
HAL Id: hal-03766412
https://hal.science/hal-03766412v1

Submitted on 21 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of color imaging vs. hyperspectral imaging
for texture classification

Alice Porebski, Mohamed Alimoussa, Nicolas Vandenbroucke

To cite this version:
Alice Porebski, Mohamed Alimoussa, Nicolas Vandenbroucke. Comparison of color imaging vs. hy-
perspectral imaging for texture classification. Pattern Recognition Letters, 2022, 161, pp.115-121.
�10.1016/j.patrec.2022.08.001�. �hal-03766412�

https://hal.science/hal-03766412v1
https://hal.archives-ouvertes.fr


Comparison of Color Imaging vs. Hyperspectral Imaging for

Texture Classification

Alice Porebski Mohamed Alimoussa
Nicolas Vandenbroucke
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Abstract

Many approaches of texture analysis by color or hy-
perspectral imaging are based on the assumption that
the image of a texture can be viewed as a multi-
component image, where spatial interactions within
and between components are jointly considered (op-
ponent component approach) or not (marginal ap-
proach). When color images are coded in multiple
color spaces, texture descriptors are based on Multi
Color Channel (MCC) representations. By exten-
sion, a Multi Spectral Band (MSB) representation
can be used to characterize the texture of material
surfaces in hyperspectral images. MSB and MCC
representations are compared in this paper for tex-
ture classification issues. The contribution of each
representation is investigated with marginal and/or
opponent component strategies. For this purpose,
several relevant texture descriptors are considered.
Since MSB and MCC representations generate high-
dimensional feature spaces, a dimensionality reduc-
tion is applied to avoid the curse of dimensional-
ity. Experimental results carried out on three hy-
perspectral texture databases (HyTexiLa, SpecTex
and an original dataset extracted from the Timbers
database) show that considering between component
interactions in addition to the within ones signifi-
cantly improves the classification accuracies. The
proposed approaches allow also to outperform state
of the art hand-designed descriptors and CNN-based
color texture descriptors. This study highlights the

contribution of hyperspectral imaging compared to
color imaging for texture classification purposes but
also the advantages of color imaging depending on
the considered texture representation.

1 Introduction

Texture and color are two salient visual cues of hu-
man vision. They provide useful information in iden-
tifying objects or regions of interest in images. Tex-
ture analysis has attracted extensive research atten-
tion over the last fifty years. Many descriptors have
been defined to represent the texture in an image,
from hand-designed descriptors like co-occurrence
matrices introduced by Haralick in 1973 to more re-
cent CNN-based methods, by way of well known Lo-
cal Binary Patterns (LBP) [1, 2]. Most descriptors
have initially been hand-designed to represent tex-
tures in gray-level images, by evaluating the spatial
distribution of gray-levels in a neighborhood. Many
have then been extended to color, based on the as-
sumption that texture and color information can be
combined either separately or jointly, especially for
color texture classification applications, where an im-
age has to be assigned to a class among different cat-
egories [3].

The color information is initially coded by the three
color channels of the RGB color space, and can also
be transformed in several other three-dimensional
color spaces [4]. Recently, multi color space ap-
proaches have emerged to characterize the color tex-
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ture in images [5, 6, 7]. These approaches select color
texture features from descriptors that are computed
from images coded in different color spaces, leading
to a Multi Color Channel (MCC) representation [8].
In this context, a texture is viewed as a multi com-
ponent image, where the components correspond to
the channels of the considered color spaces. By ex-
ploiting the properties of several color spaces simul-
taneously, the MCC representation takes advantage
of the discrimination quality of different color spaces
and avoids the difficulty of choosing a relevant color
space, since it depends on the considered application.
In the same way, texture analysis in hyperspectral

images has also attracted research attention. Hand-
designed texture descriptors, like co-occurence ma-
trices or LBP, have been extended to analyze the
spectral characteristics of the texture of materials
[9, 10, 11]. Each pixel of a hyperspectral image repre-
sents the reflectance spectrum of the corresponding
observed surface, so that a texture can be viewed
as a multi component image where the components
correspond to the spectral bands identified by their
wavelength. In this context, texture is characterized
thanks to a Multi Spectral Band (MSB) representa-
tion, by extension to the MCC one [8].
MCC and MSB both generate a high-dimensional

