Hashin [35, 36, 67, 68], Lipton and Vernescu [69] Gao [70], Zhao and Weng [71], Duan et al. [72–74], Ru [75, 76], Mura, Jasuik
and Tsuchida [77, 78], Zhong and Meguid [79], Huang et al. [80], Lee et al. [81], Benveniste and Aboudi [82], Jasiuk et al. [83,
84], Königsberger et. al. [85, 86], He and Jiang [87], Qu et. al. [88], He and Liu [89], Needleman [56], Xu and Needleman [90],
Bisegna and Luciano [91], Wriggers et al. [92], Achenbach and Zhu [93, 94], Zhu et al. [95], Ortiz and Pandolfi [96], Gasser and
Holzapfel [97], Mergheim and Steinmann [98], Hansbo and Hansbo [99, 100], van den Bosch et al. [101–103], Vossen et al. [104],
Ottosen et al. [105, 106], Heitbreder et al. [107, 108], Ghosh et al. [109], Wells and Sluys[110], Guo et al. [111], Fagerström and
Larsson [112], Ghosh et al. [113], Paggi and Wriggers [114, 115], Rezaei et. al. [116, 117], Bayat et. al. [118]

el
as

tic
in

te
rf

ac
e

Gurtin and Murdoch [51, 52, 119], Gao et al. [120, 121], Caillerie [122], Benveniste and Miloh [32], Rubin and Benveniste [123],
Rizzoni et al. [43], Fried and Gurtin [124], Dingreville and Qu [125, 126], Sharma et al. [127, 128], Yang [129], Sun et al. [130], Duan
et al. [73, 74, 131–133], Huang and Wang [134], Monteiro et al. [135], Huang and Sun [136], He [137], Le-Quang and He [138–
140], Mogilevskaya et al. [141–144], Kushch et al. [145–147], Muskhelishvili [148], Kushch and Sevostianov [149], Benveniste
and Miloh [150], Gao et al. [121], Monchiet and Bonnet [151], Kushch [152] Sharma and Wheeler [153], Chen and Dvorak [154],
Chen et al. [155], Fischer and Svoboda [156], Javili [157], Javili et al. [158] Nazarenko et al. [159], Chatzigeorgiou et al. [160–162],
Steigmann and Ogden [53, 163], Zemlyanova and Mogilevskaya [164, 165], Han et al. [166], Yvonnet et al. [167], Javili et al. [168–
170] Koutsawa et al. [171]

ge
ne

ra
li

nt
er

fa
ce

Hashin [57], Benveniste [58, 172, 173], Bövik [38], Monchiet and Bonnet [174], Gu and He [175], Gu et al. [176, 177], Serpilli et
al. [46], Wang and Ye [178], Xu et al. [179], Firooz et al. [180, 181], Chatzigeorgiou et al. [182], Gu et al. [183], Javili et al. [184, 185],
Kaessmair et al. [186], Javili [187], Saeb et al. [188–190], Pham et al. [191], Firooz and Javili [192], Firooz [193]
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coherent by definition and therefore the interface position does not play a role in the interfacial behavior. For the

general interface model though, due to admissible interface opening and interface elasticity, the interface position

enters the governing equations and plays a significant role in the overall interfacial behavior. Commonly accepted

general interface models [57, 58, 108, 183, 184, 194, 195] intuitively assume that the interface is located at the

mid-plane of its associated interphase. This simplifying assumption has been essentially made to trivially satisfy the

angular momentum balance on the interface [104–107]. Mergheim and Steinmann [98] and Hansbo and Hansbo [100]

carried out further investigations on the interface position when dealing with weak discontinuities. Recently, Saeb

et al. [196] revisited this issue via employing weighted averages and demonstrated that the interface is allowed to

take any arbitrary position between its bulk neighbors and yet satisfying the angular momentum balance. They

demonstrated that the trivial assumption of restricting the interface position to the mid-layer is only justifiable when

capturing the behavior of uniform interphases. More complex interphase structures such as graded or inhomogeneous

interphases can be accurately captured only if the interface is situated at a position other than the mid-plane, resulting

in the notion of an extended general interface model, see Fig. 1. Firooz et al. [197] exploited this methodology within

the framework of homogenization and developed analytical expressions for the overall behavior of fiber-reinforced

and particle-reinforced composites using the composite cylinder assemblage (CCA), composite sphere assemblage

(CSA) and the generalized self-consistent method (GSCM). This contribution completes [197] in that it introduces the

Mori–Tanaka homogenization to study composites embedding extended general interfaces. Furthermore, in addition

to numerical solutions using FEM, we compare our findings with those in [197].

Remark on the mathematical interpretation of interface position: The position of the interface, holds a mathe-

matical interpretation rather than physical. Interface position indeed determines the contribution of its bulk neighbors

in determining the balance laws and the interface conditions. In other words, unequal contributions from the bulk

neighbors become possible if the general interface model is furnished with an additional feature, called interface po-

sition. For instance, Saeb et al. [196] demonstrated that when using the general interface model to replace a graded

interphase in a heterogeneous medium, the interface shall be located at the stiffer part of the interphase so as to capture

interphase effects more accurately.

1.4. Objectives and key features

The main objective of this manuscript is to propose a modified Mori–Tanaka homogenization approach to account

for extended general interfaces with an arbitrary interface position for both fiber-reinforced and particle-reinforced

composites. In order to establish a stand-alone contribution, a brief overview is provided first to introduce the notation,

elaborating the kinematics of the problem, balance equations, material modeling, micro-to-macro transition and step-

by-step Mori–Tanaka homogenization. Our developed methodology not only obtains the overall elastic moduli of
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Figure 1: Classification of interface models based on the continuity of the displacement and traction fields and interface position. All the classical
interface models assume that the interface coincides with the mid-layer whereas the extended general interface model accommodates arbitrary
interface positions.

composites, but also determines the concentration tensors in each phase of the medium. The primary advantage of the

concentration tensors is that they enable determination of the average of stress or strain fields within the constituents of

the medium, hence, furnishing better insights into the material micro-structural response. Through a set of examples,

the influence of different interface properties on the overall response of heterogeneous materials will be examined and

the notion of smaller-stronger and smaller-weaker responses will be critically revisited when the extended general

interface model is accounted for.

Remark on accounting for damage and softening: Our proposed extended general interface model recovers any-

thing that a cohesive interface model or an elastic interface model can capture, but it can also do a lot more than

that, See Fig. 3. The extended general interface model here can, in principle, account for damage mechanism via
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introducing more complex traction-separation laws through a different interface constitutive model. More precisely,

the interface out-of-plane response, commonly referred to as traction-separation law, can be nonlinear and it may as

well include damage or softening. In the extended general interface model, since the interface has both in-plane and

out-of-plane response, accounting for interface damage requires further elaboration to distinguish between orthogonal

damage and tangential damage on the interface. Saeb et al. [190] carried out a comprehensive study on modeling of

damage using the general interface model. However, in this contribution, we have limited the discussion to the kine-

matics and kinetics of the problem within the framework of linear elasticity as well as the homogenization using the

Mori–Tanaka method. Leaving out “damage” in the discussion here is not a shortcoming of the model but it is rather

an assumption to obtain analytical expressions. The interface model itself is generic enough to allow for debonding,

softening and damage.

1.5. Notations and definitions

Throughout this manuscript, macroscopic quantities are distinguished from microscopic quantities by a left super-

script “M”. For instance, M{•} is a macroscopic quantity with {•} being its microscopic counterpart. Interface related

quantities are distinguished from the bulk quantities by a bar placed on top them. That is, {•} denotes an interface

quantity with its bulk counterpart {•}. The non-standard tensor products between two arbitrary second-order tensors

A and B are defined as [A⊗B]i jkl = [A]ik[B] jl and [A⊗B]i jkl = [A]il[B] jk.

1.6. Organization of the manuscript

The remainder of this manuscript is organized as follows. Section 2 presents the governing equations for a continuum

body embedding extended general interfaces. This is then followed by establishing the extended Mori–Tanaka method

in Section 3 where analytical solutions for the effective properties of composites are obtained. Through a series

of numerical examples in Section 5, the effects of the interface position on the overall behavior of composites are

examined in detail. Section 6 summarizes this work and provides further outlooks.

2. Governing equations

This section elaborates on the governing equations of a continuum body embedding an extended general interface

within the framework of linear elasticity. Here the position of the interface is no longer restricted to the mid-layer. Fur-

ther details on the derivation of the equations are available in [196, 197]. The analysis carried out in this manuscript

is based on the assumption that there exist a fictitious graded interphase whose response is fully captured via our pro-

posed extended general interface model. Since the main objective of our contribution is to extend the Mori–Tanaka

homogenization scheme to account for extended general interfaces with variable interface positions and elaborate the
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pertinent kinetics and kinematics, we start our analysis from one step forward and do not detail on how interphase

parameters and interface conditions/parameters are related. Undoubtedly, a comprehensive study investigating energy

equivalence between interphase and interface aiming to obtain one-to-one correspondence between interphase and

interface material parameters seems desirable and shall be considered as a separate contribution. See Saeb et al. [196]

Figure 2: Problem definition for continuum bodies embedding an extended general interface within the homogenization framework. The macro-
structures with their underlying RVE are shown for both two- and three-dimensional settings. A finite-thickness interphase is replaced with a
zero-thickness extended general interface model with arbitrary interface position.
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for a similar computational study at large deformations.

Figure 2 provides an illustrative definition of our problem in both two and three dimensional settings. Each of

the two continuum bodies on top is assumed to occupy a configuration MB representing a heterogeneous material at

the macro-scale. At the micro-scale, the corresponding configurations are denoted as B which indeed serve as the

representative volume elements (RVE) that simply consist of an inhomogeneity surrounded by a matrix, see [195, 198–

200]. In this contribution, to capture isotropy, the RVEs are considered to be circular for the two-dimensional setting

and spherical for the three-dimensional setting. The interphase between the constituents is replaced by an extended

general interface model. The extended general interface model is identified by three key features. First, it allows

for interface opening associated with a displacement jump across the interface. Second, the interface displays elastic

behavior which gives rise to a stress jump across the interface. Third, the interface can sit on any arbitrary layer

between the constituents enabling unequal contributions from the neighbors to the interfacial response. As shown in

Fig. 2, the interface I splits the micro-structures into two disjoint subdomains, denoted as B+ and B−, corresponding

to the plus and minus sides of the interface, respectively. The interface sides B+ and B− are allowed to detach/distance

from each other. The unit vectors n and n signify the normals to the external boundary and the interface, respectively.

The jump operator and the classical average operator on the interface read

jump operator: [[{•}]] =
[
{•}+ − {•}−

]
, average operator: {{{•}}} =

1
2

[
{•}+ + {•}−

]
, (1)

with the superscripts indicating the interface sides. In this contribution, following the framework established in [196,

197], we employ an extended approach which employs the weighted average operator and complementary weighted

average operator enabling unequal contributions from the plus and minus side of the interface as

weighted average operator: {{{•}}}α = α {•}+ + [1 − α] {•}− ,

complementary weighted average operator: {{{•}}}[1−α] = [1 − α] {•}+ + α {•}− ,
with 0 ≤ α ≤ 1 . (2)

The parameter α defines the interface position which plays a crucial role in determining the kinematics of the extended

general interface model. As shown in Fig. 2, when α < 0.5 the interface is closer to the inhomogeneity, when α > 0.5

the interface is closer to the matrix and when α = 0.5 the interface coincides with the mid-plane. Note, α = 0.5

recovers the classical definition of the general interface model. Let u+ and u− define the displacement fields in the

plus and minus sides of the interface, respectively. Exploiting the weighted average operator defined in Eq. (2), one

9
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can define a generic form for the interface displacement u which reads

u := {{u}}α = αu+ + [1 − α] u− . (3)

The strain fields in the bulk and on the interface accordingly read

ε =
1
2

[
I · Grad u + [Grad u] T · I

]
in B , ε =

1
2

[
I · Grad u +

[
Grad u

]T · I
]

on I , (4)

where I is the second-order identity tensor and I := I− n⊗ n. The interface operators Grad {•} and Div {•} are defined

as

Grad {•} := Grad {•} · I and Div{•} := Grad{•} : I . (5)

Equipped with the kinematics definition of the problem, we proceed with the balance equations. Here, we limit our

discussion to the micro-scale problem, thus body forces vanish from the governing equations. The linear momentum

balance in the bulk and on the interface read [197]



Divσ = 0 in B ,

t = σ · n on ∂B ,



Divσ + [[σ]] · n = 0 along I ,

t = {{σ}}1−α · n =
[
1 − α] [σ+ · n] + α

[
σ− · n] across I ,

(6)

with σ and σ being the bulk and interface stresses and t and t being the bulk and interface tractions, respectively. The

angular momentum balance equations can simply be obtained by writing the moments acting on the body with respect

to an arbitrary reference point. For the bulk and the interface, one can write the angular momentum balance equation

as [197]

e : σT = 0 in B , [[x]] × {{σ}}1−α · n︸     ︷︷     ︸
t

+ e : σT
+

[{{x}}α − x
] × [[σ]] · n = 0 on I , (7)

with e being the Levi–Civita permutation tensor and x and x being the bulk and interface position vectors, respectively.

