
HAL Id: hal-03766438
https://hal.science/hal-03766438

Submitted on 7 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability Analysis of a Class of Discontinuous
Discrete-Time Systems

Francesco Ferrante, Giorgio Valmorbida

To cite this version:
Francesco Ferrante, Giorgio Valmorbida. Stability Analysis of a Class of Discontinuous Discrete-
Time Systems. IEEE Control Systems Letters, 2023, 7, pp.454-459. �10.1109/LCSYS.2022.3183937�.
�hal-03766438�

https://hal.science/hal-03766438
https://hal.archives-ouvertes.fr


ar
X

iv
:2

20
8.

05
80

2v
1 

 [
ee

ss
.S

Y
] 

 1
1 

A
ug

 2
02

2
This is a repository version of our paper. Please cite the published version DOI:

https://doi.org/10.1109/LCSYS.2022.3183937 1

Stability Analysis of a Class of Discontinuous Discrete-Time Systems

Francesco Ferrante, Senior Member, IEEE, and Giorgio Valmorbida

Abstract—The stability analysis of a class of discontinuous
discrete-time systems is studied in this paper. The system under
study is modeled as a feedback interconnection of a linear system
and a set-valued nonlinearity. An equivalent representation,
based on a constrained optimization problem, is proposed to
represent the set-valued nonlinearity via a collection of linear
and quadratic constraints. Relying on this description and on
the use of a generalized quadratic set-valued Lyapunov functions,
sufficient conditions in the form of linear matrix inequalities for
global exponential stability are obtained. Numerical examples
corroborate the theoretical findings.

Index Terms—Nonlinear systems, Lyapunov stability, LMIs.

I. Introduction

A. Motivation and background

T
HE widespread availability and the decreasing costs
of digital devices have promoted the implementation

of control systems on digital platforms. However, em-
bedded control systems when implemented on affordable
devices also raise theoretical challenges in term of sta-
bility analysis and performance. Indeed, the presence of
nonlinear elements in feedback control systems may lead
to limit cycles, chaotic behaviors, which may induce poor
performance and instability. A fundamental limitation in
digital control systems consists of the use of finite alpha-
bets to represent information such as inputs and outputs.
The control of systems based on the use of finite alphabets
has been largely investigated in the literature over the last
years. A finite number of input values appears in quantized
actuators followed by a saturation nonlinearity [1], [2].
For example, in [3] the use of ternary controllers for
multi agent systems consensus is proposed. Stabilization
of nonlinear systems by a finite number of control or
measurement values is studied in [4]. Formation control
under the assumption of binary information exchanges
has been pursued in [5]. Distributed consensus via binary
control has been investigated in [6]. In [7], ternary feedback
controllers are shown to be effective to tackle rendez-vous
problems for Dubins models of cars. Another application of
ternary controllers for integrator coordination is featured
in [8]. A predominant use of controllers taking values into
finite alphabets arises in the literature of symbolic control
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in which control design is performed based on discrete
abstractions; see, e.g., [9], [10].

B. Contributions and Outline of the Paper

In this paper, we focus on stability analysis of a class of
discontinuous discrete-time control systems. In particular,
we consider a scenario in which a linear plant is controlled
via an affine static state feedback law taking values into
the set Q := {0, δ1} × {0, δ2} × . . . {0, δnu}, where nu ∈ N

is the number of control inputs and δi ∈ R, for all
i ∈ {1, 2, . . . , nu}, are some given levels. More specifically,
we focus on the following class of nonlinear discrete-time
systems:

x+ = Ax +B∆S(Kx+ d) (1)

where A ∈ Rnp×np , B ∈ Rnp×nu , K ∈ Rnu×np , ∆ :=
diag{δ1, δ2, . . . , δnu}, d ∈ Rnu are given and S : Rnu →
Rnu is defined as follows:

S(u) := (s(u1), s(u2), . . . , s(unu)) (2)

where for all v ∈ R

s(v) :=

{
1 if v > 0

0 if v ≤ 0.
(3)