space and generally require dimensionality reduction
to avoid the curse of dimensionality [5, 9, 12]. Fig-
ure 1 illustrates an unified representation of these two
approaches to describe textures thanks to color or hy-
perspectral imaging.
Here MSB and MCC representations will be com-

pared for texture classification purposes. In [8], an
initial MSB and MCC comparison has already been
undertaken by considering only within-component in-
teractions to describe textures with marginal descrip-
tors. In this paper, we will investigate the contri-
bution of each approach taking within and between-
component interactions into account with opponent
component descriptors. For this purpose, several rel-
evant texture descriptors are considered. For a fair
comparison, the dimension of the feature spaces ob-
tained by MSB and MCC will be reduced by using
a unified embedded feature selection model. Experi-
mental results will be analyzed on three hyperspectral
texture databases (HyTexiLa, SpecTex and an orig-

inal dataset extracted from the Timbers database)
and compared with recent hand-designed and CNN-
based color texture descriptors.

The second section of this paper presents how color
and spectral texture features are computed from color
and hyperspectral images respectively. The third sec-
tion details the feature selection schemes considered
to represent textures in a reduced dimensionality fea-
ture space. Finally, in the fifth section, experimen-
tal results obtained with MSB and MCC represen-
tations are compared each other and with state of
the art hand-designed and CNN-based descriptors,
based on the experimental conditions presented in
the fourth section. In this section, experiments are
carried out on two benchmark hyperspectral texture
datasets and a challenging dataset is introduced to
assess the classification performance.

2 Color and spectral texture
features

Numerous researchers have proposed a large num-
ber of effective texture feature extracting methods
[1]. These methods can be divided into two cate-
gories depending on the texture descriptors are hand-
designed (theory-driven representation) or directly
designed from the data (data-driven representation)
[2]. The data-driven representation includes CNN-
based texture features and the theory-driven repre-
sentation can be classified into global descriptors, like
co-occurrence matrices [13], from which statistics are
extracted to characterize the texture, and local de-
scriptors, like LBP [14], from which histograms are
computed to represent the texture [15]. Since the
introduction of LBP by Ojala in 1996 for gray-level
images, a large number of LBP variants may be found
in the literature, like Local Ternary Pattern (LTP),
Completed LBP (CLBP), Median Robust Extended
LBP (MRELBP) and so on [16]. Most of these ap-
proaches have been developed for gray-level images
and do not take into account the correlation informa-
tion among multiple color channels or spectral bands
[17]. Many hand-designed descriptors have then been
extended to color, like co-occurrence matrices which
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Figure 1: Illustration of MCC and MSB representations.

have been extended by Palm in 2004 to define the In-
tegrative Co-occurence Matrices (ICM) [18], or LBP
which have been extended to Opponent Color LBP
(OCLBP) [3].

This extension to color can generally be done ac-
cording to three main strategies that jointly con-
sider spatial and color information: the marginal
strategy (Mar), where the color texture descriptors
take into account the spatial relationships within
each of the three color channels of the used color
space; the opponent strategy (Opp), where the spa-
tial relationships between each of the three color
channels are considered; and the marginal + oppo-
nent strategy (Mar+Opp), where within and between
channel interactions are exploited. Recently, several
descriptors that simultaneously consider more than
two color channels to characterize the textures have
emerged, like Hybrid Color LBP (HCLBP) [19], LBP
for Color images (LBPC) [20], Spatially Weighted
Order Binary Pattern (SWOBP) [21], Quaternionic
extended LBP (QxLBP) [22] and Multiple Channels
LBP (MCLBP) [17]. However, to investigate the con-
tribution of MSB and MCC representations, we have
focused our interest on descriptors that can be ap-
plied in the Mar, Opp and Mar+Opp strategies: ICM
[18], LBP [3], Improved LBP (ILBP) [23] and Local
Color Vector Binary Patterns (LCVBP) [24]. The

extension to color of a descriptor X can thus lead to
three MCC representations (MCC-X-Mar, MCC-X-
Opp and MCC-X-Mar+Opp) or three MSB repre-
sentations (MSB-X-Mar, MSB-X-Opp and MSB-X-
Mar+Opp).

