
HAL Id: hal-03766407
https://hal.science/hal-03766407

Submitted on 16 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compact Hybrid Multi-Color Space Descriptor Using
Clustering-Based Feature Selection for Texture

Classification
Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Sanaa El Fkihi,

Rachid Oulad Haj Thami

To cite this version:
Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Sanaa El Fkihi, Rachid Oulad Haj
Thami. Compact Hybrid Multi-Color Space Descriptor Using Clustering-Based Feature Selection for
Texture Classification. Journal of Imaging, 2022, 8 (8), pp.217. �10.3390/jimaging8080217�. �hal-
03766407�

https://hal.science/hal-03766407
https://hal.archives-ouvertes.fr


Citation: Alimoussa, M.; Porebski,

A.; Vandenbroucke, N.; El Fkihi, S.;

Oulad Haj Thami, R. Compact

Hybrid Multi-Color Space Descriptor

Using Clustering-Based Feature

Selection for Texture Classification. J.

Imaging 2022, 8, 217. https://

doi.org/10.3390/jimaging8080217

Academic Editors: Raimondo

Schettini and Edoardo Provenzi

Received: 24 May 2022

Accepted: 30 July 2022

Published: 8 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Compact Hybrid Multi-Color Space Descriptor Using
Clustering-Based Feature Selection for Texture Classification
Mohamed Alimoussa 1,2 , Alice Porebski 1 , Nicolas Vandenbroucke 1,* , Sanaa El Fkihi 2

and Rachid Oulad Haj Thami 2

1 UR 4491, LISIC, Laboratoire d’Informatique Signal et Image de la Côte d’Opale, Univ. Littoral Côte d’Opale,
F-62100 Calais, France

2 Information Retrieval and Data Analytics Group, ADMIR Laboratory, Rabat IT Center, ENSIAS,
Mohammed V University in Rabat, Rabat BP 713, Morocco

* Correspondence: nicolas.vandenbroucke@univ-littoral.fr

Abstract: Color texture classification aims to recognize patterns by the analysis of their colors and
their textures. This process requires using descriptors to represent and discriminate the different
texture classes. In most traditional approaches, these descriptors are used with a predefined setting
of their parameters and computed from images coded in a chosen color space. The prior choice of a
color space, a descriptor and its setting suited to a given application is a crucial but difficult problem
that strongly impacts the classification results. To overcome this problem, this paper proposes a color
texture representation that simultaneously takes into account the properties of several settings from
different descriptors computed from images coded in multiple color spaces. Since the number of
color texture features generated from this representation is high, a dimensionality reduction scheme
by clustering-based sequential feature selection is applied to provide a compact hybrid multi-color
space (CHMCS) descriptor. The experimental results carried out on five benchmark color texture
databases with five color spaces and manifold settings of two texture descriptors show that combining
different configurations always improves the accuracy compared to a predetermined configuration.
On average, the CHMCS representation achieves 94.16% accuracy and outperforms deep learning
networks and handcrafted color texture descriptors by over 5%, especially when the dataset is small.

Keywords: color texture representation; texture classification; color spaces; dimensionality reduction;
feature selection; color local binary pattern histogram; chromatic cooccurrence matrix

1. Introduction

As texture and color are two salient visual cues in human perception, color textures
provide essential information for object recognition and scene understanding. Therefore,
color texture analysis is widely used in many computer vision applications. The devel-
opment of several benchmark color image databases shows the interest of the scientific
community in addressing imaging applications by color texture classification [1–4]. Color
texture classification is the process of predicting the class of input data among a set of
categories by the analysis of their colors and their textures. In traditional approaches, this
process requires defining a descriptor to represent and discriminate the different texture
classes, taking their inter-class and intra-class appearance variations into account. Thus,
texture classification is typically categorized into two sub-problems of representation and
decision [5]. Texture representation is the step that consists of extracting features that
describe color texture information where both the spatial organization of pixels in the
image plane and the distribution of their colors in a color space are considered. Numerous
descriptors have been proposed in recent decades to represent color textures [6]. These
representations can be divided into two categories depending on the descriptors are hand-
crafted (theory-driven representation) or designed directly from the data (data-driven
representation). This paper focuses on the former with a comparison to the latter.