The above setup is rather general and allows one to
capture, among others, the typical situation in which ac-
tuators may only deliver a finite set of input values. Since
system (1) is assumed to be given, the goal of the paper
is to provide a method for the stability analysis of the
origin of (1). The expression for the input mapping s in (3)
is a static nonlinearity, which is commonly studied by a
sector description. In contrast with more classical absolute
stability approaches, we do not rely on any sector bound
approach. Moreover, we introduce a class of set-valued
piecewise quadratic Lyapunov functions (LF ), as opposed
to the standard quadratic LF approaches. The structure
of the paper and its contributions can be summarized as
follows:

• Following the general approach in [11], in Section II
we propose an equivalent representation of a regu-
larized version of the quantizer mapping (2) based
on the use of Karush-Kuhn-Tucker (KKT ) necessary
conditions for optimality.

• Inspired by [12], [13], [14], [15], in Section III we
introduce a suitable class of generalized quadratic
Lyapunov functions.

• Relying on the proposed class of set-valued
generalized-quadratic Lyapunov functions, Section III
ends by providing sufficient conditions in the form
of linear matrix inequalities to certify global
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exponential stability of the origin of (1). Those
conditions can be efficiently checked by using
semidefinite programming.

• Section IV illustrates the effectiveness of the proposed
methodology in two numerical examples.

The main extension with respect to our conference pa-
per [16] is the analysis of a set-valued regularized version of
the discontinuous dynamics in (1). Such an extension nat-
urally leads to the use of set-valued Lyapunov functions,
which requires a proper handling; this is not pursued in
[16].

C. Notation

The symbols N an R denote, respectively, the set of
positive integers and the set of reals, N0 represents the set
of nonnegative integers, Rn is the n-dimensional Euclidean
space, and R

n×m is set of the n × m real matrices. The
symbol Sn stands for the set of n×n symmetric matrices,
Dn denotes the set of n×n diagonal matrices, and Pn is the
set of n× n symmetric matrices with nonnegative entries.
For a vector x ∈ Rn, |x| denotes its Euclidean norm. The
identity matrix is denoted by I. The symbol 1n is the all-
ones vector of Rn. For a matrix A ∈ Rn×m, A⊺ denotes the
transpose of A, and, when n = m, He(A) = A+A⊺. We use
the equivalent notation for vectors (x, y) = [x

⊺
y
⊺
]
⊺
. The

symbol ⊙ stands for the Hadamard product. Let A ∈ Sn,
A � 0 stands for negative semidefiniteness of A. Given
x ∈ Rn, x ≤ 0 indicates that the components of x are
nonpositive. The symbol • stands for symmetric blocks in
symmetric partitioned matrices. Given a matrix M with
kerM 6= {0},M⊥ stands for any matrix having as columns
a basis of kerM . The symbol sup stands for the supremum,
Ω is the closure of the set Ω, and rge f is the image of the
function f . The symbol

⊕n

i=1Ai stands for direct sum of
matrices A1, A2, . . . , An and A⊗B indicates the Kronecker
product of matrices A and B.

II. Problem setting and Key results

A. Modeling and structural properties

Due to the discontinuity of S at zero, (1) is a dis-
continuous dynamical system. Although discontinuities in
discrete-time dynamical systems do not lead to major
technical problems as in their continuous-time counterpart
(see, e.g., [17], [18], [19], [20]), they generally lead to lack
of robustness, with stability properties being fragile in the
presence of vanishing perturbations; see [21, Example 4.4,
page 76]. To overcome this drawback, in this work we
consider the following set-valued regularization of (1):

x+ ∈ Ax+B∆S(Kx+ d) (4)

where the set-valued mapping1 S : Rnu ⇒ R
nu is defined

as follows:

S(u) := (s(u1), s(u2), . . . , s(unu)) (5)

1The double arrow notation ⇒ is used to distinguish set-valued
maps from functions.

with, for all v ∈ R,

s(v) :=





1 if v > 0

0 if v < 0

[0, 1] if v = 0.

(6)

Observe that solutions to (1) are solutions to (4). Thus,
stability properties of (4) carry over (1). We discuss
properties of solutions and provide stability definitions to
difference inclusions in Section II-C.