The bulk angular momentum balance is simply satisfied due to the symmetry of the Cauchy stress σ = σT . However,

fulfilling the interface angular momentum balance is a more intricate task and can be sufficiently satisfied via imposing

the three conditions [[x]]
∣∣∣
∣∣∣ t, σT

= σ and x = {{x}}α. The first two conditions can be guaranteed via proper definition of

interface constitutive laws without any restriction on the interface position. However, the third condition x = {{x}}α is

satisfied if the interface position is restricted by the weighted average of its two sides [196]. Clearly, this definition of

10
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the interface position furnishes the interface with a new degree of freedom which significantly enhances the versatility

of the extended general interface model towards capturing graded interphases.

To obtain the constitutive material behavior of the bulk and the interface, we utilize a variational approach based

on the existence of a free energy density. The free energy density of the body contains the contribution from the bulk

free energy density ψ and the interface free energy density ψ which read

ψ =
1
2
ε : C : ε in B, ψ =

1
2
ε : C : ε +

1
2

C :
[
[[u]] ⊗ [[u]]

]
on I , (8)

with C and C being fourth-order constitutive tensors of the bulk and interface, respectively. The second-order tensor

C characterizes the interface orthogonal behavior. Note, the interface free energy density is composed of two parts

associated with the interface tangential and orthogonal behavior. Using the free energy densities (8), the constitutive

Figure 3: Illustration of recovering all the previously introduced interface models by the extended general interface model. The classical general
interface model can be recovered by setting α = 0.5. The cohesive interface model is recovered when λ = µ = 0 and k 9 ∞ and α = 0.5. The
conditions λ , 0, µ , 0 and k → ∞ and α = 0.5 recover the elastic interface model. Finally, the perfect interface model is recovered when
λ = µ = 0 and k → ∞ and α = 0.5.
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relations for the bulk and the interface read

σ =
∂ψ

∂ε
in B , σ =

∂ψ

∂ε
and t :=

∂ψ

∂[[u]]
on I. (9)

The bulk material response is assumed to be (linear) isotropic elastic while for the interface we additively decompose

the material response into a tangential response along the interface and an orthogonal response across the interface.

That is

C = µ
[
I⊗ I + I⊗ I

]
+ λ I ⊗ I =⇒ σ =

∂ψ

∂ε
= 2 µ ε + λ

[
ε : I

]
I in B ,

C = µ
[
I⊗ I + I⊗ I

]
+ λ I ⊗ I =⇒ σ =

∂ψ

∂ε
= 2 µ ε + λ

[
ε : I

]
I on I ,

C = k I =⇒ t =
∂ψ

∂[[u]]
= k [[u]] on I ,

(10)

with λ and µ being the bulk Lamé parameters. The parameters λ and µ are the interface Lamé parameters which

represent interface tangential elasticity or resistance against in-plane stretch. The interface orthogonal resistance

k accounts for cohesive resistance or resistance against opening. It shall be underlined that the extended general

interface parameters can recover any of the classical interface models such as general interface model, elastic interface

model, cohesive interface model and perfect interface model. The conditions required to recover the classical interface

models are illustrated in Figure 3 .

The final step to complete the homogenization framework is to bridge the micro- and macro-scales. At the micro-

scale, the constitutive response is assumed to be known. Solving the associated boundary value problem and proper

averaging over the RVE renders the macroscopic response [195, 197, 201–204]. The macroscopic stress and strain can

be defined as

Mε =
1
V

∫

B
ε dV +

1
V

∫

I

1
2

[
[[u]] ⊗ n + n⊗ [[u]]

]
dA , and Mσ =

1
V

∫

B
σ dV +

1
V

∫

I
σ dA . (11)

Using the extended divergence theorem, one can write the above equations as surface integrals reading

Mε =
1
V

∫

∂B

1
2

[u ⊗ n + n⊗ u] dA , and Mσ =
1
V

∫

∂B
t ⊗ x dA . (12)
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The incremental energy densities at micro- and macro-scales read

micro-scale:



δψ = σ : δε in B ,

δψ = σ : δε + t · [[δu]] on I ,
macro-scale:



δMψ = Mσ : δMε in MB ,

δMψ ≈ 0 on MI .
(13)

Note that there is no interfacial energy at the macro-scale. Central to the homogenization is the Hill–Mandel condition

which imposes an incremental energy equivalence between the micro- and macro-scales. The interface-enhanced

Hill–Mandel condition reads

δMψ
!
=

1
V

∫

B
δψ dV +

1
V

∫

I
δψ dA , (14)

with !
= denoting that the equality is a condition. Inserting the microscopic and macroscopic incremental energy

densities (13) into the Hill–Mandel condition yields

1
V

∫

B
σ : δε dV +

1
V

∫

I

[
σ : δε + t · [[δu]]

]
dA − Mσ : δMε

!
= 0 . (15)

Finally, via importing the macro strain and macro stress relations from Eq. (11) into Eq. (15), we arrive at the final

form of the interface-enhanced Hill-Mandel condition reading

∫

∂B

[
δu − δMε · x

]
·
[
t − Mσ · n

]
dA !

= 0 . (16)

Among all the boundary conditions satisfying the Hill–Mandel condition, the linear displacement boundary condition

(DBC) and constant traction boundary condition (TBC) are of our interest here1. See Firooz et al. [193] for a com-

prehensive study on the effects of the boundary condition and the RVE type on the overall behavior of heterogeneous

materials in the computational homogenization framework. Note, Eqs. (12)–(16) hold for closed interfaces suitable

to study composite with spherical particles and in-plane properties of composites with cylindrical fibers. For more

general studies accounting for open interfaces, see [205].

Remark on the stress symmetry condition in the presence of surface tension Since the elastic response along the

interface follows the surface elasticity theory of Gurtin–Murdoch, it is natural to scrutinize its validity in the presence

of surface tension or other interface initial stresses. This discussion is particularly crucial because it is well established

that the (linearized) stress along the interface loses its symmetry in the presence of a surface tension γ. Via a consistent

1Obviously, periodic boundary condition (PBC) is another viable choice which satisfies the Hill–Mandel condition. However, for circular and
spherical RVEs, this boundary condition is not of particular interest.
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linearization procedure, we argue that the non-symmetric structure of the linearized surface stress does not violate the

angular momentum balance. Let Π denotes the linearized interface stress at the reference configuration. That is

Π = γ I +Ceff : ε + γGrad u , (17)

with

Ceff = 2 µeff I
sym + 2 λeff I

vol with I
vol := 1

2 [ I ⊗ I ] , I
sym := 1

2 [ I⊗ I + I⊗ I ] , (18)

that immediately implies

Π = γ I + [ 2 µeff I
sym + 2 λeff I

vol ] : ε + γGrad u , (19)

or alternatively

Π = γ I + 2 [µ − γ] ε + [λ + γ]
[
Tr ε

]
I + γGrad u with Tr ε = ε : I , (20)

which is precisely the interface stress as proposed by Gurtin and Murdoch [51]. Note that in the absence of surface

tension,Π coincides with σ and its symmetry is trivially satisfied but the same cannot be said aboutΠ itself. However,

as we show shortly, this “non-symmetry” is not in violation of the linearized angular momentum balance. To do so,

we define the linearization operator L on the interface as

L {•} = {•}
∣∣∣∣
I

+
∂{•}
∂F

∣∣∣∣
I

: [F − I] = {•}
∣∣∣∣
I

+
∂{•}
∂F

∣∣∣∣
I

: Grad u , (21)

where u denotes the infinitesimal displacement on the interface, but not necessarily tangential to the interface, and F

is the deformation gradient along the interface. From definition (21), it follows that

L F ≡ I + Grad u and Π ≡ L P , (22)

with P being the interface Piola stress. We omit the intermediate derivations for the sake of brevity. In order to obtain

the linearized balance of angular momentum, we apply the identity

L (A · B) = L A · B|I + A|I ·L B − (A · B)|I , (23)

14
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on the interface angular momentum balance P · Ft = F · Pt at finite deformations. The linearization of P · Ft reads

L (P · Ft) = L P · Ft|I + P|I ·L Ft − (P · Ft)|I . (24)

Using F|I = I, P|I = γ I and the symmetry property of γ I we obtain

L (P · Ft) = γ I +Ceff : ε + γ [Grad u + Gradt u] , (25)

which is indeed symmetric and fulfills the angular momentum balance a priori. Note that although we have elaborated

on the symmetry condition for a surface tension γ, an identical approach can also be employed to investigate this

property for any symmetric initial stress σ0.

3. Interface-enhanced Mori–Tanaka method

This section aims to establish an interface-enhanced Mori–Tanaka method for composites embedding extended gen-

eral interfaces with arbitrary interface positions. Our proposed framework not only determines the effective properties

of composites but also provides global concentration tensors which link the macroscopic fields with the average fields,

thus furnishing the state of stress and strain in each phase of the medium. Chatzigeorgiou et al. [182] developed ana-

lytical estimates for the effective properties of fiber composites with general interfaces. Using energy principles, Duan

et al. [206] proposed to substitute the inhomogeneity/interface system with an equivalent inhomogeneity to predict

the overall behavior of the medium. Both methodologies provide reasonable estimates compared to full field ho-

mogenization strategies, like the periodic homogenization framework, but they cannot provide information about the

local fields that are developed in various phases of the medium. Our proposed methodology here is similar to [206],

but instead of looking for an equivalent inhomogeneity, we seek strain and stress dilute concentration tensors of the

inhomogeneity/interface system, see also [180] and [181]. The idea of providing dilute concentration tensors is mo-

tivated by similar techniques in the literature for coated particles or fibers [8, 207–210]. Throughout this section, the

superscripts (1) and (2) denote the properties associated with the inhomogeneity and the matrix, respectively.

Figure 4 shows the multi-scale representation of a heterogeneous continuum body for both two-dimensional and

three-dimensional problems. Figure 4 (left) depicts the RVE consisting of multiple inhomogeneities occupying the

domain B1 with the overall volume of V1 embedded in a matrix occupying the domain B2 with the volume V2.