In a MCC representation, a color image is coded
in NC color spaces simultaneously, whereas in a MSB
representation, a hyperspectral image is considered as
a set of NB spectral band images identified by their
wavelengths. For these two representations, the tex-
ture is characterized by a set of D texture features
depending on the considered hand-designed texture
descriptors described in the next sections. The goal
of this paper being to compare the MSB and MCC
representations each other and with hand-designed
and CNN-based descriptors of the state of the art, we
choose to consider a standard and unified setting for
descriptors which need to define a neighborhood, like
ICM or LBP-based descriptors. In [25], it has been
shown that the choice of neighborhood directions de-
pends on the texture orientation. The hyperspectral
databases here used do not present textures with a
specific orientation. For this reason, 8 neighbor pix-
els oriented toward 0°, 45°, 90°, 135°, 180°, 225°, 270°,
315° and 1 pixel radius are here considered.

The following sections present the texture descrip-
tors used in MCC and MSB representations. Please
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refer to Table 1 to have the feature space dimension
D obtained with each descriptor.

2.1 Marginal texture descriptors
(Mar)

Marginal Integrative Co-occurrence Matrices
(ICM-Mar) 14 Haralick features (energy, homo-
geneity, contrast, correlation, variance, inverse dif-
ference moment, sum average, sum entropy, entropy,
difference variance, difference entropy, two measures
of correlation I and II, and maximal correlation co-
efficient [13]) are computed from reduced size chro-
matic co-occurrence matrices extracted from each
color channel or spectral band separately as described
in [8]. A reduced size chromatic co-occurrence matrix
is a Q×Q co-occurrence matrix, where the quantiza-
tion level Q is reduced in order to decrease the mem-
ory storage cost and so, the time required to extract
texture features from these matrices [26].

Marginal Local Binary Pattern (LBP-Mar)
(256)-dimensional LBP histograms are extracted
from each color channel or spectral band separately
as described in [27, 8].

Marginal Improved Local Binary Pattern
(ILBP-Mar) (511)-dimensional ILBP histograms
are extracted from each color channel or spectral
band separately. In LBP, the neighbor pixels are
thresholded with the value of the central pixel to give
a binary number, whereas in ILBP, thresholding is
done with the average value of the neighbor pixels
[23].

2.2 Opponent texture descriptors
(Opp)

Local Color Vector Binary Patterns (LCVBP-
Opp) Lee et al. propose to characterize tex-
tures by concatenating one (256)-dimensional Color
Norm Pattern (CNP) histogram and three (256)-
dimensional Color Angular Pattern (CAP) his-
tograms [24]. The CNP histogram is derived from the
norm of color pixel values and the CAP histograms

are derived from the ratio of pixel values between
pairs of color channels. We propose to only consider
the CAP histograms extracted from each pair of spec-
tral bands or color channels within each considered
color space.

2.3 Marginal + opponent texture de-
scriptors (Mar+Opp)

Marginal + opponent Integrative Co-
occurrence Matrices (ICM-Mar+Opp) 14
co-occurrence features are extracted from each
color channel or spectral band separately, and
from each pair of spectral bands or color channels
within each considered color space. The considered
Haralick features are the same as in ICM-Mar (see
Section 2.1).

Marginal + opponent Local Binary Pat-
tern (LBP-Mar+Opp) (256)-dimensional LBP
histograms are extracted from each color channel or
spectral band separately, and from each pair of spec-
tral bands or color channels within each considered
color space.

Marginal + opponent Improved Local Binary
Pattern (ILBP-Mar+Opp) (512)-dimensional
ILBP histograms [23] are extracted from each color
channel or spectral band separately, and from each
pair of spectral bands or color channels within each
considered color space.

3 Dimensionality reduction

Supervised texture classification aims to assign a tex-
ture to one of a set of predefined categories for which
training samples are available. This process is divided
into two successive stages: a learning stage in which
a classifier is trained with labeled training samples
and a decision stage where this classifier is evaluated
with a testing set in order to measure its ability to
predict the class labels of new samples.