Remark 1. It can be shown that S contains the so-
called (discrete-time) Krasovskii regularization of the step
function S; see, e.g., [21, Definition 4.13]. Therefore, (4)
captures all possible solutions to (1) obtained by introduc-
ing vanishing state perturbations, i.e., Hermes solutions;
see [21, Chapter 4]. This ensures that stability of the origin
of (1) is robust with respect to vanishing perturbations.

⋄

B. Characterization of the mapping S via quadratic con-
straints

In this subsection we illustrate the key result of this
paper. This result yields a tight characterization of the
mapping S in (5) in terms of quadratic constraints. To
achieve this goal, we pursue a similar approach as in [11]
and rely on optimization-based representation of the map-
ping S along with Karush-Kuhn-Tucker (KKT) optimality
conditions. To this end, observe that for all v ∈ R, one can
express (6) as

s(v) ∈ argmin
w∈[0,1]

−vw. (7)

Clearly, if v < 0, one has s(v) = 0, if v > 0, one has s(v) =
1, while when v = 0, s(v) ∈ [0, 1], which is consistent
with (6). Building upon this observation, one can obtain
a characterization of the mapping S via the application
of Karush-Kuhn-Tucker (KKT) optimality conditions to
problem (7). This is formally stated in the result given
next.

Theorem 1. Let S be defined as in (5), u ∈ Rnu , and s ∈
Rnu . Then, the following items are equivalent:

(i) s ∈ S(u)
(ii) there exist λ1, λ2 ∈ Rnu such that:

−u− λ1 + λ2 = 0 (8a)

λ1 ⊙ s = 0 (8b)

λ2 ⊙ (1nu − s) = 0 (8c)

−λ1 ≤ 0 (8d)

−λ2 ≤ 0 (8e)

−s ≤ 0 (8f)

−1nu + s ≤ 0 (8g)

Proof. Since the relations in (8) are defined elementwise,
the claim can be proven for each element. Thus, we assume
nu = 1, in which case we have s = S.
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Proof of (i) =⇒ (ii). Using (7), it follows that

s ∈ argmin
w∈[0,1]

−uw (9)

In particular, the Lagrangian associated to (9) writes:

Lu(w, λ) = −uw +

[
λ1
λ2

]⊤ ([
−1
1

]
w +

[
0
−1

])
.

To conclude, let us recall that from KKT necessary condi-
tions for optimality ((9) is a linear program), one has that
for any optimal solution w⋆ to (9), there exists a unique
λ⋆ := (λ⋆1, λ

⋆
2) such that:

d

dw
Lu(w

⋆, λ⋆) = 0, λ⋆1w
⋆ = 0, λ⋆2(1− w⋆) = 0

λ⋆1 ≥ 0, λ⋆2 ≥ 0, w⋆ ≥ 0, w⋆ ≤ 1
(10)

which reads as (8). Hence, recalling that s is an optimal
solution to (9), i.e., w⋆ = s satisfies (10), the implication
is established.
Proof of (ii) =⇒ (i). This implication can be readily
shown by observing that since (9) is a linear program,
the satisfaction of (8) (KKT conditions) implies (9). This
establishes the result.

Theorem 1 shows that for all u ∈ Rnu and s ∈ S(u),
there exist λ1, λ2 ∈ Rnu such that χ := (λ1, λ2, s,1nu −
s, u) ∈ R

5nu satisfies (8). In particular, the entries of the
vector χ depend on u and s. Therefore, in the remainder
of the paper, given u ∈ Rnu and s ∈ S(u), we use the
shorthand notation χ(u, s) to denote the corresponding
vector satisfying (8). For compactness, next we rewrite the
linear equality constraints in (8a) as follows:

Lχ = 0 (11a)

where:
L :=

[
−1 1 0 0 −1

]
⊗ Inu . (11b)

The result given next provides an explicit characteriza-
tion of the multipliers λ1 and λ2 introduced in Theorem 1.
This characterization enables to make the construction of
the Lyapunov in Section III explicit.