Evidently, B = B1 ∪ B2 and V = V1 + V2 and the inhomogeneities overall volume fraction is f = V1/V . Figure 4

(right) shows a cutout of the RVE representing the Eshelby problem consisting of a heterogeneity occupying the domain

Ω1 with radius r1 surrounded by an extended general interface I which is embedded in an infinite matrix occupying

15
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Figure 4: Inhomogeneity with extended general interface inside an infinite matrix (left) and the RVE consisting of the inhomogeneity with extended
general interface inside a matrix material (right).

the domain Ω2 with the boundary ∂Ω∞. The inhomogeneity is considered to be the minus side of the interface

with elasticity tensors C(1) whereas the matrix is considered to be the plus side of the interface with the elasticity

tensor C(2). It is noteworthy that while the domains B1 and Ω1 are identical, there is a subtle difference between the

domains B2 and Ω2. The domain B2 corresponds to a finite matrix belonging to the RVE with the volume fraction

1 − f whereas the domain Ω2 corresponds to a an infinite matrix surrounding the inhomogeneity associated with the

Eshelby problem. Here our objective is to determine the dilute strain concentration tensor and dilute stress-strain

concentration tensor for the inhomogeneity and the inhomogeneity/interface system. Consider the RVE is subject to a

macroscopic strain Mε. The macroscopic strain and stress can be written in terms of the average strains and stresses in

the constituents of the RVE as

Mε =
1
V

∫

B
ε dV +

1
2V

∫

I

[
[[u]] ⊗ n + n⊗ [[u]]

]
dA = [1 − f ]ε(2) + fε(1) + ε̂ ,

Mσ =
1
V

∫

B
σ dV +

1
V

∫

I
σ dA = [1 − f ]σ(2) + fσ(1) + σ̂ = [1 − f ]C(2) : ε(2) + fC(1) : ε(1) + σ̂ ,

(26)
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with

ε(1) =
1
V1

∫

B1

ε dV , σ(1) =
1
V1

∫

B1

σ dV = C(1) : ε(1) ,

ε(2) =
1
V2

∫

B2

ε dV , σ(2) =
1
V2

∫

B2

σ dV = C(2) : ε(2) ,

ε̂ =
1

2V

∫

I

[
[[u]] ⊗ n + n⊗ [[u]]

]
dA , σ̂ =

1
V

∫

I
σ dA .

(27)

In mean field homogenization approaches, an additional relation between the average strains and stresses can be

identified through the so-called Eshelby problem (Figure 4 right). Accordingly, the infinite medium is subjected to a

uniform strain ε(0) and the resulting average strain and stress in the heterogeneity can be written as

ε(1) = T(1): ε(0) =
1

2V1

∫

I
[u− ⊗ n + n⊗ u−] dA , and σ(1) = H(1) : ε(0) =

1
V1

∫

Ω1

σ− dV , (28)

with T(1) being the dilute strain concentration tensor and H(1) being the dilute stress-strain concentration tensor

for the inhomogeneity. Note, u− and σ− denote the displacement and stress on the minus side of the interface,

respectively, which contain the contributions from the inhomogeneity alone. Similar to the work of Gu et al. [183],

the inhomogeneity/interface system can be treated as an equivalent inhomogeneity with average strain and stress

tensors defined as

ε(eq) = T(eq) : ε(0) =
1

2V1

∫

I
[u+⊗n+ n⊗u+] dA , and σ(eq) = H(eq) : ε(0) =

1
V1

∫

Ω1

σ− dV +
1
V1

∫

I
σ dA , (29)

with T(eq) being the dilute strain concentration tensor and H(eq) being the dilute stress-strain concentration tensor

for the equivalent inhomogeneity. Returning back to the RVE problem, the Mori–Tanaka approach assumes that the

far-field strain ε(0) coincides with the average strain in the matrix ε(2), therefore ε(0) ≡ ε(2). Exploiting Eqs. (27)–(28),

one could write

f ε(eq) = f T(eq): ε(2) =
1

2V

∫

I
[u+ ⊗ n + n⊗ u+] dA =

1
2V

∫

I
[u− ⊗ n + n⊗ u−] dA

︸                               ︷︷                               ︸
f T(1): ε(2)= f ε(1)

+
1

2V

∫

I

[
[[u]] ⊗ n + n⊗ [[u]]

]
dA

︸                                   ︷︷                                   ︸
ε̂

fσ(eq) = fH(eq) : ε(2) =
1
V

∫

B
σ− dV

︸          ︷︷          ︸
fH(1): ε(2)= fσ(1)

+
1
V

∫

I
σ dA

︸        ︷︷        ︸
σ̂

,

(30)
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which lead to the interface-enhanced Mori–Tanaka relations

ε(1) = T(1) : ε(2) , ε(1) +
1
f
ε̂ = T(eq) : ε(2) , C

(1) : ε(1) +
1
f
σ̂ = H(eq) : ε(2) . (31)

Thus, Eq. (26) yields

Mε =
[
[1 − f ]I + fT(eq)

]
: ε(2) , Mσ =

[
[1 − f ]C(2) + fH(eq)

]
: ε(2) , (32)

where I is the fourth order identity tensor. Accordingly, one could write ε(2) =
[
[1 − f ]I + fT(eq)

]−1
: Mε resulting in

the macroscopic stress-strain relationship

Mσ =
[
[1 − f ]C(2) + fH(eq)

]
:
[
[1 − f ]I + fT(eq)

]−1
: Mε . (33)

Consequently, the macroscopic stiffness tensor can be defined as

M
C =

[
[1 − f ]C(2) + fH(eq)

]
:
[
[1 − f ]I + fT(eq)

]−1
, (34)

whose components are indeed the effective properties of the composite medium. Note, the properties of the equivalent

particle in [183] can be recovered according to C(eq)= H(eq) : T(eq)−1
. Finally, for a prescribed macroscopic strain Mε,

the average strain and stress in the constituents read

ε(1) = T(1) :
[
[1 − f ]I + fT(eq)

]−1
: Mε , σ(1) = C(1) : ε(1) = C(1) : T(1) :

[
[1 − f ]I + fT(eq)

]−1
: Mε ,

ε(2) =
[
[1 − f ]I + fT(eq)

]−1
: Mε , σ(2) = C(2) : ε(2) = C(2) :

[
[1 − f ]I + fT(eq)

]−1
: Mε ,

ε̂ = f
[
T

(eq) −T(1)
]

:
[
[1 − f ]I + fT(eq)

]−1
: Mε , σ̂ = f

[
H

(eq) −C(1) : T(1)
]

:
[
[1 − f ]I + fT(eq)

]−1
: Mε .

(35)

The final step to complete the homogenization framework is to determine the components of the dilute concentration

tensors H(eq), T(eq) and T(1). In doing so, we employ the Eshelby’s inhomogeneity problem [211] for certain condi-

tions suitable for fiber-reinforced and particle-reinforced composites. It is worthwhile to mention that the composite

sphere assemblage and the composite cylinder assemblage approaches have been designed for uniform distribution

of inhomogeneities and cannot be extended to more complex cases. On the other hand, the Mori–Tanaka approach

is more flexible and non-uniform distributions of inhomogeneities can be adopted by proper modification of the re-

lations (26) and (32), see for instance [212]. The relations in Eq. (35) provide implicitly the interactions between
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inhomogeneities of different type or distributions.

3.1. Fiber-reinforced composites

To determine the components of the interaction tensors, the extended Eshelby’s problem is solved analytically for

four boundary value problems similar to those described by Hashin and Rosen [213] in the composite cylinders

assemblage approach. Before proceeding with the elaboration of the boundary value problems, a brief introduction

to preliminaries of fiber-reinforced composites seems desirable. According to Fig. 4, a cylindrical coordinate system

proves to be convenient to analyze a fiber-reinforced composite medium. The constitutive material behavior for a

transversely isotropic material, in Voigt notation, reads

Table 2: Summary of relevant relations in the bulk and on the interface for fiber-reinforced composites.

bulk interface

constitutive
relations



σrr

σθθ

σzz

σrθ

σrz

σθz



=



λ + 2µtr λ l 0 0 0
λ λ + 2µtr l 0 0 0
l l m 0 0 0
0 0 0 µtr 0 0
0 0 0 0 µax 0
0 0 0 0 0 µax





εrr

εθθ
εzz

2εrθ

2εrz

2εθz



tangential:



σθθ

σzz

σθz

 =



λ + 2µtr λ 0
λ λ + 2µtr 0
0 0 µax





εθθ
εzz

2εθz



orthogonal:



tr

tθ
tz

 =



kr [[ur]]
kθ [[uθ]]
kz [[uz]]



strain
relations

εrr =
∂ur

∂r
εrr = 0

εθθ =
1
r
∂uθ
∂θ

+
ur

r
εθθ =

1
r1

∂uθ
∂θ

+
ur

r1

εzz =
∂uz

∂z
εzz =

∂uz

∂z

2εrθ =
∂uθ
∂r

+
1
r
∂ur

∂θ
− uθ

r
εrθ = 0

2εrz =
∂uz

∂r
+
∂ur

∂z
εrz = 0

2εθz =
1
r
∂uz

∂θ
+
∂uθ
∂z

2εθz =
1
r1

∂uz

∂θ
+
∂uθ
∂z

balance
equations

∂σrr

∂r
+

1
r
∂σrθ

∂θ
+
∂σrz

∂z
+
σrr − σθθ

r
= 0

σθθ

r1
− [[σrr]] = 0

∂σrθ

∂r
+

1
r
∂σθθ

∂θ
+
∂σθz

∂z
+

2
r
σrθ = 0

1
r1

∂σθθ

∂θ
+
∂σθz

∂z
+ [[σrθ]] = 0

∂σrz

∂r
+

1
r
∂σθz

∂θ
+
∂σzz

∂z
+

1
r
σrz = 0

1
r1

∂σθz

∂θ
+
∂σzz

∂z
+ [[σrz]] = 0
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

σrr

σθθ

σzz

σrθ

σrz

σθz



=



λ + 2µtr λ l 0 0 0
λ λ + 2µtr l 0 0 0
l l m 0 0 0
0 0 0 µtr 0 0
0 0 0 0 µax 0
0 0 0 0 0 µax





εrr

εθθ

εzz

2εrθ

2εrz

2εθz



, (36)

with five independent material constants. Note that in plane-strain linear elasticity, the bulk modulus κ relates to the

Lamé parameters as κ = λ + µtr. The strains in the bulk read

εrr =
∂ur

∂r
, εθθ =

1
r
∂uθ
∂θ

+
ur

r
, εzz =

∂uz

∂z
,

2εrθ =
∂uθ
∂r

+
1
r
∂ur

∂θ
− uθ

r
, 2εθz =

1
r
∂uz

∂θ
+
∂uθ
∂z

, 2εrz =
∂uz

∂r
+
∂ur

∂z
,

(37)

and the balance equations associated with the bulk (6)1 expand to

∂σrr

∂r
+

1
r
∂σrθ

∂θ
+
∂σrz

∂z
+
σrr − σθθ

r
= 0 ,

∂σrθ

∂r
+

1
r
∂σθθ
∂θ

+
∂σθz
∂z

+
2
r
σrθ = 0 ,

∂σrz

∂r
+

1
r
∂σθz
∂θ

+
∂σzz

∂z
+

1
r
σrz = 0 .

(38)

As mentioned before, for the interface, the constitutive behavior is decomposed into tangential and orthogonal behav-

ior reading

tangential:



σθθ

σzz

σθz


=



λ + 2µtr λ 0

λ λ + 2µtr 0

0 0 µax





εθθ

εzz

2εθz


, orthogonal:



tr

tθ
tz


=



kr [[ur]]

kθ [[uθ]]

kz [[uz]]


. (39)

Without loss of generality, one can demonstrate that the resistance along the interface for fiber-reinforced composites

can be sufficiently captured with only one interface Lamé parameter and thus, we assume λ = 0. The strains on the

interface read

εθθ =
1
r1

∂uθ
∂θ

+
ur

r1
, εzz =

∂uz

∂z
, 2εθz =

1
r1

∂uz

∂θ
+
∂uθ
∂z

, (40)
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and the interface balance equations (6)2 expand to

σθθ
r1
− [[σrr]] = 0 ,

1
r1

∂σθθ
∂θ

+
∂σθz
∂z

+ [[σrθ]] = 0 ,

1
r1

∂σθz
∂θ

+
∂σzz

∂z
+ [[σrz]] = 0 .

(41)

Table 2 summarizes the relevant constitutive relations, strain relations and balance equations for the bulk and the

interface for fiber-reinforced composites.