MCC and MSB representations take into account
numerous properties of texture but they tend to pro-
duce a large and sometimes redundant amount of fea-
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Table 1: Feature space dimension D obtained with MCC and MSB representations, according to the used
descriptor.

Descriptor Feature space dimension D
MCC-ICM-Mar NC × 3 (channels) × 14 (statistics)
MSB-ICM-Mar NB × 14 (statistics)
MCC-LBP-Mar NC × 3 (channels) × (256-dimensional histograms)
MSB-LBP-Mar NB × (256-dimensional histograms)
MCC-ILBP-Mar NC × 3 (channels) × (511-dimensional histograms)
MSB-ILBP-Mar NB × (511-dimensional histograms)
MCC-LCVBP-Opp NC × 3 (pairs) × (256-dimensional histograms)
MSB-LCVBP-Opp 1/2 × NB × (NB − 1) × (256-dimensional hist.)
MCC-ICM-Mar+Opp NC × [3 (channels) + 3 (pairs)] × 14 (statistics)
MSB-ICM-Mar+Opp 1/2 × NB × (NB + 1) × 14 (statistics)
MCC-LBP-Mar+Opp NC × [3 (channels) + 6 (pairs)] × (256-dim. hist.)
MSB-LBP-Mar+Opp NB

2 × (256-dimensional histograms)
MCC-ILBP-Mar+Opp NC × [3 (channels) + 3 (pairs)] × (512-dim. hist.)
MSB-ILBP-Mar+Opp 1/2 × NB × (NB + 1) × (512-dimensional hist.)

tures, especially when the number of color channels
or spectral bands is high. It is well-known that the
dimension of the feature space impacts the classifi-
cation performances due to the curse of dimensional-
ity [28]. Dimensionality reduction methods are thus
generally applied to reach satisfying classification ac-
curacies while decreasing memory storage and com-
putation time [29]. This reduction can be achieved
during the learning stage either by feature extrac-
tion or by feature selection schemes. The latter ones
are usually preferred since feature extraction leads to
a change of the original feature space semantic and
explainability. Moreover, since it requires the com-
putation of the initial feature set to obtain the new
reduced feature space, it could be time consuming.
Three main models are generally considered for fea-
ture selection, depending on the chosen evaluation
function: filter, wrapper and embedded [29]. Wrap-
per model uses the accuracy of a classifier to per-
form feature selection. It provides good results and
easily determines the dimension of the feature sub-
space but involves an important learning time and
classifier-dependent results. Filter model evaluates
the discrimination power of different candidate fea-
ture sub-spaces without classifying the images. It is
less time consuming but suffers to the difficulty to

determine the dimension of the feature sub-space to
be selected. To obtain a good compromise between
dimension determination, computation time and clas-
sification result, an embedded model is preferred. It
combines a filter model to determine the most dis-
criminating feature sub-spaces at different dimen-
sions and a wrapper one to determine the dimension
of the selected sub-space. Moreover, when high di-
mensional data have to be analyzed, clustering-based
selection algorithms are often considered [30]. These
approaches divide the initial feature space into a set
of groups called clusters, where features of a same
group are considered as redundant. They allow to sig-
nificantly reduce the selection processing time since
only one feature per cluster is selected.

In this paper, we propose to consider a supervised
embedded feature selection scheme associated with
different search procedures and evaluation criteria,
depending on the considered texture descriptor:

� When the ICM descriptor is considered, a
Clustering-based Sequential Feature Selection
(CSFS) procedure is applied with the Wilks’s
criterion [30] (see section 3.1).

� When LBP, ILBP and LCVBP descriptors are
considered, a histogram ranking is performed
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with the Intra-Class Separability (ICS) measure
as proposed in [5] (see section 3.2).

3.1 Feature selection

To reduce theD-dimensional candidate feature space,
the CSFS approach is applied. This approach con-
sists of two stages [30]. Firstly, a dependency graph-
based clustering is considered to cluster the feature
space. The method uses a correlation coefficient
whose threshold is automatically determined by eval-
uating the feature clustering with a feature separabil-
ity measure. Secondly, a sequential forward selection
approach, based on the Wilks’s criterion, is applied
to the initial feature space so that a feature is added
to the sub-space under construction at each iteration
step. Once a feature is selected, features belonging
to the same cluster are removed and thus not con-
sidered in the next steps. It enables to dramatically
reduce the number of candidate features at each step
and so the selection processing time. The procedure
stops when all the clusters of features are removed.