Lemma 1. Let u ∈ Rnu . Then, for all s ∈ S(u), there exist
λ1(u) and λ2(u) such that χ(u, s) = (λ1(u), λ2(u), s,1nu −
s, u) satisfies (8). In particular

λ1(u) = r(−u), λ2(u) = r(u), (12)

where u 7→ r(u) is the componentwise ramp function,
namely for all i = 1, 2, . . . , nu, r(ui) = ui if ui ≥ 0 and
r(ui) = 0 otherwise. �

Proof. For the sake of the exposition, we develop the proof
for nu = 1. To prove the result, we analyze the solutions
to system (8) in the unknowns (λ1, λ2) for fixed values
of u and s. In particular, the following can be proven via
simple manipulations. If u = 0, then s ∈ [0, 1] and from
(8b), (8c), λ1 = λ2 = 0. If u 6= 0. Then, s ∈ {0, 1} and
from (8a), (λ1, λ2) = (−u, 0) if s = 0 or (λ1, λ2) = (0, u)
otherwise. Hence, using the definition of the map S, the
two relationships above yield (12).

In light of Lemma 1, in the remainder of the paper, for
all u ∈ R

nu we use the notation λ(u) = (r(−u), r(u)).

C. Preliminaries on difference inclusions

We consider set-valued dynamics of the form:

x+ ∈ G(x) (13)

where x ∈ Rn is the system state and G : Rn ⇒ Rn is a set-
valued map. A solution to (13) is any function φ : domφ→
Rn with domφ = N0∩{0, 1, . . . , J} for some J ∈ N0∪{∞}
such that for all j ∈ domφ, with j + 1 ∈ domφ, φ(j +
1) ∈ G(φ(j)). We say that a solution φ is maximal if it
cannot be extended and it is complete if sup domφ = ∞.
Regarding system (4), the following holds

Proposition 1. For any ξ ∈ Rnp , there exists a complete
solution φ to (4) such that φ(0) = ξ.

Proof. The proof follows simply from the fact that S is
defined everywhere; see, e.g., [21, Proposition 2.10].

The following notion of global exponential stability is
used in the paper.

Definition 1. We say the the origin is globally exponentially
stable (GES) for (13) if there exists λ, κ > 0 such that any
maximal solution φ to (13) satisfies, for all j ∈ domφ,
|φ(j)| ≤ κe−λj|φ(0)|. ⋄

Next we provide sufficient conditions for GES of the
origin of (13). Those conditions are formulated in terms
of Lyapunov inequalities involving a set-valued Lyapunov
function.

Theorem 2. Suppose that there exists V : Rn ⇒ R, and
positive real numbers c1, c2, c3, and p such that

c1|x|
p ≤ supV (x) ≤ c2|x|

p, ∀x ∈ R
n, (14)

supV (g)− supV (x) ≤ −c3|x|
p, ∀x ∈ R

n, g ∈ G(x).
(15)

Then, the origin is GES for (13). �

Proof. For all x ∈ Rn, defineW (x) := supV (x). The proof
of the statement follows directly by observing that W is a
standard single-valued Lyapunov function for (13).

The conditions given in Theorem 2 are in general diffi-
cult to check. To overcome this drawback, we provide the
following result that is easier to exploit.

Proposition 2. Let V : Rn ⇒ R, and c1, c2, c3, and p as in
Theorem 2. We have the following:

(i) if

c1|x|
p ≤ ̺ ≤ c2|x|

p, ∀x ∈ R
n, ̺ ∈ rgeV (x) (16)

then (14) holds;
(ii) Let x ∈ Rn and g ∈ G(x). If there exists ω ∈ V (x)

such that:

ψ − ω ≤ −c3|x|
p, ∀ψ ∈ V (g) (17)

then, (15) holds.

https://doi.org/10.1109/LCSYS.2022.3183937
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Fig. 1: Prototype of the Lyapunov function candidate used
in Theorem 3.

Proof. From (16), it follows that for all x ∈ Rn, V (x) is
bounded. This implies that for all x ∈ Rn, supV (x) ∈
rgeV (x). Hence, item (i) is established. The proof of item
(ii) easily follows from the fact that since supV (g) −
supV (x) ≤ supV (g)−ω and V (g) is bounded, there exists
ψ⋆ ∈ V (g) such that supV (g) = ψ⋆.