J. Imaging 2022, 8, 217. https://doi.org/10.3390/jimaging8080217 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging8080217
https://doi.org/10.3390/jimaging8080217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0003-2490-8681
https://orcid.org/0000-0002-1482-5447
https://orcid.org/0000-0002-7766-4898
https://orcid.org/0000-0002-5255-4406
https://orcid.org/0000-0001-9736-7260
https://doi.org/10.3390/jimaging8080217
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8080217?type=check_update&version=1


J. Imaging 2022, 8, 217 2 of 29

To address a color texture classification problem with handcrafted descriptors, it is
first necessary to choose a color space and a texture descriptor which are well suited to
the application. Most of these descriptors use parameters that must be carefully tuned
depending on the application. The representation of the color textures then consists of
extracting color texture features from the chosen descriptor which is computed from
images coded in the chosen color space. These choices directly impact the classification
performance of color textures. To overcome the problem of a prior choice, many authors
propose to combine either multiple descriptors [7,8] and/or multiple color spaces [9–11],
or manifold parameter settings of a same descriptor [12–14] but no work simultaneously
combines these three elements for color texture classification purposes. The choice or
the combination of different texture descriptors and color spaces, as well as the suitable
adjustment of their parameters to produce interpretable, flexible, robust, invariant, and
compact descriptors for color texture classification are still open problems. To address this
issue, this paper proposes an original approach that simultaneously takes into account the
properties of several configurations of different descriptors computed from images coded
in multiple color spaces. In order to highlight the contribution of the proposed approach
which combines together three key elements of color texture representation (color spaces,
texture descriptors and parameter settings) , comparisons are performed when only two,
one or none of these elements are combined. For fair assessments, standard descriptors
and a basic classifier are used.

Since the proposed approach generates a high-dimensional representation with irrele-
vant or redundant color texture features, it suffers from the curse of dimensionality that
appears especially when the number of features is too large compared to the number of
training samples [15]. This phenomenon requires a dimensionality reduction scheme to
improve the performance of the used classifier in terms of accuracy and computation time.
Such a scheme can be achieved either by feature extraction or by feature selection during a
learning process. Feature extraction techniques reduce the feature space dimensionality by
transforming the original feature space into a new reduced-size feature space. However,
this transformation leads to lose the units and the explainability of the original feature
space. Moreover, such a transformation requires the computation of the initial feature
set to obtain the new reduced feature space, which could be time consuming. That is the
reason why feature selection is here preferred. The goal of feature selection is to find a
relevant subset from the initial feature space that can improve the overall performance of
a classification algorithm with a better understanding of the data [16,17]. When dealing
with high-dimensional data, many feature selection approaches can successfully remove
irrelevant features but fail to pull redundant ones out [18,19]. To overcome this problem,
several feature selection algorithms that use feature clustering were proposed in recent
decades in both supervised and unsupervised contexts [18,20–24]. This paper focuses on
clustering-based feature selection approaches in a supervised context. These approaches
aim to divide the initial feature space into a set of groups called clusters so that the features
of a same cluster are considered to be redundant. This leads to the selection of one feature
to represent each cluster. The resulting feature subset is thus considered to be relevant
and non-redundant [20]. Clustering-based feature selection algorithms can outperform the
traditional feature selection methods by reducing the redundancy, reaching high accuracy
and, in some cases, reducing the calculation time. Even though they have recently gained
much attention, their number is still relatively limited and they need parameters to be
adjusted [18]. In this context, we have previously proposed a clustering-based sequential
feature selection approach for the classification of high-dimensional data where the feature
clustering stage is fully automatic and does not require any parameter adjustment [9]. In
this paper, we consider an adapted version of this approach which follows three stages.
First, an automatic feature clustering algorithm is applied in order to divide the feature
set into a number of clusters in which features are correlated. Then, one feature is sequen-
tially selected per group to construct feature spaces with different dimensions. Finally, the
dimensionality of the final feature space is determined by using the accuracy of a classifier.
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Based on this scheme, this paper proposes a compact, hybrid and multi-color space
(CHMCS) representation where texture features are computed and selected from several
configurations of different descriptors and with multiple color spaces in order to simultane-
ously take into account various spatial and color properties. By combining the features, the
proposed approach thus overcomes the difficulty of a prior choice of a relevant descriptor, a
well suited configuration of each descriptor and an appropriate color space. It aims thus to
provide a comprehensible and interpretable representation of textures. Figure 1 illustrates
how a texture is represented by the CHMCS descriptor. This figure shows the different
stages of the proposed representation which are detailed in the next sections of this paper.