Once the CSFS approach has determined the most
discriminating feature sub-spaces at different dimen-
sions d, the next step of the considered embedded
selection scheme consists in measuring the accuracy
reached with these sub-spaces to determine the d̂-
dimensional final relevant feature sub-space. For this
purpose, the training set is divided following a k-fold
evaluation. (k − 1) folds are used to constitute a
training image subset and the remaining fold is as-
signed to a validation image subset from which the
classification accuracy is measured.

3.2 Histogram selection

To reduce the candidate space composed of D multi-
dimensional histograms, a histogram selection proce-
dure using a ranking algorithm is considered. It con-
sists in computing a score for each histogram in order
to measure its relevance to discriminate the consid-
ered texture classes. Here, the histogram relevance
is evaluated thanks to the ICS-score, which measures
the ability of a histogram to similarly represent the
textures of a same class [5]. Once the score of each

histogram is evaluated, the histograms are ranked in
the decreasing order.

Then, the candidate sub-spaces – made up, at the
first step, of the histogram with the best score, at the
second step, of the two first ranked histograms which
are concatenated and so on – are evaluated. As previ-
ously, a k-fold evaluation is used to predict the clas-
sification accuracy in each concatenated histogram
sub-space at each step d. The selected sub-space com-
posed of d̂ histograms is the one which maximizes the
mean rate of well-classified validation images. Let us
note that d̂ and D must be multiplied by the num-
ber of considered bins to have the final feature space
dimension.

4 Experimental conditions

4.1 Considered image datasets

Hyperspectral cameras capture either radiance or re-
flectance images. The latter can be computed from
the radiance data by means of a calibration proce-
dure. In this paper, three datasets of hyperspec-
tral reflectance images have been employed: HyTex-
iLa, SpecTex and Timbers [10, 31, 32]. To evaluate
the MCC representation, each hyperspectral image is
transformed to a color image by selecting three spec-
tral band images with wavelength centered on red,
green and blue components.

HyTexiLa is a dataset of hyperspectral reflectance
images that span the visible (VIS) and near infrared
(NIR) parts of the electromagnetic spectrum of 112
textured materials [10]. These 112 texture images
represent 112 different classes. Each of these texture
images is split into 25 sub-images of size 204×204×27
where NB = 27 is the number of uniformly dis-
tributed spectral bands preselected out of the 186
available ones [8] (see Table 2). Among these 25 sub-
images, 12 were randomly considered to be training
images and the 13 others as testing images. To eval-
uate the MCC representation, each one of the 112
reflectance images is transformed to a color image by
means of a conversion to the sRGB color space by
using the spectral band numbered 65 (≈ 612 nm), 45
(≈ 547 nm), and 18 (≈ 464.5 nm).
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Table 2: Summary of image datasets used in experiments.
Dataset Image size # classes # training img./class # testing img./class # spectral bands NB

HyTexiLa 204× 204 112 12 (1344) 13 (1456) 27
SpecTex 40× 40 60 64 (3840) 192 (11520) 39
Timbers 64× 64 3 480 (1440) 480 (1440) 30

SpecTex is a spectral image database including 60
textile samples with different texture patterns [31].
In this paper, we propose to use a downsampled ver-
sion of the SpecTex database provided by the au-
thors with a spectral sampling of NB = 39 spectral
bands out of the 77 available ones [8]. Each of the 60
original images is split up into 256 non-overlapping
sub-images leading to 40 × 40 × 39 image size. A
quarter of these images are used as training images
and the remaining are considered as testing images
(see Table 2). Color images coded in the RGB color
space are simulated from the hyperspectral images
with CIE-1964 color matching functions and the D65
standard illumination.