III. Stability Analysis

We are now in a position to state the main result of this
paper. This result provides sufficient conditions for global
exponential stability of (4) in the form of matrix inequal-
ities. To this end, we use Theorem 2 and Proposition 2,
and the following set-valued Lyapunov function candidate:

V (x) :=
⋃

s∈S(Kx+d)








x

s

λ(Kx+ d)



⊺

P




x

s

λ(Kx+ d)







(18)

A prototype of the function (18) for the scalar case with

P =

[
1 0 0 0
• 1 0 0
• • 0 1
• • • 0

]
,K = 1, d = −1

is depicted in Fig. 1.

Theorem 3. Suppose that there exist P ∈ Snp+3nu ,
M1,M2,M3 ∈ P8nu+1, Ĝi = (Gi,1, Gi,2) ∈ D2nu × D2nu ,
ci > 0, with i ∈ {1, 2, 3} such that

W
⊺

⊥(Vu + T
⊺
Ψ(Ĝ1)T + F

⊺
M1F )W⊥ � 0

W
⊺

⊥(Vl + T
⊺
Ψ(Ĝ2)T + F

⊺
M2F )W⊥ � 0

(19a)

W
⊺

⊥(Ξ + T
⊺
Ψ(Ĝ3)T + F

⊺
M3F )W⊥ � 0 (19b)

where for all i ∈ {1, 2, 3}:

Ψ(Ĝi) := He




2⊕

j=1

[
02nu,2nu Gi,j 02nu,nu
03nu,2nu 03nu,2nu 03nu,nu

]


Ξ :=
[
Π⊺

1V
⊺

+ Π⊺

2

]([1 0
0 −1

]
⊗ P

)[
V+Π1

Π2

]
+ c3X

Vl := −Π
⊺

2PΠ2 + c1X,Vu := Π
⊺

2PΠ2 − c2X,
(20a)

where Π1, V+, and F are defined in (20b),

H :=
[
0nu,2nu Inu 0nu,2nu

]
, X := Inp ⊕ 010nu+1,10nu+1

Π2 :=

[
Inp+nu 0np+nu,5nu

02nu,(np+nu)
[
02nu,nu I2nu 02nu,2nu

]
]
Π1

W :=

[
R

(I2 ⊗ L)T

]
, T :=

[
010nu,np I10nu 010nu,1

]

R :=




K −Z 0nu,5nu d

KA KB∆J −Z d

0nu,np E 0nu,np −1

0nu,np 0nu,np E −1




E :=
[
0nu,2nu Inu Inu 0nu,nu

]

Z :=
[
0nu,4nu Inu

]
, J :=

[
0nu,2nu Inu 0nu,2nu

]
,
(20c)

and L is defined in (11b). Then, the origin of (4) is GES.

Proof. The proof hinges upon Theorem 2 and Proposi-
tion 2. In particular, let, for all x ∈ Rnp , V be defined
as in (18). We show that the satisfaction of (19) implies
all the conditions in Proposition 2. Pick x ∈ Rnp and
g := Ax+B∆s ∈ Ax+B∆S(Kx+ d). Let

ω =




x

s

λ(Kx+ d)



⊺

P




x

s

λ(Kx+ d)




and observe that ω ∈ V (x). Pick any ψ ∈ V (g). In
particular, ψ writes as

ψ = h(sψ)
⊺
P




Ax+B∆s
sψ

λ(K(Ax+B∆s) + d)




︸ ︷︷ ︸
h(sψ)

for some sψ ∈ S(K(Ax+B∆s) + d).
Preliminary steps . Define

θ := (x, χ(Kx+ d, s), χ(K(Ax+B∆s) + d, sψ) , 1) ∈ R
nθ

with nθ := np + 10nu + 1. Then, by construction, one has

(x, s, λ(Kx+ d)) = Π2θ (21a)

(x, s, sψ , λ(Kx+ d), λ(K(Ax+B∆s) + d)) = Π1θ (21b)

and h(sψ) = V+Π1θ. In particular

ψ − ω + c3|x|
2 = θ

⊺
Ξθ. (22)

Now observe that from the definition of θ and the general
structure of the vector χ, the following holds:

Rθ = 0. (23)

https://doi.org/10.1109/LCSYS.2022.3183937
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V+ :=