According to Eq. (36), the elasticity tensors for the fiber and the matrix, in Voigt notation, can be written as

C
(1) =



λ(1) + 2µ(1)
tr λ(1) l(1) 0 0 0

λ(1) λ(1) + 2µ(1)
tr l(1) 0 0 0

l(1) l(1) m(1) 0 0 0
0 0 0 µ(1)

tr 0 0
0 0 0 0 µ(1)

ax 0
0 0 0 0 0 µ(1)

ax



, C
(2) =



λ(2) + 2µ(2)
tr λ(2) l(2) 0 0 0

λ(2) λ(2) + 2µ(2)
tr l(2) 0 0 0

l(2) l(2) m(2) 0 0 0
0 0 0 µ(2)

tr 0 0
0 0 0 0 µ(2)

ax 0
0 0 0 0 0 µ(2)

ax



. (42)

The dilute concentration tensors for the inhomogeneity, in Voigt notation, take the form

T
(1) =



T (1)
11 T (1)

11 − T (1)
44 T (1)

13 0 0 0
T (1)

11 − T (1)
44 T (1)

11 T (1)
13 0 0 0

0 0 1 0 0 0
0 0 0 T (1)

44 0 0
0 0 0 0 T (1)

55 0
0 0 0 0 0 T (1)

55



, H
(1) =



H(1)
11 H(1)

11 − 2H(1)
44 H(1)

13 0 0 0
H(1)

11 − 2H(1)
44 H(1)

11 H(1)
13 0 0 0

H(1)
31 H(1)

31 H(1)
33 0 0 0

0 0 0 H(1)
44 0 0

0 0 0 0 H(1)
55 0

0 0 0 0 0 H(1)
55



. (43)

For the equivalent inhomogeneity, the interactions tensors read

T
(eq)=



T (eq)
11 T (eq)

11 − T (eq)
44 T (eq)

13 0 0 0
T (eq)

11 − T (eq)
44 T (eq)

11 T (eq)
13 0 0 0

0 0 1 0 0 0
0 0 0 T (eq)

44 0 0
0 0 0 0 T (eq)

55 0
0 0 0 0 0 T (eq)

55



,H(eq)=



H(eq)
11 H(eq)

11 − 2H(eq)
44 H(eq)

13 0 0 0
H(eq)

11 − 2H(eq)
44 H(eq)

11 H(eq)
13 0 0 0

H(eq)
31 H(eq)

31 H(eq)
33 0 0 0

0 0 0 H(eq)
44 0 0

0 0 0 0 H(eq)
55 0

0 0 0 0 0 H(eq)
55



.

(44)

Equipped with these preliminaries, we can now proceed with the boundary value problems to determine the compo-

nents of the interaction tensors.
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3.1.1. Axial shear loading

Consider an RVE subject to a far field displacement/strain as

u(0) =



0

0

βr cos θ



=⇒ ε(0) =



0 0
β

2
cos θ

0 0 −β
2

sin θ

β

2
cos θ −β

2
sin θ 0



, (45)

where the superscript 0 denotes the prescribed condition. Demonstrated by Hashin and Rosen [213], the corresponding

displacement fields within each constituent read

u(1)
z = βr cos θ

[
X1 + X2

1
[r/r1]2

]
and u(1)

r = u(1)
θ = 0 ,

u(2)
z = βr cos θ

[
X3 + X4

1
[r/r1]2

]
and u(2)

r = u(2)
θ = 0 ,

(46)

resulting in the four unknowns X1–X4 that can be determined via imposing the boundary and interface conditions

which read

• finite displacement at r = 0:

u(1)
z (r = 0) 9 ∞ ⇒ X2 = 0 , (47)

• orthogonal equilibrium at r = r1:

tz = kz [[uz]] ⇒ [1 − α]σ(2)
rz (r1) + ασ(1)

rz (r1) = kz

[
u(2)

z (r1) − u(1)
z (r1)

]
, (48)

• tangential equilibrium at r = r1:
[
divσ

]
z
+ [[tz]] = 0 ⇒ 1

r1

∂σθz
∂θ

+ σ(2)
rz (r1) − σ(1)

rz (r1) = 0 , (49)

• prescribed displacement at r → ∞:

u(2)
z (r → ∞) = βr cos θ ⇒ X3 = 1 . (50)

The conditions (47)–(50) lead to the system of equations



µ(1)
ax +

[1 − α]µax

r1
µ(2)

ax +
αµax

r1

r1 +
αµ(1)

ax

kz
−r1 − [1 − α]µ(2)

ax

kz





X1

X4


=



µ(2)
ax −

αµax

r1

r1 − [1 − α]µ(2)
ax

kz


, (51)
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from which the unknowns X1 and X4 can be determined. Using Eqs. (28) and (29), we can write

ε(1) = X1 ε
(0) , ε(eq) = [1 + X4] ε(0) , σ(eq) = µ(2)

ax [1 − X4] ε(0) , (52)

which yields

T (1)
55 = X1 , T (eq)

55 = [1 + X4] , H(eq)
55 = µ(2)

ax [1 − X4] , (53)

where X1 and X4 are the solution of the system (51).

3.1.2. Transverse shear loading

For this case, the far field displacement/strain applied to the RVE read

u(0) =



βr sin 2θ

βr cos 2θ

0


=⇒ ε(0) =



β sin 2θ β cos 2θ 0

β cos 2θ −β sin 2θ 0

0 0 0


. (54)

The displacement fields within each constituent due to the prescribed boundary condition read

u(1)
r = βr sin (2θ)

[
κ(1) − µ(1)

[2κ(1) + µ(1)]
[r/r1]2X1 + X2 − X3

[r/r1]4 +
κ(1) + µ(1)

µ(1)

X4

[r/r1]2

]
,

u(1)
θ = βr cos (2θ)

[
[r/r1]2X1 + X2 +

X3

[r/r1]4 +
X4

[r/r1]2

]
,

u(1)
z = 0 ,

u(2)
r = βr sin (2θ)

[
κ(2) − µ(2)

[2κ(2) + µ(2)]
[r/r1]2X5 + X6 − X7

[r/r1]4 +
κ(2) + µ(2)

µ(2)

X8

[r/r1]2

]
,

u(2)
θ = βr cos (2θ)

[
[r/r1]2X5 + X6 +

X7

[r/r1]4 +
X8

[r/r1]2

]
,

u(2)
z = 0 ,

(55)

with the eight unknowns X1–X8 which can be determined via applying the boundary and interface conditions

• finite displacement at r = 0:

u(1)
r (r = 0) 9 ∞ and u(1)

θ (r = 0) 9 ∞ ⇒ X3 = 0 and X4 = 0 , (56)

• orthogonal equilibrium in r direction at r = r1:

tr = kr [[ur]] ⇒ [1 − α]σ(2)
rr (r1) + ασ(1)

rr (r1) = kr

[
u(2)

r (r1) − u(1)
r (r1)

]
, (57)
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• orthogonal equilibrium in θ direction at r = r1:

tθ = kθ [[uθ]] ⇒ [1 − α]σ(2)
rθ (r1) + ασ(1)

rθ (r1) = kθ
[
u(2)
θ (r1) − u(1)

θ (r1)
]
, (58)

• tangential equilibrium in r direction at r = r1:
[
divσ

]
r

+ [[tr]] = 0 ⇒ −σθθ
r1

+ σ(2)
rr (r1) − σ(1)

rr (r1) = 0 , (59)

• tangential equilibrium in θ direction at r = r1:
[
divσ

]
θ

+ [[tθ]] = 0 ⇒ 1
r1

∂σθθ
∂θ

+ σ(2)
rθ (r1) − σ(1)

rθ (r1) = 0 , (60)

• prescribed displacements at r → ∞:

u(2)
r (r → ∞) = βr2 sin(2θ) and u(2)

θ (r → ∞) = βr2 cos(2θ) ⇒ X5 = 1 and X6 = 1 . (61)

The conditions (56)–(61) lead to the system of equations



ξ1

[2κ(1) + µ(1)]r1
−2µ(1)

tr +
2
[
1 − α] µtr

r1
6µ(2)

tr +
6µtrα

r1
−4κ(2)− 2αµtrλ

(2)

µ(2)
tr r1

ξ2

[2κ(1) + µ(1)
tr ]r1

−2µ(1)
tr −

4µtr[1 − α]
r1

−6µ(2)
tr −

12αµtr

r1
2κ(2)+

4αµtrλ
(2)

µ(2)
tr r1

λ(1)r1

2κ(1) + µ(1)
tr

r1+
2αµ(1)

tr

kr
r1+

6[1 − α]µ(2)
tr

kr
−r1 − r1κ

(2)

µ(2)
tr

− 4[1 − α]κ(2)

krr1

r1+
6ακ(1)µ(1)

tr

[2κ(1) + µ(1)
tr ]kθ

r1+
2αµ(1)

tr

kθ
−r1 −

6[1 − α]µ(2)
tr

kθ
−r1 +

2[1 − α]κ(2)

kθ





X1

X2

X7

X8



=



−2µ(2)
tr −

2αµtr

r1

−2µ(2)
tr +

4αµ
r1

r1 −
2[1 − α]µ(2)

tr

krr1

r1 −
2[1 − α]µ(2)

tr

kθr1



,

(62)

with

ξ1 = 6
[
1 − α] µtr[κ

(1) + µ(1)
tr ] , ξ2 = −6

[
2µtr[1 − α][κ(1) + µ(1)

tr ] + κ(1)µ(1)
tr r1

]
. (63)

The unknowns X1, X2, X7 and X8 can be determined from Eq. (62). Using Eqs. (28) and (29) we can write

ε(1) =
1
2


u(1)

r (r1)
βr1 sin(2θ)

+
u(1)
θ (r1)

βr1 cos(2θ)

 ε(0) ,

ε(eq) =
1
2


u(2)

r (r1)
βr1 sin(2θ)

+
u(2)
θ (r1)

βr1 cos(2θ)

 ε(0) ,

σ(eq) =
1
2


σ(2)

rr (r1)
β sin(2θ)

+
σ(2)

rθ (r1)
β cos(2θ)

 ε(0) ,

(64)
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leading to

T (1)
44 =

3κ(1)

4κ(1) + 2µ(1)
tr

X1 + X2 ,

T (eq)
44 = 1 +

κ(2) + 2µ(2)
tr

2µ(2)
tr

X8 ,

H(eq)
44 = µ(2)

tr −
κ(2)

2
X8 ,

(65)

where X1, X2 and X8 are the solution of the system (62).

3.1.3. Overall axisymmetric loading

For this case, consider the far field displacement/strain applied to the RVE are

u(0) =



βr

0

βz


=⇒ ε(0) =



β 0 0

0 β 0

0 0 β


. (66)

The displacement fields within each constituent due to the prescribed boundary condition read

u(1)
r = βr

[
X1 + X2

1
[r/r1]2

]
and u(1)

θ = 0 and u(1)
z = βz ,

u(2)
r = βr

[
X3 + X4

1
[r/r1]2

]
and u(2)

θ = 0 and u(2)
z = βz ,

(67)

with the four unknowns X1–X4 which can be determined via applying the boundary and interface conditions

• finite displacement at r = 0:

u(1)
r (r = 0) 9 ∞ ⇒ X2 = 0 , (68)

• orthogonal equilibrium at r = r1:

tr = kr [[ur]] ⇒ [1 − α]σ(2)
rr (r1) + ασ(1)

rr (r1) = kr

[
u(2)

r (r1) − u(1)
r (r1)

]
, (69)

• tangential equilibrium at r = r1:
[
divσ

]
r

+ [[tr]] = 0 ⇒ −σθθ
r1

+ σ(2)
rr (r1) − σ(1)

rr (r1) = 0 , (70)

• prescribed displacement at r → ∞:

u(2)
r (r → ∞) = βr ⇒ X3 = 1 . (71)
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The conditions (68)–(71) lead to the system of equations



2κ(1) +
2[1 − α]µtr

r1
2µ(2)

tr +
2αµtr

r1

r1 +
2ακ(1)

kr
−r1 −

2[1 − α]µ(2)
tr

kr





X1

X4



=



2κ(2) − 2αµtr

r1

r1 − 2[1 − α]κ(2)

kr



, (72)

from which the unknowns X1 and X4 can be determined. Using Eqs. (28) and (29) we can write

ε(1) =



βX1 0 0

0 βX1 0

0 0 β


,

ε(eq) =



β[1 + X4] 0 0

0 β[1 + X4] 0

0 0 β


,

σ(eq) =



β[2κ(2) − 2µ(2)
tr X4] 0 0

0 β[2κ(2) − 2µ(2)
tr X4] 0

0 0 β2λ(1)X1


+



βλ(2) 0 0

0 βλ(2) 0

0 0 β

[
κ(1) + µ(1)

tr +
4µtr

r1

]


,

(73)

which leads to

T (1)
13 = X1 + T (1)

44 − 2T (1)
11 ,

T (eq)
13 = 1 + X4 + T (eq)

44 − 2T (eq)
11 ,

H(eq)
13 = 2κ(2) − 2µ(2)

tr X4 + λ(2) + 2H(eq)
44 − 2H(eq)

11 ,

H(eq)
33 = 2λ(1)X1 + κ(1) + µ(1)

tr +
4µtr

r1
− 2H(eq)

31 .