HyTexiLa and SpecTex present a major drawback:
the partitioning used to build these datasets consists
of extracting training and testing sub-images from
a same original image. However, such a partition-
ing, when it is combined with a classifier such as
the nearest neighbor classifier, leads to biased clas-
sification results [26]. For this reason, a third chal-
lenging hyperspectral dataset built from the Tim-
bers database is here proposed [32]. Timbers is
a spectral image database of Nordic sawn timbers
that has been acquired thanks to three hyperspec-
tral cameras from board and crosscut samples an-
alyzed in frozen, melted or room-dried conditions.
3 categories of wood species are available in this
database: Birch (Betula sp.), Norway spruce (Picea
abies) and Scots pine (Pinus sylvestris). The three
Specim cameras, UV4E, V10E and N25E, measure re-
flectance in the 200–400, 400–1000 and 970–2500 nm
wavelength ranges, respectively [33]. In this pa-
per, we propose an original dataset of room-dried
board samples acquired with the V10E camera. The
information about the images considered in this
dataset can be downloaded at https://www-lisic.
univ-littoral.fr/~porebski/. The V10E camera

is here chosen since it acquires images in the visi-
ble wavelength range, what is required to transform
hyperspectral images to RGB ones. The spatial res-
olution of each image is 320 × 799 pixels. Like for
HyTexiLa and SpecTex, we propose to consider a re-
duced number of NB = 30 non-correlated spectral
bands among the 1200 available ones (one band every
forty bands). In order to have a suitable number of
representative samples, 20 images are considered for
each of the 3 categories. To ensure that images used
for the training and the testing are less correlated as
possible, 10 of these images are considered for the
training and the others are used as testing images.
Each of these images are then split up into 48 non-
overlapping sub-images leading to 64×64×30 image
size (see Table 2). As for the SpecTex dataset, the
RGB color images are simulated from the hyperspec-
tral images with CIE-1964 color matching functions
and the D65 standard illumination. Figure 2 illus-
trates samples represented by their simulated RGB
images for each of the 3 texture classes. Although
the number of classes is low, the textures of the dif-
ferent categories appear very close in this dataset.
The classification is thus challenging due to the high
inter-class similarity.

4.2 Specific descriptor setting

For HyTexiLa and SpecTex, the quantization level
Q used to compute the reduced size chromatic co-
occurrence matrices in the ICM descriptor is set to
16. This value enables ICM analysis to reach satisfy-
ing classification results while significantly reducing
the processing time [26]. For the Timbers dataset,
the sub-quantification of color components or spec-
tral bands does not allow to well discriminate the
texture classes since color or spectral ranges are very
close from a class to another. For this reason, the
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Figure 2: Timbers textured wood samples [32].
Each column illustrates some samples of one
texture class [https://sites.uef.fi/spectral/
spectral-image-database-of-nordic-sawn-timbers/].

quantization level for this dataset is set to 256 .

4.3 Considered color spaces

As previously seen, hyperspectral images can be eas-
ily converted to simulated color images coded in
the RGB color space. There exist numerous color
spaces that take into account different physical, phys-
iologic and psycho-visual properties [4]. In this pa-
per, NC = 10 color spaces representative of the four
color space families are considered for experiments:
RGB and rgb, which belong to the primary space
family, CIELAB, YCbCr and wb-rg-by, which are
luminance-chrominance spaces, I1I2I3, which is an
independent color component space, and HSV, HSI,
HLS and I-HLS, which belong to the perceptual space
family. A majority of perceptual spaces were chosen
because these spaces are known to reach good classi-
fication accuracies [26].

4.4 Classification parameters

The images of the three hyperspectral texture
databases are all assigned either to a training or a
testing subset. In order to compare the MCC and
MSB representations for supervised texture classifica-
tion issues, the classification performance is assessed
by following this holdout evaluation scheme. For this
purpose, classification accuracies obtained with the
proposed representations are evaluated by measuring
the rate of well-classified testing images during the

decision stage.
During the learning stage, the proposed embedded

model use a k-fold evaluation method with k = 3 to
determine the dimensionality of the selected feature
sub-space.

The purpose of this paper being to show the con-
tribution of different texture representations, inde-
pendently of the considered classifier and its parame-
ters, the nearest neighbor classifier is here considered.
This classifier labels each testing or validation image
with the closest match in the training set according
to a similarity measure. When the ICM descriptor is
considered, the nearest neighbor classifier is associ-
ated with the L1 distance and when LBP, ILBP and
LCVBP descriptors are applied, the chi-square his-
togram distance metric is used as similarity measure
[34]. Obviously, the classification results are expected
to be improved by using more elaborated classifiers.