A B∆ 0np,nu 0np,2nu 0np,2nu
0nu,np 0nu,nu Inu 0nu,2nu 0nu,2nu
02nu,np 02nu,nu 02nu,nu 02nu,2nu I2nu


 , F =



04nu,np

[
I4nu 04nu,nu

]
04nu,5nu 04nu,1

04nu,np 04nu,5nu
[
I4nu 04nu,nu

]
04nu,1

01,np 01,5nu 01,5nu 1




Π1 :=




Inp 0np,5nu 0np,5nu+1

0nu,np H 0nu,5nu+1

0nu,np 0nu,5nu
[
H 0nu,1

]

02nu,np
[
I2nu 02nu,3nu

]
02nu,5nu+1

02nu,np 02nu,5nu
[
I2nu 02nu,3nu+1

]




(20b)

Moreover, using the constraints provided by Theorem 1,
it follows that:

(I2 ⊗ L)Tθ = 0 (24a)

θ
⊺
T

⊺
Ψ(Ĝi)Tθ = 0 ∀i ∈ {1, 2, 3} (24b)

θ
⊺
F

⊺
MiFθ ≥ 0 ∀i ∈ {1, 2, 3}, (24c)

where (24c) comes from the nonnegativity constraints in
Theorem 1 that ensure −Fθ ≤ 0. In particular, combining
(23) and (24a) yields:

Wθ = 0. (25)

Proof of (19a) =⇒ (16). Bearing in mind (21a), the satis-
faction of (16) is equivalent to

θ
⊺
Vuθ ≤ 0, θ

⊺
Vlθ ≤ 0. (26)

Using (24b) and (24c)

θ
⊺
Vuθ ≤ θ

⊺(Vu + T
⊺Ψ(Ĝ1)T + F

⊺
M1F )θ

θ
⊺
Vlθ ≤ θ

⊺(Vl + T
⊺Ψ(Ĝ2)T + F

⊺
M2F )θ

(27)

Therefore, combining (27) and (25), to show the sat-
isfaction of (26) is enough to show that the following
implication holds:

Wθ = 0 =⇒

{
θ
⊺
(Vu + T

⊺
Ψ(Ĝ1)T + F

⊺
M1F )θ ≤ 0

θ
⊺
(Vl + T

⊺
Ψ(Ĝ2)T + F

⊺
M2F )θ ≤ 0

(28)
The latter is equivalent to (19a). Hence, (19a) implies (17).

Proof of (19b) =⇒ (17). Recalling (22), (17) holds if

θ
⊺
Ξθ ≤ 0. Using (24b) and (24c)

θ
⊺
Ξθ ≤ θ

⊺
(Ξ + T

⊺
Ψ(Ĝ3)T + F

⊺
M3F )θ (29)

Therefore, by recalling (25), the satisfaction of (17) follows
from the following implication Wθ = 0 =⇒ θ

⊺(Ξ +
T

⊺Ψ(Ĝ3)T +F ⊺
M3F )θ ≤ 0, which in turn is equivalent to

(19b). Namely, (19b) implies (17) and this concludes the
proof.

Remark 2. The satisfaction of (19a), which in turn ensures
that (16) holds for the function (18), does not imply
that the matrix P is positive definite. This consideration
clearly emerges in the numerical examples presented in
Section IV. ⋄

IV. Numerical Examples

In this section, we showcase the proposed methodology
in two numerical examples. Specifically, we consider the
following dynamical system2

x+ = Ax+B′ϕ(x) (30)

where A =

[
0.9464 0.0957
−0.9568 0.9033

]
and B′ and ϕ : R2 → R

are selected in each of the examples below.