(74)

where X1 and X4 are the solution of the system (72).

3.1.4. In-plane axisymmetric loading

For this case, consider the far field displacement/strain applied to the RVE are

u(0) =



βr

0

0


=⇒ ε(0) =



β 0 0

0 β 0

0 0 0


. (75)
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The displacement fields within each constituent due to the prescribed boundary condition read

u(1)
r = βr

[
X1 + X2

1
[r/r1]2

]
and u(1)

θ = u(1)
z = 0 ,

u(2)
r = βr

[
X3 + X4

1
[r/r1]2

]
and u(2)

θ = u(2)
z = 0 ,

(76)

with the four unknowns X1–X4 which can be determined via applying the boundary and interface conditions

• finite displacement at r = 0:

u(1)
r (r = 0) 9 ∞ ⇒ X2 = 0 , (77)

• orthogonal equilibrium at r = r1:

tr = kr [[ur]] ⇒ [1 − α]σ(2)
rr (r1) + ασ(1)

rr (r1) = kr

[
u(2)

r (r1) − u(1)
r (r1)

]
, (78)

• tangential equilibrium at r = r1:
[
divσ

]
r

+ [[tr]] = 0 ⇒ −σθθ
r1

+ σ(2)
rr (r1) − σ(1)

rr (r1) = 0 , (79)

• prescribed displacement at r → ∞:

u(2)
r (r → ∞) = βr ⇒ X3 = 1 . (80)

The conditions (77)–(80) lead to the system of equations



2κ(1) +
2[1 − α]µtr

r1
2µ(2)

tr +
2αµtr

r1

r1 +
2ακ(1)

kr
−r1 − 2[1 − α]µ(2)

kr





X1

X4



=



2κ(2) − 2αµtr

r1

r1 − 2[1 − α]κ(2)

kr



, (81)
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from which the unknowns X1 and X4 can be determined. Using Eqs. (28) and (29) we can write

ε(1) =



βX1 0 0

0 βX1 0

0 0 0


,

ε(eq) =



β[1 + X4] 0 0

0 β[1 + X4] 0

0 0 0


,

σ(eq) =



β[2κ(2) − 2µ(2)
tr X4] 0 0

0 β[2κ(2) − 2µ(2)
tr X4] 0

0 0 2βλ(1)X1


,

(82)

which leads to

T (1)
11 =

1
2

[
X1 + T (1)

44

]
,

T (eq)
11 =

1
2

[
1 + X4 + T (eq)

44

]
,

H(eq)
11 = κ(2) − µ(2)

tr X4 + H(eq)
44 ,

H(eq)
31 = λ(1)X1 ,

(83)

where X1 and X4 are the solution of the system (81).

3.2. Particle-reinforced composites

This section aims to elaborate on boundary value problems which yield the component of the dilute concentration ten-

sors for particle-reinforced composites. The structure of this section is deliberately organized similar to the previous

section in order highlight the similarities and differences between the two problems. To determine the components of

the dilute concentration tensors for particle-reinforced composites, the extended Eshelby’s problem is solved analyti-

cally for two boundary value problems similar to those described by Hashin [214] in the composite sphere assemblage

approach. Before proceeding with the elaboration of the boundary value problems, a brief introduction to preliminar-

ies of particle-reinforced composites seems desirable. According to Fig. 4, a spherical coordinate system proves to be

convenient to analyze particle-reinforced composites.
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Table 3: Summary of relevant relations in the bulk and on the interface for particle-reinforced composites.

bulk interface

constitutive
relations



σrr

σθθ

σφφ

σrθ

σrφ

σθφ



=



λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ





εrr

εθθ
εφφ
2εrθ

2εrφ

2εθφ



tangential:



σθθ

σφφ

σθφ

 =



λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ





εθθ
εφφ
2εθφ



normal:



tr

tθ
tφ

 =



kr [[ur]]
kθ [[uθ]]
kφ [[uφ]]



strain
relations

εrr =
∂ur

∂r
εrr = 0

εθθ =
1
r
∂uθ
∂θ

+
ur

r
εθθ =

1
r1

∂uθ
∂θ

+
ur

r1

εφφ =
1

r sin θ
∂uφ
∂φ

+
ur

r
+

uθ cos θ
r sin θ

εφφ =
1

r1 sin θ
∂uφ
∂φ

+
ur

r1
+

uθ cos θ
r1 sin θ

2εrθ =
∂uθ
∂r

+
1
r
∂ur

∂θ
− uθ

r
2εrθ = 0

2εrφ =
∂uφ
∂r

+
1

r sin θ
∂ur

∂φ
− uφ

r
2εrφ = 0

2εθφ =
1
r
∂uφ
∂θ

+
1

r sin θ
∂uθ
∂φ
− uφ cos θ

r sin θ
2εθφ =

1
r1

∂uφ
∂θ

+
1

r1 sin θ
∂uθ
∂φ
− uφ cos θ

r1 sin θ

balance
equations

∂σrr

∂r
+

1
r
∂σrθ

∂θ
+
σrθ cos θ

r sin θ
+

2σrr − σθθ − σφφ

r
+

1
r sin θ

∂σrφ

∂φ
= 0

σθθ + σφφ

r1
− [[σrr]] = 0

∂σrθ

∂r
+

1
r
∂σθθ

∂θ
+

3σrθ

r
+

[
σθθ − σφφ

]
cos θ

r sin theta
+

1
r sin θ

∂σθφ

∂φ
= 0

1
r1

∂σθθ

∂θ
+

1
r1 sin θ

∂σθφ

∂φ
+

[σθθ − σφφ] cos θ
r1 sin θ

+ [[σrθ]] = 0

∂σrφ

∂r
+

1
r
∂σθφ

∂θ
+

3σrφ

r
+

2σθφ cos θ
r sin θ

+
1

r sin θ
∂σ phiφ

∂φ
= 0

1
r1

∂σθφ

∂θ
+

1
r1 sin θ

∂σφφ

∂φ
+

2σθφ cos θ
r1 sin θ

+ [[σrφ]] = 0

The constitutive material behavior for the bulk, in Voigt notation, reads



σrr

σθθ
σφφ
σrθ

σrφ

σθφ



=



λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ





εrr

εθθ
εφφ
2εrθ

2εrφ

2εθφ



. (84)

For this case, the bulk modulus κ relates to the Lamé parameters via κ = λ + 2µ/3. The strain field in the bulk reads

εrr =
∂ur

∂r
, εθθ =

1
r
∂uθ
∂θ

+
ur

r
, εφφ =

1
r sin θ

∂uφ
∂φ

+
ur

r
+

uθ cos θ
r sin θ

,

2εrφ =
∂uφ
∂r

+
1

r sin θ
∂ur

∂φ
− uφ

r
, 2εθφ =

1
r
∂uφ
∂θ

+
1

r sin θ
∂uθ
∂φ
− uφ cos θ

r sin θ
, 2εrθ =

∂uθ
∂r

+
1
r
∂ur

∂θ
− uθ

r
,

(85)
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and the balance equations for the bulk read

∂σrr

∂r
+

1
r
∂σrθ

∂θ
+
σrθ cos θ

r sin θ
+

2σrr − σθθ − σφφ
r

+
1

r sin θ
∂σrφ

∂φ
= 0 ,

∂σrθ

∂r
+

1
r
∂σθθ
∂θ

+
3σrθ

r
+

[
σθθ − σφφ

]
cos θ

r sin θ
+

1
r sin θ

∂σθφ

∂φ
= 0 ,

∂σrφ

∂r
+

1
r
∂σθφ

∂θ
+

3σrφ

r
+

2σθφ cos θ
r sin θ

+
1

r sin θ
∂σφφ

∂φ
= 0 .

(86)

As mentioned before, for the interface, the constitutive behavior is decomposed into tangential and orthogonal behav-

ior reading

tangential:



σθθ

σφφ

σθφ


=



λ + 2µ λ 0

λ λ + 2µ 0

0 0 µ





εθθ

εφφ

2εθφ


, orthogonal:



tr

tθ
tφ


=



kr[[ur]]

kθ[[uθ]]

kφ[[uφ]]


. (87)

Note, we assumed that the interface orthogonal stiffness in all the three directions is the same. The strain field on the

interface reads

εθθ =
1
r1

∂uθ
∂θ

+
ur

r1
, εφφ =

1
r1 sin θ

∂uφ
∂φ

+
ur

r1
+

uθ cos θ
r1 sin θ

, 2εθφ =
1
r1

∂uφ
∂θ

+
1

r1 sin θ
∂uθ
∂φ
− uφ cos θ

r1 sin θ
, (88)

and the interface balance equations read

σθθ + σφφ

r1
− [[σrr]] = 0 ,

1
r1

∂σθθ
∂θ

+
1

r1 sin θ
∂σθφ

∂φ
+

[σθθ − σφφ] cos θ
r1 sin θ

+ [[σrθ]] = 0 ,

1
r1

∂σθφ

∂θ
+

1
r1 sin θ

∂σφφ

∂φ
+

2σθφ cos θ
r1 sin θ

+ [[σrφ]] = 0 .

(89)

Table 3 summarizes the relevant constitutive relations, strain relations and balance equations for the bulk and the

interface for fiber-reinforced composites.

According to Eq. (84), the elasticity tensors for the particle and the matrix, in Voigt notation, can be written as

C
(1) =



λ(1) + 2µ(1) λ(1) λ(1) 0 0 0
λ(1) λ(1) + 2µ(1) λ(1) 0 0 0
λ(1) λ(1) λ(1) + 2µ(1) 0 0 0
0 0 0 µ(1) 0 0
0 0 0 0 µ(1) 0
0 0 0 0 0 µ(1)



, C
(2) =



λ(2) + 2µ(2) λ(2) λ(2) 0 0 0
λ(2) λ(2) + 2µ(2) λ(2) 0 0 0
λ(2) λ(2) λ(2) + 2µ(2) 0 0 0
0 0 0 µ(2) 0 0
0 0 0 0 µ(2) 0
0 0 0 0 0 µ(2)



. (90)
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The interactions tensors for the inhomogeneity, in Voigt notation, take the form

T
(1) =



T (1)
11 T (1)

11 − T (1)
44 T (1)

11 − T (1)
44 0 0 0

T (1)
11 − T (1)

44 T (1)
11 T (1)

11 − T (1)
44 0 0 0

T (1)
11 − T (1)

44 T (1)
11 − T (1)

44 T (1)
11 0 0 0

0 0 0 T (1)
44 0 0

0 0 0 0 T (1)
44 0

0 0 0 0 0 T (1)
44



, H
(1) =



H(1)
11 H(1)

11 − 2H(1)
44 H(1)

11 − 2H(1)
44 0 0 0

H(1)
11 − 2H(1)

44 H(1)
11 H(1)

11 − 2H(1)
44 0 0 0

H(1)
11 − 2H(1)

44 H(1)
11 − 2H(1)

44 H(1)
11 0 0 0

0 0 0 H(1)
44 0 0

0 0 0 0 H(1)
44 0

0 0 0 0 0 H(1)
44



.