5 Results and discussions

5.1 Analysis of the results obtained
with MSB and MCC representa-
tions

Table 3 presents the classification results reached
with the three image datasets by the proposed MSB
and MCC representations, according to the con-
sidered texture descriptors, the consideration of a
marginal and/or an opponent component strategy
(Mar, Opp or Mar+Opp), with and without selec-
tion. For each classification rate R, the number of
considered features or histograms (d̂ with selection or
D without selection), with which testing images are

classified, is given. For LBP, ILBP and LCVBP, d̂
and D must be multiplied by the number of consid-
ered bins to have the final feature space dimension
(256 for LBP and LCVBP, 511 for ILBP-Mar and
512 for ILBP-Mar+Opp). As done in [35], a global
ranking metric allowing to compare the performance
of each descriptor with others on all the considered
databases is proposed. Since 14 descriptors and 3
datasets are considered, 3× 13 = 39 comparisons are
done for each descriptor and the score is the ratio of
the wins over the total comparisons.
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Table 3: Classification rates reached with the MSB and MCC representations. The values in bold correspond
to the best accuracies reached for each dataset.

Descriptor

Hytexila SpecTex Timbers

Rank
With Without With Without With Without

selection selection selection selection selection selection

R d̂ R D R d̂ R D R d̂ R D
MSB-LBP-Mar 93.13 26 93.13 27 98.11 30 98.17 39 58.61 26 58.47 30 12
MCC-LBP-Mar 97.80 22 96.91 30 97.47 28 97.40 30 65.69 24 65.76 30 9
MSB-LBP-Mar+Opp 98.76 728 98.76 729 99.33 1334 99.38 1521 79.10 897 79.24 900 1
MCC-LBP-Mar+Opp 97.66 88 97.80 90 97.95 87 97.97 90 68.75 87 68.47 90 5
MSB-ILBP-Mar 93.61 27 93.61 27 98.50 39 98.50 39 58.61 24 58.75 30 10
MCC-ILBP-Mar 96.84 28 97.05 30 98.10 30 98.10 30 66.32 28 65.76 30 8
MSB-ILBP-Mar+Opp 99.11 378 99.11 378 99.24 773 99.25 780 78.40 463 78.61 465 2
MCC-ILBP-Mar+Opp 98.49 59 98.35 60 98.42 60 98.42 60 69.03 60 69.03 60 3
MSB-LCVBP-Opp 97.12 108 96.29 351 98.67 193 98.70 741 67.99 433 68.33 435 4
MCC-LCVBP-Opp 96.77 28 96.63 30 97.55 23 97.55 30 66.32 30 66.32 30 12
MSB-ICM-Mar 89.84 17 93.82 378 92.10 15 96.18 546 82.15 6 70.42 420 14
MCC-ICM-Mar 97.18 24 97.53 420 94.89 86 95.05 420 73.26 5 74.38 420 11
MSB-ICM-Mar+Opp 96.77 10 95.05 5292 97.73 19 96.50 10920 82.36 22 73.26 6510 6
MCC-ICM-Mar+Opp 97.94 145 97.87 840 95.62 113 95.48 840 77.15 20 73.82 840 7

For HyTexiLa, SpecTex and Timbers, the best clas-
sification rates are respectively obtained with ILBP,
LBP and ICM (99.11%, 99.38% and 82.36%) with
a MSB representation including a marginal and op-
ponent component strategy. Globally, whatever the
considered descriptor X, MSB-X-Mar+Opp always
outperforms MCC-X-Mar+Opp, which itself always
surpasses MCC-X-Mar, which itself reaches better
accuracy than MSB-X-Mar. It confirms the conclu-
sions done in [8], where it has been shown that color
imaging (MCC) reaches better accuracy than hyper-
spectral imaging (MSB) in a marginal context. How-
ever, when between component interactions are con-
sidered in addition to the within ones (Mar+Opp),
this paper shows that hyperspectral imaging outper-
forms color imaging. This result is also checked with
the LCVBP descriptor which uses only an opponent
component strategy.