Figure 1. The representation of a texture by the proposed compact hybrid multi-color space descriptor:
the image of a color texture is firstly coded in multiple color spaces. Then, several configurations
of p descriptors are used to generate a large set of color textures features. Finally, a dimensionality
reduction scheme is applied to represent the color texture.

After having briefly presented related work on color texture representation in Section 2,
Section 3 details how color texture features are extracted from several configurations of two
different descriptors computed with images coded in multiple color spaces. Since the rep-
resentation of the color textures with this feature set generates a high-dimensional feature
space, Section 4 presents how a compact hybrid multi-color space (CHMCS) descriptor is
derived from this space. This descriptor is based on a dimensionality reduction scheme
that uses a clustering method for selecting the most discriminating features with acceptable
processing times. In Section 5, experiments are carried out on five benchmark color texture
databases. The experimental results show the relevance of the CHMCS descriptor and
highlight its performances compared to traditional color texture descriptors and deep
learning approaches.
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2. Related Work
2.1. Color Texture Representation

A very large number of texture descriptors have been proposed in recent decades [5].
Most of them have been developed or extended from their gray level definition in order to
represent color textures [6]. With the emergence of deep learning, color texture descriptors
have evolved from theory-driven descriptors which provide color texture features based
on manually defined models into data-driven descriptors which are directly designed from
image data.

Most data-driven approaches use convolutional neural networks (CNNs) or pretrained
CNNs where a large number of free parameters are determined by training. Popular CNN
architectures such as AlexNet, GoogleNet, ResNet or visual geometry group (VGG) have
been proposed in the last decade [25–28]. They are trained on very large datasets and can be
easily transferred to many other problems including texture classification. Liu et al. divided
CNN-based texture representation methods into three categories: (1) using pretrained
generic CNN models where the network is used as a feature extractor that generates features
then used by a standard classifier; (2) using fine-tuned CNN models where a training dataset
of a specific texture classification task is submitted to the pretrained network in order to
fine-tune it (end-to-end learning); and (3) using handcrafted deep CNN where some
parameters of the network are predetermined [5]. Several studies have shown that CNN-
based methods are suitable for color texture classification tasks [7,13]. Although these deep
learning and transfer models provide impressive and, on average, superior performances
compared to other approaches, the generated representations and the decisions taken can
be difficult to understand. In addition, they suffer from their dependence on training data
and tend to overfit with small training sets. To overcome this problem, different image
data augmentation approaches have been proposed [29]. Moreover, the performance of
CNN-based methods seems to decrease when dealing with fine-grained images, such as
color textures [13]. Conversely, the results reached with the theory-driven approaches can
be more easily explained and interpreted. Theory-driven descriptors are able to address
applications that require fine-grained color texture representations and/or where only
limited amounts of labeled training data may be available.