Example 1. [Ternary Control] In this first example, we

pick B′ =
[
0.0049 0.0959

]⊺
, K ′ =

[
9.9 0.495

]
, and

analyze the case of ternary control systems; see, e.g., [8],
[16]. More specifically, we select ϕ(x) = τ(K ′x), where:
τ(u) = 1 if u > 1, τ(u) = 0 if u ∈ [−1, 1], and τ(u) = −1 if
u < −1. It is worth to observe that no common quadratic
function exists to certify exponential stability of the matri-
ces A and A+B′K ′. This prevents from using a quadratic
Lyapunov function to certify global exponential stability in
this example. The proposed methodology instead enables
to certify GES. System (30) can be rewritten as (1) by

taking B =
[
B′ −B′

]
, K =

[
K ′

−K ′

]
, d = −12, and

∆ = I2. By solving the conditions in (19), we obtain:

P =




150 7.1 0.57 30 −0.031 6.5×10−3 0.012 0
• 16 0.054 1.5 −1.6×10−3 3.2×10−4 5.8×10−4 0
• • −0.053 0.053 1.8×10−4 1.8×10−4

−1.6 −1.8×10−4

• • • −0.053 1.6 −6.4×10−4
−1.6 −6.4×10−4

• • • • −2.3×10−3 1×10−3 1.5×10−3 0
• • • • • 2.3×10−4 1.4×10−4 1.4×10−4

• • • • • • −6.5×10−4
−1.2×10−3

• • • • • • • −5.1×10−4



.

Note that, as mentioned in Remark 2, in this example the
matrix P is not positive definite. Fig. 2 depicts level sets of
the corresponding function along with a trajectory of the
system. The evolution of the values of W is also presented
for the same trajectory. y

Example 2. [Binary Control] In this second example, we
take B′ and K ′ as in Example 1 and ϕ(x) = s(K ′x − 1).
Solving the conditions in (19) in this case yields:

P =




140 6.9 0.69 −8.1×10−5 0.23
• 16.0 0.063 8.6×10−5 0.011
• • −0.066 9.4×10−3

−1.5
• • • 0 0.023
• • • • −0.046


 .

Fig. 3 reports the level sets of the function W along with
the solution to (30) starting from (0.3, 0.3). The picture

2Numerical solutions to LMIs are obtained in YALMIP [22] via
SeDuMi [23].
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Fig. 2: Simulations in Example 1. Top: Level sets of
the function W (x) = supV (x) and the trajectory φ of
(30) starting from (5, 5) (dashed-crossed line). Bottom:
Evolution of j 7→W (φ(j)).

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

PSfrag replacements

x1

x
2

Fig. 3: Level sets of the function W (x) = supV (x) in
Example 2 and the trajectory φ of (30) starting from
(0.3, 0.3) (dashed-crossed line).

clearly shows that the lack of symmetry of the nonlinearity
s reflects on the function W . y

V. Conclusion

The stability analysis of a class of discontinuous
discrete-time control systems has been addressed. The
proposed approach relies on a characterization of the
set-valued step mapping based on quadratic/linear con-
straints. Thanks to this characterization, we proposed a
generalized quadratic set-valued Lyapunov function. Suf-
ficient conditions in the form of LMIs have been provided
to certify global exponential stability for the considered
class of nonlinear control systems. The effectiveness of
the methodology has been illustrated in two numerical

examples, which have highlighted the potential of our ap-
proach in systematically generating generalized quadratic
Lyapunov functions.

The main thrust of our work is that it is unclear
whether, for discrete-time systems, the use of non-
quadratic Lyapunov functions for sector-bounded non-
slope-restricted nonlinearities provides any advantage (for
global stability). The approach we propose has the major
advantage to use a nonquadratic Lyapunov function to
analyze systems without any slope restriction. Future
directions of research include the extension to continuous-
time control systems, as well as to regional stability anal-
ysis of systems with other discontinuous-nonlinearities.
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[22] J. Löfberg, “YALMIP: A toolbox for modeling and optimization
in MATLAB,” in Proceedings of the IEEE International Sym-
posium on Computer Aided Control Systems Design. IEEE,
2005, pp. 284–289.

[23] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for
optimization over symmetric cones,”Optimization methods and
software, vol. 11, no. 1-4, pp. 625–653, 1999.

https://doi.org/10.1109/LCSYS.2022.3183937

	I Introduction
	I-A Motivation and background
	I-B Contributions and Outline of the Paper
	I-C Notation

	II Problem setting and Key results
	II-A Modeling and structural properties
	II-B Characterization of the mapping S via quadratic constraints
	II-C Preliminaries on difference inclusions

	III Stability Analysis
	IV Numerical Examples
	V Conclusion
	References