By analyzing Table 3, we can also notice that, when
LBP, ILBP and LCVBP descriptors are considered,
the selection neither clearly improves the classifica-
tion rates, nor reduces the dimension of the feature
space. The decision processing time being propor-
tional to the number of considered features, these
descriptors may involve an important on-line classifi-
cation time. This conclusion was not expected since
it is in contradiction with previous results where the

histogram selection has significantly improved the ac-
curacy while decreasing the decision processing time
[5]. However, when ICM descriptor is used, the se-
lection process allows to considerably reduce the di-
mension of the feature space. For example, the best
rate reached with the Timbers dataset (82.36%) is
obtained by only considering 22 well-suited Haral-
ick features among 6510. It improves the accuracy
obtained without selection of 9.1%. The MSB-ICM-
Mar+Opp approach seems to be a good option to
consider when low decision processing times are re-
quired.

5.2 Comparison with hand-designed
color texture descriptors and
CNN-based features

To enrich the discussion, the proposed MSB-X-
Mar+Opp approach is compared with some typi-
cal hand-designed color texture descriptors and with
CNN-based features. Five hand-designed descriptors
computed from RGB color images have been eval-
uated: SWOBP [21], MCLBP [17], IOCLBP [23],
OCLBP [3] and LCVBP [24]. As for our MCC and
MSB representations, 8 neighbor pixels and 1 pixel
radius define the neighborhood necessary to compute
these descriptors. CNN-based features with five pre-
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trained models (ResNet-50, ResNet-101, ResNet-152,
VGG-16 and VGG-19) have also been added to the
study [36, 37]. These models have been chosen since
they allow to obtain the best accuracies on several
color texture databases as shown in [27]. To obtain
CNN-based feature classification results, each net-
work is used as a generic feature extractor and the
resulting features are passed on to a standard classi-
fier (more information about the computation of the
CNN-based features can be found in [27]). The classi-
fier considered for these hand-designed color texture
descriptors and CNN-based features is the nearest
neighbor classifier associated with the chi-square dis-
tance.

Table 4 presents the classification rates reached
with the three image datasets by the five hand-
designed descriptors, the five CNN-based features
and the proposed MSB representation when a
marginal and opponent (Mar+Opp) or an opponent
(Opp) strategy with selection is considered. The di-
mension of each descriptor and the global ranking
metric are also presented.

We can notice that the proposed MSB-X-
Mar+Opp representation (ranks 1 to 4) outperforms
the CNN-based features (ranks 5 to 7 for the three
best CNN) and the hand-designed descriptors (ranks
8 to 10 for the three best descriptors) computed from
the RGB color space. This is particularly notice-
able for the challenging Timbers dataset where the
improvement reaches on average 13%. The feature
space dimension is however high when LBP, ILBP
or LCVPB are considered. On the contrary, the re-
sults reached with MSB-ICM-Mar+Opp representa-
tion offers a good compromise between accuracy and
computation time since it outperforms the classifica-
tion results obtained with the considered state of the
art descriptors, while offering a very low dimensional
feature space.

6 Conclusion

This study analyzes the contribution of hyperspec-
tral and color imaging for texture classification in
the visible spectrum. A comparison of MCC and
MSB representations has been done in the context

where both within and between component interac-
tions are considered. The experiments carried out
with several texture descriptors on three hyperspec-
tral databases show that considering between compo-
nent interactions in addition to the within ones sig-
nificantly improves the classification rates when hy-
perspectral imaging with the MSB representation of
textures is considered. A selection approach is how-
ever essential to reduce the dimension of the feature
space and thus the decision processing times. The
MSB-ICM-Mar+Opp descriptor is in that way a good
option to consider since it outperforms state of the
art hand-designed and CNN-based color texture de-
scriptors both in accuracy and on-line classification
computation time.

In this paper, we have also proposed an original
dataset of room-dried board samples acquired by the
V10E camera for Timbers. The textures of the dif-
ferent categories appearing very close, this dataset
is particularly challenging due to the high inter-class
similarity. It would be interesting for the future de-
velopments to consider other datasets extracted from
crosscut samples and to analyze the textures in frozen
or melted conditions.
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