The traditional handcrafted descriptors combine spatial and color information follow-
ing two main approaches depending on whether they are considered jointly or indepen-
dently to generate color texture features [30,31]. In these approaches, color textures can
be represented using different color spaces [10,32,33]. When spatial and color information
are jointly considered, the color texture features take into account the spatial relationships
within each of the three color components of the used color space (marginal representation).
In addition, the spatial interactions between the color components of neighbor pixels can
also be exploited by considering the opposing pairs of color components (opponent compo-
nent representation). For example, Palm proposed the integrative cooccurrence matrices
that combine single-channel cooccurrence matrices applied to a separate color component
(for example, the R, G and B channels of a color image) and multi-channel cooccurrence
matrices which capture the correlation between textures of different color channels (for
example, the R-G, R-B and G-B pairs of channels of a color image) [34]. This concept was
extended to the reduced size chromatic cooccurrence matrix (RSCCM) where the quantiza-
tion level of the color component is decreased to compute cooccurrence matrices within
and between color components from which inter-channel and intra-channel features can be
extracted [35]. This strategy was also applied to the well-known local binary pattern (LBP)
operator in which neighbor pixels are thresholded with the value of the central pixel to give
a binary number that codes the local pattern. Several LBP variants have thus emerged: op-
ponent color local binary patterns (OCLBP) where LBP is computed on each color channel
separately and from pairs of channels [30]; extended color local binary patterns (EOCLBP),
where symmetric pairs of color channels are additionally taken into account [36]; improved
opponent color local binary patterns (IOCLBP) in which thresholding is performed with the
average value of the neighbor pixels [37]; local color vector binary patterns (LCVBP) that
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concatenate color norm patterns (thresholding is achieved with the color norm of the pixels
that jointly take the three color channels into account); and color angular patterns (the
ratio of pixel values between pairs of color channels is used for thresholding) [38], spatially
weighted order binary pattern (SWOBP) where a multi-channel color order pattern is used
to jointly encode inter-channel features [39].

Choosing the right descriptor and color space for classifying textures is obviously a
crucial but difficult problem to solve, agreeing that classification results depend on the
choice of the color texture features as well as the tuning of their parameters. To overcome
this problem, many authors have proposed to combine various texture descriptors and/or
several color spaces in order to take into account their different properties [7–11,40,41].
Porebski et al. proposed a multi color space approach that selects EOCLBP histograms
computed from images coded in nine different color spaces [10]. Considering spatial and
color information independently, Khan et al. proposed to combine five texture descriptors
with a pure color descriptor to obtain a single heterogeneous color texture representation [8].
Cusano et al. showed that the use of an ensemble of twelve handcrafted image descriptors
in a multiple classifier framework increased the classification accuracy of texture images
acquired under different lighting conditions [7]. They also combined this representation
with convolutional neural networks to improve the classification performance. Banerji
et al. proposed a 3D-LBP descriptor that they combined with the histograms of oriented
gradients of its wavelet transform to produce a novel descriptor [11]. They showed that
the fusion of color texture features extracted from this descriptor with seven different color
spaces achieves a significantly better image classification performance than with each color
space individually considered. Recently, Alimoussa et al. proposed extracting color texture
features from two different descriptors and five color spaces which are combined in a single
larger set of features [9].

All these works show the relevance of combining different descriptors and/or color
spaces to classify textures. In most of them, the configurations of the used descriptors are
predefined beforehand with a standard setting of their parameters. However, the texture
properties of the different classes may be so variable that they require being represented
with different descriptor configurations. Moreover, the appearance of textures can vary
due to the change of observation conditions (illumination, field of view, spatial resolution,
orientation, viewpoint, deformation, etc.) and texture representation has to take into ac-
count possible intra-class property variations. Pioneer work that combines the different
configurations of a same descriptor for color texture classification issues has been proposed
by Mäenpää et al. and performed with the multi-resolution LBP operator by concatenating
the histograms produced by this descriptor with different parameters [30]. This multi-
scale strategy was then applied by other authors and extended to different variants of the
LBP descriptor [12,42]. Bello-Cerezo et al. led a comparative study between off-the-shelf
CNN-based features and handcrafted image descriptors from which multiple resolution
feature vectors are extracted from each descriptor [13]. This multi-resolution representation
is individually applied to different versions of the LBP operator, cooccurrence matrices,
histograms of oriented gradients, image patch-based classifier and Gabor features in order
to evaluate the performance of color texture classification obtained with each image de-
scriptor and each compared deep learning network. Promising results are also provided by
Alimoussa et al. that combine various configurations of EOCLBP and RSCCM descriptors
independently considered [14]. Although all these works show the interest of considering
several parameter settings of a same descriptor, they do not simultaneously take into
account several descriptors with different configurations. The synthesis of these works
shows that the authors have combined either multiple descriptors and/or multiple color
spaces or several parameter settings of a same descriptor but, to our knowledge, no work
has attempted to simultaneously combine these three elements for color texture purposes.
The main contribution of this paper is to address this issue that requires a dimensionality
reduction because of the high number of generated candidate color texture features.
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2.2. Dimensionality Reduction by Feature Selection