(91)

The interaction tensors for the inhomogeneity/interface system read

T
(eq)=



T (eq)
11 T (eq)

11 − T (eq)
44 T (eq)

11 − T (eq)
44 0 0 0

T (eq)
11 − T (eq)

44 T (eq)
11 T (eq)

11 − T (eq)
44 0 0 0

T (eq)
11 − T (eq)

44 T (eq)
11 − T (eq)

44 T (eq)
11 0 0 0

0 0 0 T (eq)
44 0 0

0 0 0 0 T (eq)
44 0

0 0 0 0 0 T (eq)
44



,H(eq)=



H(eq)
11 H(eq)

11 − 2H(eq)
44 H(eq)

11 − 2H(eq)
44 0 0 0

H(eq)
11 − 2H(eq)

44 H(eq)
11 H(eq)

11 − 2H(eq)
44 0 0 0

H(eq)
11 − 2H(eq)

44 H(eq)
11 − 2H(eq)

44 H(eq)
11 0 0 0

0 0 0 H(eq)
44 0 0

0 0 0 0 H(eq)
44 0

0 0 0 0 0 H(eq)
44



,

(92)

Equipped with these preliminaries, we can now proceed with the boundary value problems to determine the compo-

nents of the interaction tensors.

3.2.1. Volumetric expansion loading

Consider the RVE subject to a far field displacement and strain according to

u(0) =



βr

0

0


⇒ ε(0) =



β 0 0

0 β 0

0 0 β


. (93)

Demonstrated by Hashin [214], the emerging displacement fields in the particle and the matrix read

u(1)
r = βr

[
X1 +

1
[r/r1]3 X2

]
and u(1)

θ = u(1)
φ = 0 ,

u(2)
r = βr

[
X3 +

1
[r/r1]3 X4

]
and u(2)

θ = u(2)
φ = 0 ,

(94)
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with the four unknowns X1–X4 that can be determined via imposing the boundary and interface conditions

• finite displacement at r = 0:

u(1)
r (r = 0) 9 ∞ ⇒ X2 = 0 , (95)

• orthogonal equilibrium at r = r1:

tr = k [[ur]] ⇒ [1 − α]σ(2)
rr (r1) + ασ(1)

rr (r1) = kr

[
u(2)

r (r1) − u(1)
r (r1)

]
, (96)

• tangential equilibrium at r = r1:
[
divσ

]
r

+ [[tr]] = 0 ⇒ −σθθ + σφφ

r1
+ σ(2)

rr (r1) − σ(1)
rr (r1) = 0 , (97)

• prescribed displacement at r → ∞:

u(2)
r (r → ∞) = βr ⇒ X3 = 1 . (98)

The conditions (95)–(98) lead to the system of equations



r1 +
3ακ(1)

kr
−r1 − 4[1 − α]µ(2)

kr

3κ(1) +
4[1 − α][λ + µ]

r1
4µ(2) +

4α[λ + µ]
r1





X1

X4


=



r1 − 3[1 − α]κ(2)

kr

3κ(2) − 4α[λ + µ]
r1


, (99)

from which the unknowns X1 and X4 can be determined. Using Eqs. (28) and (29) we can write

ε(1) = X1 ε
(0) , ε(eq) = [1 + X4] ε(0) , σ(eq) = [3κ(2) − 4µ(2)X4] ε(0) , (100)

which yields

3T (1)
11 − 2T (1)

44 = X1 , 3T (eq)
11 − 2T (eq)

44 = [1 + X4] , 3H(eq)
11 − 4H(eq)

44 = [3κ(2) − 4µ(2)X4] . (101)

where X1 and X4 are the solution of the system (99).

3.2.2. Deviatoric loading

Assume the RVE is subject to a deviatoric far field displacement

u(0) =



βr sin2 θ cos 2φ

βr sin θ cos θ cos 2φ

−βr sin θ sin 2φ


=⇒ ε(0) =



β cos 2φ sin2 θ 2β cos 2φ cos θ sin θ −2β sin 2φ sin θ

2β cos 2φ cos θ sin θ β cos 2φ cos2 θ −2β sin 2φ cos θ

−2β sin 2φ sin θ −2β sin 2φ cos θ −β cos 2φ


.

32



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

(102)

For this boundary condition, the displacement fields in the matrix and particle read

u(1)
r = βr sin2(θ) cos(2φ)

[
X1 +

[
2 − 3

κ(1)

µ(1)

]
[r/r1]2X2 +

3X3

[r/r1]5 +

[
3 + 3

κ(1)

µ(1)

] X4

[r/r1]3

]
,

u(1)
θ = βr sin(θ) cos(θ) cos(2φ)

[
X1 −

[11
3

+ 5
κ(1)

µ(1)

]
[r/r1]2X2 − 2X3

[r/r1]5 +
2X4

[r/r1]3

]
,

u(1)
φ = −βr sin(θ) sin(2φ)

[
X1 −

[11
3

+ 5
κ(1)

µ(1)

]
[r/r1]2X2 − 2X3

[r/r1]5 +
2X4

[r/r1]3

]
,

u(2)
r = βr sin2(θ) cos(2φ)

[
X5 +

[
2 − 3

κ(2)

µ(2)

]
[r/r1]2X6 +

3X7

[r/r1]5 +

[
3 + 3

κ(2)

µ(2)

] X8

[r/r1]3

]
,

u(2)
θ = βr sin(θ) cos(θ) cos(2φ)

[
X5 −

[11
3

+ 5
κ(2)

µ(2)

]
[r/r1]2X6 − 2X7

[r/r1]5 +
2X8

[r/r1]3

]
,

u(2)
φ = −βr sin(θ) sin(2φ)

[
X5 −

[11
3

+ 5
κ(2)

µ(2)

]
[r/r1]2X6 − 2X7

[r/r1]5 +
2X8

[r/r1]3

]
,

(103)

with the eight unknowns X1–X8 that can be determined via imposing the boundary and interface conditions. The

boundary and interface conditions necessitate

• finite displacement at r = 0:

u(1)
r (r = 0) 9 ∞ and u(1)

θ (r = 0) 9 ∞ ⇒ X3 = 0 and X4 = 0 , (104)

• orthogonal equilibrium in r direction at r = r1:

tr = k [[ur]] ⇒ [1 − α]σ(2)
rr (r1) + ασ(1)

rr (r1) = kr

[
u(2)

r (r1) − u(1)
r (r1)

]
, (105)

• orthogonal equilibrium in θ direction at r = r1:

tθ = k [[uθ]] ⇒ [1 − α]σ(2)
rθ (r1) + ασ(1)

rθ (r1) = kθ
[
u(2)
θ (r1) − u(1)

θ (r1)
]
, (106)

• tangential equilibrium in r direction at r = r1:
[
divσ

]
r

+ [[tr]] = 0→ −σθθ + σφφ

r1
+ σ(2)

rr (r1) − σ(1)
rr (r1) = 0 (107)

• tangential equilibrium in θ direction at r = r1:
[
divσ

]
θ

+ [[tθ]] = 0→ 1
r1

∂σθθ
∂θ

+
1

r1 sin θ
∂σθφ

∂φ
+

[σθθ − σφφ] cos θ
r1 sin θ

+ σ(2)
rθ (r1) − σ(1)

rθ (r1) = 0 (108)

• prescribed displacements at r → ∞:

u(2)
r (r → ∞) = βr sin2 θ cos 2φ and u(2)

θ (r → ∞) = βr sin θ cos θ cos 2φ ⇒ X5 = 1 and X6 = 1 , (109)
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resulting in the system of equations



1 +
2αµ(1)

krr1
2 − 3

κ(1)

µ(1) + αζ1 −3 − 24
[
1 − α] µ(2)

krr1
−3 − 3

κ(2)

µ(2) −
[
1 − α] ζ2

1 +
2αµ(1)

kθr1
−11

3
− 5

κ(1)

µ(1) − 2αζ3 2 +
16

[
1 − α] µ(2)

kθr1
−2 +

6
[
1 − α] κ(2)

kθr1

−2µ(1) +
2
[
1 − α] ζ0

r1
2µ(1) − 3κ(1) − 2

[
1 − α] ζ4 −24µ(2) − 24αζ0

r1
−kr1ζ2 − 12ακ(2)ζ0

µ(2)r1

−2µ(1) − 2
[
1 − α] ζ5 16κ(1) +

10
3
µ(1) + 2

[
1 − α] ζ6 16µ(2) + 8αζ7 6κ(2) + 2αζ8





X1

X2

X7

X8



=



1 − 2
[
1 − α] µ(2)

krr1

1 − 2αµ(2)

kθr1

−2µ(2) − 2αζ0

r1

−2µ(2) + 2αζ5



,

(110)

with

ζ0 = λ + µ , ζ1 =
3κ(1) − 2µ(1)

krr1
, ζ2 =

18κ(2) + 8µ(2)

krr1
, ζ3 =

8κ(1) + 5µ(1)

3kθr1
, ζ4 =

[9κ(1) + 15µ(1)]
[
λ + µ

]

µ(1)r1
,

ζ5 =

[
λ + 3µ

]

r1
, ζ6 =

κ(1)
[
27λ + 57µ

]

µ(1)r1
+
µ(1)

[
45λ + 67µ

]

3r1
, ζ7 =

[
3λ + 4µ

]

r1
, ζ8 =

6κ(2)
[
λ + µ

]
− 4µ(2)µ

µ(2)r1
.

(111)

Using Eqs. (28) and (29) we can write

ε(1) =
1
5

[
5X1 − 7

[
1 + 3

κ(1)

µ(1)

]
X2

]
ε(0) ,

ε(eq) =
1
5

[
5 + 6

[
2 +

κ(2)

µ(2)

]
X8

]
ε(0) ,

σ(eq) =
1
5

[
10µ(2) − 2

[
9κ(2) + 8µ(2)

]
X8

]
ε(0) .

(112)

Consequently, the shear interaction terms read

2T (1)
44 =

1
5

[
5X1 − 7

[
1 + 3

κ(1)

µ(1)

]
X2

]
, 2T (eq)

44 =
1
5

[
5 + 6

[
2 +

κ(2)

µ(2)

]
X8

]
, 2H(eq)

44 =
1
5

[
10µ(2) − 2

[
9κ(2) + 8µ(2)

]
X8

]
,

(113)

where X1, X2 and X8 are obtained from the system of equations (110).

4. Finite element implementation

The objective of this section is to develop a finite element framework suitable to account for the extended general
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interface model. In this context, it proves convenient to use a curvilinear-coordinate-based finite element method [185]

since it mimics the underlying geometrical and mathematical concepts for two dimensional manifolds embedded into a

three dimensional space. For detailed expositions of the finite element formulation and implementation, see [215, 216]

among others.

The first step towards the finite element implementation of our theory is to derive the weak form of the governing

equations. To do so, the strong form of the linear momentum balance for the bulk and interface is contracted from left

by a vector-valued test function δϕ ∈ H1(B) and δϕ ∈ H1(I), respectively, where H1 denotes the Sobolev space of

order one. Then the resulting equation is integrated over the corresponding domain. The test functions are specified

to be zero on the Dirichlet part of the boundary. Integrating equations in (6) over their respective domains, the integral

form of the linear momentum balance reads

∫

B
Divσ dV +

∫

I
Divσ dA +

∫

I
[[σ]] · ndA = 0 . (114)

Upon contracting with the test functions and using the divergence theorem, after some mathematical steps, the weak

form of the linear momentum balance reads

∫

B
δϕ · Divσ dV +

∫

I
δϕ · Divσ dA +

∫

I
δϕ · [[σ]] · ndA

=

∫

B
Div

[
δϕ · σ]

dV −
∫

B
σ : Gradδϕ dV +

∫

I
Div

[
δϕ · σ]

dA −
∫

I
σ : Gradδϕ dA +

∫

I
δϕ · [[σ]] · ndA

=

∫

∂B
δϕ · σ · ndA −

∫

I
[[δϕ · σ]] · ndA −

∫

B
σ : Gradδϕ dV +

∫

∂I
δϕ · σ · ñdL −

∫

I
C δϕ · σ · ndA

−
∫

I
σ : Gradδϕ dA +

∫

I
δϕ · [[σ]] · ndA = 0

(115)

The fifth term also vanishes due to the superficiality of the interface stress. Using identity for the jump of dot product

and the relation δϕ = {{δϕ}}α, Eq. (115) reads

∫

∂B
δϕ · σ · ndA −

∫

I
{{δϕ}}α · [[σ]] · ndA −

∫

I
[[δϕ]] · t dA −

∫

B
σ : Gradδϕ dV

+

∫

∂I
{{δϕ}}α · σ · ñdL −

∫

I
σ : Grad{{δϕ}}α dA +

∫

I
{{δϕ}}α · [[σ]] · ndA

=

∫

∂B
δϕ · σ · ndA −

∫

I
[[δϕ]] · t dA −

∫

B
σ : Gradδϕ dV +

∫

∂I
{{δϕ}}α · σ · ñdL −

∫

I
σ : Grad{{δϕ}}α dA

=

∫

∂B
δϕ · t0 dA −

∫

I
[[δϕ]] · t dA −

∫

B
σ : Gradδϕ dV +

∫

∂I
{{δϕ}}α · t0 dL −

∫

I
σ : Grad{{δϕ}}α dA = 0 ,

(116)

where t0 and t0 are the prescribed traction on the boundary of the body and the interface, respectively. Therefore, the
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final version of the weak form of the linear momentum balance reads

∫

B
σ : Gradδϕ dV +

∫

I
σ : Grad{{δϕ}}α dA +

∫

I
[[δϕ]] · t dA −

∫

∂I
{{δϕ}}α · t0 dL −

∫

∂B
δϕ · t0 dA = 0 . (117)

with t0 and t0 being the prescribed traction on the boundary of the bulk and the interface, respectively.

The next step is to discretize the domain. The discretization is carried out by means of the finite element and

more specifically using the Bubnov–Galerkin scheme. The interface elements are here taken to be consistent with the

bulk elements. In other words, for 3D analysis, the bulk elements are discretized by tri-quadratic elements and the

interface elements are discretized by bi-quadratic elements and for 2D analysis, the bulk elements are discretized by

bi-quadratic elements while the interface elements are discretized by quadratic elements. This strategy facilitates the

implementation since the two sides of adjacent bulk elements can be regarded as the two sides of an interface element.

Hence, we do not require additional interpolation or hanging nodes to connect the interface to its adjacent bulk. The

bulk and interface domains are discretized into a set of bulk and interface elements as

B ≈ Bh =

#BE

A
e=1
Be , I ≈ Ih =

#IE

A
e=1
Ie , (118)

with #BE and #IE being the number of bulk and interface elements, respectively, and A the generic assembly operator.

Using standard interpolations and the isoparametric concept, the geometry and the displacement of the bulk and

interface elements together with the test functions can be approximated as

X|Be ≈ Xh(ξ) =

#NPBE∑

i=1

Ni(ξ) Xi , X|Ie ≈ X
h
(ξ) =

#NPIE∑

i=1

N i(ξ) Xi ,

u|Be ≈ uh(ξ) =

#NPBE∑

i=1

Ni(ξ) ui , u|Ie ≈ uh(ξ) =

#NPIE∑

i=1

N i(ξ) ui ,

δϕ|Be ≈ δϕh(ξ) =

#NPBE∑

i=1

Ni(ξ) δϕi , δϕ|Ie ≈ δϕh(ξ) =

#NPIE∑

i=1

N i(ξ) δϕi ,

(119)

with #NPBE and #NPIE being the number of nodes per bulk element and per interface element, respectively. The

functions Ni and N i denote the shape functions of the bulk and interface elements at their local nodes i, respectively.

The bulk element shape function Ni is defined over ξ ∈ [−1, 1]PD whereas the interface element shape function N i is

defined on ξ ∈ [−1, 1]PD−1 with PD being the problem dimension. Figure 5 illustrates the discretization of the bulk

and interface elements for both two- and three-dimensional settings. As shown in the figure, the number of nodes per

interface element #NPIE is the same as the number of nodes per each facet of the adjacent bulk elements. Since the
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interfacial jump and average operators appear in the weak form (117), the following interpolations prove to be useful

[[δϕh]] =

#NPIE∑

i=1

N i [[δϕi]] =

#NPIE∑

i=1

N i δϕ
+
i −

#NPIE∑

i=1

N i δϕ
−
i , {{δϕh}}α =

#NPIE∑

i=1

N i {{δϕi}}α = α

#NPIE∑

i=1

N i δϕ
+
i +

[
1 − α]

#NPIE∑

i=1

N i δϕ
−
i ,

[[uh]] =

#NPIE∑

i=1

N i [[ui]] =

#NPIE∑

i=1

N i u+
i −

#NPIE∑

i=1

N i u−i , {{uh}}α =

#NPIE∑

i=1

N i {{ui}}α = α

#NPIE∑

i=1

N i u+
i +

[
1 − α]

#NPIE∑

i=1

N i u−i ,

(120)

where

δϕ+ = δϕ
∣∣∣I+ , δϕ− = δϕ

∣∣∣I− , u+ = u
∣∣∣I+ , u− = u

∣∣∣I− . (121)

Applying the approximations (119)–(120) to the weak form (117) renders the fully discrete form

#BE

A
e=1

∫

Be

σ :


#NPBE∑

i=1

δϕi ⊗ Grad Ni

 dV

+

#IE

A
e=1

∫

Ie

σ :

α
#NPIE∑

i=1

[
δϕ+

i ⊗ Grad N i

]
+

[
1 − α]

#NPIE∑

i=1

[
δϕ−i ⊗ Grad N i

]
 dA

+

#IE

A
e=1

∫

Ie

t ·


#NPIE∑

i=1

N i δϕ
+
i −

#NPIE∑

i=1

N i δϕ
−
i

 dA + R∂B = 0 ,

(122)

where R∂B is the discretized boundary residual. Let I denote a global node that could be in the bulk or on the interface.

Since the test function δϕ is arbitrary, we assume that δϕ vanishes identically at all nodes except for the global node I.

Note, the assembly operator gathers the contributions from all elements at their local node i associated with the global

node I. Neglecting the boundary residual R∂B, this procedure results in the global nodal residual vector RI associated

with the global node I as

RI =

#BE

A
e=1

∫

Be

σ · Grad Ni dV

+

#IE

A
e=1

∫

I+
e

α
[
σ · Grad N i

]
dA +

#IE

A
e=1

∫

I−e

[
1 − α]

[
σ · Grad N i

]
dA

+

#IE

A
e=1

∫

I+
e

N i t dA −
#IE

A
e=1

∫

I−e
N i t dA = 0 .

(123)

Accordingly, one can split the residual into contributions of the bulk, plus side of the interface and minus side of the
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interface as

RI = RI +R+

I +R−I ,

RI =

∫

B
σ · Grad Ni dV ,

R+

I =

∫

I
α

[
σ · Grad N i

]
+ N i t dA ,

R−I =

∫

I

[
1 − α]

[
σ · Grad N i

]
− N i t dA ,

(124)

where we have omitted the assembly operator by replacing the local node i at the element level with the global node I

and therefore the integrals are not only over the individual elements but over the entire domain. From the structure of

the residual (124), it is obvious that the bulk elements possess the residual RI and the interface elements possess the

residuals R+

I and R−I . Accordingly the nodal stiffness KIJ is defined by the derivative of the residual RI with respect

to the displacement uJ as

KIJ =
∂RI

∂uJ
. (125)

While the structures of the residual vector and stiffness matrix for bulk elements are simple and standard, they are

less familiar for the interface since they include combinations of the plus and minus sides of the interface and can be

schematically represented as

RI =



R−I

R+

I



, K i j =



∂R−I
∂u−J

∂R−I
∂u +

J

∂R+

I

∂u−J

∂R+

I

∂u +
J



=



K −−IJ K −+

IJ

K +−
IJ K ++

IJ



. (126)

Putting all the unknown coordinates into the global unknown coordinate vector
[
u
]

and assembling the global nodal

residual vectors RI into the global residual vector
[
R
]

results in the non-linear system of equations
[
R
] !

= 0 which can

be solved using the Newton–Raphson scheme as

[
R
]
n+1

!
= 0 ⇒ [

R
]
n+1 =

[
R
]
n +

[
K
]
n∆

[
ϕ
]
n

!
= 0 with

[
K
]
n :=

∂
[
R
]
n

∂
[
u
]
n
,

that yields the incremental updates
[
u
]
n+1 =

[
u
]
n + ∆

[
u
]
n. Here [K]n denotes the tangent stiffness and n is the iteration

step. The computational analysis is carried out using our in-house finite element code applied to the RVE discretized

by quadratic Lagrange elements as depicted in Fig. 5. For all the examples, the solution procedures are robust and
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Figure 5: Illustration of domain discretization as well as element types for the bulk and interface domains.

render asymptotically quadratic rate of convergence associated with the Newton–Raphson scheme.

5. Numerical examples

The objective of this section is to illustrate the proposed theory through a set of numerical examples. In doing so, the

overall properties as well as average stresses in both fiber-reinforced and particle-reinforced composites are examined

for various interface positions α as well as stiffness ratios and size. The term size here refers to the physical “size”

of the RVE illustrated in Fig 6 for both fiber-reinforced and particle-reinforced composites. Assuming that size is

expressed in mm, the bulk material properties λ and µ will be in N/mm2 while the interface parameters λ and µ will

be in N/mm. The interface orthogonal resistance k is then measured in N/mm3. The interface position α is a measure

determining whether the interface is closer to the inhomogeneity or the matrix. In the limits, α = 0 implies the interface
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is totally attached to the inhomogeneity and α = 1 signifies a totally attached interface to the matrix. The stiffness

ratio denoted as incl./matr. is the ratio of the inhomogeneity to the matrix Lamé parameters. The stiffness ratio 0.1,

corresponds to a 10 times stiffer matrix than the inhomogeneity and in the limit of incl./matr.→ 0, the inhomogeneity

resembles a void. On the other hand, the stiffness ratio 10 signifies a 10 times stiffer inhomogeneity than the matrix

and in the limit of incl./matr. → ∞, the inhomogeneity acts as being rigid. For all the examples, the volume fraction

of the inhomogeneity is set to f = 30%. Moreover, the matrix Lamé parameters are set to λ(2) = 12 N/mm2 and

µ(2) = 8 N/mm2 and the inhomogeneity Lamé parameters vary in accordance with the prescribed stiffness ratios. For

the case with transverse isotropy associated with fiber-reinforced composites, we assume λ = l = m and µax = µtr

for the sake of simplicity. For the interface parameters, the interface in-plane resistance indicating the resistance of

the interface against stretches is set to µ = λ = 0.1 N/mm and the orthogonal interface resistance corresponding to

the resistance of the interface against opening is set to k = 10 N/mm3. Also, we assume equal orthogonal resistance

for the interface in each direction implying kr = kθ = kz = k in a two-dimensional setting and kr = kθ = kφ = k in

a three-dimensional setting. For a two-dimensional analysis corresponding to fiber-reinforced composites, only one

interface material parameter suffices to capture the interface in-plane response thus, we consider λ = 0 N/mm and

µax = µtr = 0.1 N/mm. Computational analysis using the finite element method is carried out in order to compare

with the analytical solutions.

Figure 6: Schematic illustration of RVE size.

40



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

effective bulk modulus Mκ versus size for fiber-reinforced composites volume fraction f = 30%
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Figure 7: Overall bulk modulus versus size for fiber-reinforced composites. Rows represent the interface positions and columns represent the
stiffness ratio. Lines correspond to the analytical solution obtained by the Mori–Tanaka method whereas points correspond to the solutions obtained
by FEM.
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effective bulk modulus Mκ versus size for particle-reinforced composites volume fraction f = 30%

incl./matr. = 0.1 incl./matr. = 1 incl./matr. = 10
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Figure 8: Overall bulk modulus versus size for particle-reinforced composites. Rows represent the interface positions and columns represent the
stiffness ratio. Lines correspond to the analytical solution obtained by the Mori–Tanaka method whereas points correspond to the solutions obtained
by FEM.
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Figure 9: Overall shear modulus versus size for fiber-reinforced composites. Rows represent the interface positions and columns represent the
stiffness ratio. Lines correspond to the analytical solution obtained by the Mori–Tanaka method whereas points correspond to the solutions obtained
by FEM.
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Figure 10: Overall shear modulus versus size for particle-reinforced composites. Rows represent the interface positions and columns represent
the stiffness ratio. Lines correspond to the analytical solution obtained by the Mori–Tanaka method whereas points correspond to the solutions
obtained by FEM.
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Figures 7 and 8 depict the overall bulk modulus versus size for fiber- and particle-reinforced composites, respec-

tively. Rows correspond to the interface position and columns correspond to the stiffness ratio. Lines represent the

analytical solutions whereas points correspond to computational results obtained by FEM. The black line corresponds

to the Mori–Tanaka method, the green line corresponds to the generalized self-consistent method and the yellow line

corresponds to either composite cylinder assemblage or composite sphere assemblage. For the computational analysis,

the RVE is subject to volumetric expansion under two different boundary conditions; displacement boundary condition

(DBC) and traction boundary condition (TBC). These two boundary conditions normally lead to an upper bound and

lower bound on the overall material response in classical homogenization. An excellent agreement between all the

analytical solutions and computational results is observed. In addition, due to the RVE geometry and the symmetry of

loading, the upper and lower bounds coincide. For each stiffness ratio, the overall bulk modulus remains insensitive

with respect to the interface position at large sizes. This is justifiable since larger size implies diminished interface

effects, thus the role of interface position in the overall material response becomes negligible. Another significant ob-

servation is that as the interface moves from the inhomogeneity towards the matrix (increasing α), the overall material

response switches from smaller-weaker to smaller-stronger. These two particular responses were previously solely

attributed to the cohesive interface model and the elastic interface model, respectively. Here, with the new developed

interface model, all the ranges between the overall responses associated with these two interface models can be cap-

tured. For all interface positions, increasing the stiffness ratio yields stiffer response at large sizes. In addition, for the

cases when the interface is completely attached to the inhomogeneity (α = 0) and to the matrix (α = 1), the overall

response at small sizes remains insensitive with respect to the stiffness ratio. Figures 9 and 10 are the counterparts of

Figs. 7 and 8 for the overall shear modulus. Here, the RVE is subject to simple shear which results in distinct upper

and lower bounds. It is observed that the analytical solutions associated with CCA and CSA perfectly coincide with

the computational results due to DBC and TBC which provide upper and lower bounds. The other two analytical solu-

tions furnishing the effective shear modulus always remain within the bounds. For fiber-reinforced composites, when

incl./matr. = 0.1, the bounds remain distinct and separate and the response associated with GSCM underestimates

that of Mori–Tanaka. When, incl./matr. = 1 the bounds tend to coincide at large sizes. At small sizes, the response

obtained via GSCM underestimates the Mori–Tanaka solution whereas at large sizes, they coincide all together with

the bounds. When incl./matr. = 10, moving from small to large sizes, the bounds tend to approach until they coincide

and they distance afterwards. The solution due to GSCM underestimate the Mori–Tanaka solution before the bounds

coincide and it overestimate the Mori–Tanaka solution after the bounds coincide. Under simple shear loading, smaller

stronger response is attainable for fiber-reinforced composites only when the stiffness ratio is 0.1. For other stiffness

ratio, the material response is always stronger at large sizes. For particle-reinforced composites the behavior of the
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bounds is more complicated and depending on the interface positions, various observations can be made. In contrast

to fiber-reinforced composites, when incl./matr. = 0.1, the bounds coincide when the interface is closer to the ma-

trix. For some cases for incl./matr. = 1 and incl./matr. = 10, the bounds coincide twice within the size range. Each

coincidence switches the relative position between the solutions associated with GSCM and the Mori–Tanaka method.

As mentioned earlier, a noteworthy advantage of the Mori–Tanaka method was determining overall properties

as well as average fields within the constituents of the medium. Therefore, the state of the stress and strain in both

the inhomogeneity and the matrix can be estimated. In what follows a set of examples are devised to demonstrate

the average fields within the constituents of fiber- and particle-reinforced composites. Figures 11 and 12 provide

a thorough comparison between the numerical and analytical stress distributions for various interface positions for

fiber-reinforced composites and particle-reinforced composites, respectively. For these examples, the micro-structure

is subject to volumetric expansion. The stiffness ratio is set to 10 and the RVE size is 0.01. The color patterns display

[σxx +σyy]/2 for the two dimensional case and [σxx +σyy +σzz]/3 for the three dimensional case. This choice is made

to provide meaningful stress distributions for each case. Each row represent a specific interface position and contains

5 micro-structures. In each row, the left and right pairs render the computational stress distribution due to DBC and

TBC, respectively, obtained from the finite element method. The very left and very right RVEs render the local stress

distributions. Since our proposed analytical approach determines the average stress in the constituents, the average

of these local stresses is calculated in each phase and rendered in the RVEs next to them. Such illustration facilitates

comparison with analytical stresses. The center micro-structure correspond to the analytical average stress distribution

obtained by the Mori–Tanaka method. The values of the average stress in the inhomogeneity 〈σ〉1 and in the matrix

〈σ〉2 are shown for the sake of clarity. It is observed that a perfect agreement holds between the stress distributions

predicted by our proposed Mori–Tanaka method and the average stresses obtained by FEM. For all cases, the matrix

tends to undergo larger average stress as the interface moves from the inhomogeneity towards the matrix. Figures 13

and 14 are the counterparts of Figs. 11 and 12 for the simple shear loading. The stress component of interest for

these examples is σxy. The difference between the local stresses and average stresses associated with FEM results

is more visible in these figures. For the shear deformation various conclusions can be drawn. The overall analytical

stress average within the matrix is always bounded between the computational average stresses under DBC and TBC.

However, for the inhomogeneity, when α = 0 and α = 1, the average stress is lowest for DBC and highest for TBC.

For the other interface positions which are α = 0.25 and α = 0.5 and α = 0.75, the inhomogeneity average stress is

lowest for TBC. For these cases, sometimes the analytical average stress is the highest and sometimes DBC provides

the highest stress.
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Figure 11: Stress distribution throughout the constituents of a fiber-reinforced composite under volumetric expansion for incl./matr. = 10. The left
RVE pair correspond to finite element stress distribution when DBC is imposed to the RVE. The center RVE correspond to the analytical average
stress obtained via the Mori–Tanaka method. The right RVE pair correspond to finite element stress distribution when TBC is imposed to the RVE.
The finite element stress distributions include the local stresses together with their averages in each phase.
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Figure 12: Stress distribution throughout the constituents of a particle-reinforced composite under volumetric expansion for incl./matr. = 10. The
left RVE pair correspond to finite element stress distribution when DBC is imposed to the RVE. The center RVE correspond to the analytical
average stress obtained via the Mori–Tanaka method. The right RVE pair correspond to finite element stress distribution when TBC is imposed to
the RVE. The finite element stress distributions include the local stresses together with their averages in each phase.
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Figure 13: Stress distribution throughout the constituents of a fiber-reinforced composite under simple shear for incl./matr. = 10. The left RVE
pair correspond to finite element stress distribution when DBC is imposed to the RVE. The center RVE correspond to the analytical average stress
obtained via the Mori–Tanaka method. The right RVE pair correspond to finite element stress distribution when TBC is imposed to the RVE. The
finite element stress distributions include the local stresses together with their averages in each phase.
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Figure 14: Stress distribution throughout the constituents of a particle-reinforced composite under simple shear for incl./matr. = 10. The left RVE
pair correspond to finite element stress distribution when DBC is imposed to the RVE. The center RVE correspond to the analytical average stress
obtained via the Mori–Tanaka method. The right RVE pair correspond to finite element stress distribution when TBC is imposed to the RVE. The
finite element stress distributions include the local stresses together with their averages in each phase.
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6. Summary and Conclusion

In summary, a comprehensive study on the mechanics of a continuum body embedding an extended general interface

was carried out. A homogenization framework based on the Mori–Tanaka method was established and the significant

influence of arbitrary interface positions on the material response was studied in detail. The advantage of the proposed

Mori–Tanaka approach is that in addition to providing estimates on the overall properties, it is capable of determining

the average stresses and strains within the constituents of the medium. Closed-form, explicit expressions for the effec-

tive bulk modulus and effective shear modulus of fiber-reinforced and particle-reinforced composites were obtained

as a function of the interface position. Computational analysis was carried out to evaluate the performance of the ana-

lytical approaches and an outstanding agreement between the results was observed. It turns out that under volumetric

expansion, CCA, CSA, GSCM and the Mori–Tanaka method all yield the same overall material response. How-

ever, under simple shear, CCA and CSA provide bounds on the material response for fiber- and particle-reinforced

composites with the GSCM and the Mori–Tanaka solution lying within the bounds consistently. The same obser-

vations relatively hold between the average stresses estimated by the Mori–Tanaka method and the average stresses

obtained by FEM. Moreover, we observed that the choice of interface position can lead to any of smaller-stronger or

smaller-weaker responses which were previously attributed to the elastic and cohesive interface models, respectively.

Our methodology sheds light on some counter-intuitive behaviors observed in composites embedding general inter-

faces originating from the trivial assumption of the interface coinciding with the mid-plane. The newly developed

extended general interface model can be considered as the most generic existing interface model since it involves all

the characteristics of the classical general interface, elastic interface and cohesive interface models. We believe that

this manuscript deepens our understanding of various interface effects and the size-dependent behavior of composites

which paves the way towards computational design of metamaterials.
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[39] S. Baranova, S. G. Mogilevskaya, V. Mantic, S. Jiménez-Alfaro, Analysis of the Antiplane Problem with an Embedded Zero Thickness

Layer Described by the Gurtin-Murdoch Model, Journal of Elasticity 140 (2020) 171–195.

[40] S. Baranova, S. G. Mogilevskaya, T. H. Nguyen, D. Schillinger, Higher-order imperfect interface modeling via complex variables based

asymptotic analysis, International Journal of Engineering Science 157 (2020) 103399.

[41] Y. Benveniste, O. Berdichevsky, On two models of arbitrarily curved three-dimensional thin interphases in elasticity, International Journal

of Solids and Structures 47 (2010) 1899–1915.

[42] D. Bigoni, S. K. Serkov, M. Valentini, A. B. Movchan, Asymptotic models of dilute composites with imperfectly bonded inclusions,

International Journal of Solids and Structures (35) (1998) 3239–3258.

[43] R. Rizzoni, S. Dumont, F. Lebon, E. Sacco, Higher order model for soft and hard elastic interfaces, International Journal of Solids and

Structures 51 (2014) 4137–4148.

[44] F. Lebon, R. Rizzoni, Asymptotic behavior of a hard thin linear elastic interphase: An energy approach, International Journal of Solids and

Structures 48 (2011) 441–449.

[45] F. Lebon, R. Rizzoni, Asymptotic analysis of a thin interface: The case involving similar rigidity, International Journal of Engineering

Science 48 (2010) 473–486.

53



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

[46] M. Serpilli, R. Rizzoni, F. Lebon, S. Dumont, An asymptotic derivation of a general imperfect interface law for linear multiphysics compos-

ites, International Journal of Solids and Structures 180-181 (2019) 97–107.

[47] R. Rizzoni, F. Lebon, Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases, Mechanics Research Commu-

nications 51 (2013) 39–50.

[48] M. Serpilli, R. Rizzoni, S. Dumont, F. Lebon, Higher order interface conditions for piezoelectric spherical hollow composites: asymptotic

approach and transfer matrix homogenization method, Composite Structures 279 (2022) 114760.
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