Feature selection is an essential technique to reduce the dimensionality of a feature
space for data classification purposes. It contributes to improve the performances in
terms of prediction quality, computation time and model understanding. From a set of
available features, it aims to generate a low-dimensional feature subset without irrelevant or
redundant features. Feature selection has become the focus of many research applications
especially when datasets tend to be huge. However, traditional feature selection methods
are not suitable for large dimensional feature spaces [43]. This is the reason why approaches
that use feature clustering techniques have more recently gained attention for their ability
to improve the selection process.

Classical feature selection methods can be achieved by two main models named
“filter” and “wrapper” [44]. Filter models deploy statistical measures to evaluate the
discriminating power of features or subsets of features, whereas wrapper models compute
the accuracy reached with a particular classifier to guide the search for determining the
most discriminating feature subset. Other techniques, called “hybrid” or “embedded”
models, combine both filter and wrapper approaches [16]. On the one hand, wrapper
models tend to achieve better results than filter ones but suffer from a high computational
cost since they depend on a classifier [19,45]. On the other hand, filter models are simple to
design, classifier independent and faster. The embedded models that we propose to use in
this paper take advantage of the speed of a filter model as well as the selection quality of a
wrapper one.

In a supervised learning context, a feature selection method can be performed on a
training dataset either by feature ranking or by feature subset search. Feature ranking algo-
rithms individually rank features in order to select the most discriminating ones. Therefore,
they are fast and easy to apply. However, it has been shown that the combination of indi-
vidually relevant features does not necessarily yield a high classification performance [46].
This is mainly due to the non consideration of the interactions and the redundancy that
may exist between features. To overcome this problem, a feature subset search, which
evaluates groups of features, is preferred.

In the same way, clustering-based feature selection approaches can be performed either
by feature ranking or by feature subset search. In each case, a filter or a wrapper model can
be associated, leading to different strategies introduced in the following sections [9].

2.2.1. Clustering-Based Feature Ranking Approaches

In clustering-based feature ranking approaches, the feature space is firstly divided
into a number of groups by means of a clustering algorithm. The proposed approaches
differ depending on the clustering algorithm used. Then, the clusters and/or the features
in each cluster are ranked in order to select the representative features of each group. The
feature selection is either performed with the filter model [18,47] or with the wrapper
model [22]. Harris and Niekerk proposed a feature clustering and ranking (FCR) approach
where feature clustering is performed using the affinity propagation algorithm associated
with a correlation coefficient as a similarity measure [21]. A single feature from each of
the top ranked clusters is then selected by using either a filter model or a wrapper one
according to two different evaluation measures.

2.2.2. Clustering-Based Feature Subset Search Approaches

Most of the clustering-based feature subset search approaches associate a clustering
algorithm with a wrapper model to evaluate the feature subset relevance following three
main schemes. In the first one, clustering is applied as a pre-processing stage where
only one feature is selected from each group to constitute the feature set from which a
feature subset search is performed [48]. Other schemes cluster the initial feature set into a
predefined number of groups, and then evaluate the relevance of each group in order to
remove irrelevant feature groups before merging the remaining groups and repeating the
whole scheme [24]. In the last kind of scheme, the feature subset search is applied in each
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group defined by the clustering algorithm and the features selected from each group are
merged to form the final selected feature subset [23].

Apart from the one we previously proposed, very few approaches use a filter model
with a clustering-based feature subset search [9]. We showed that this approach provides
a high level of dimensionality reduction, high classification accuracy with a reasonable
processing time and a limited number of parameters to be adjusted compared to other
feature selection methods presented here. The selection approach proposed in this paper
is inspired from this clustering-based filter feature selection method. It takes advantage
of its fast filter model for searching feature subsets with different dimensions and adds
a wrapper model to determine the dimensionality of the relevant feature space, thereby
building a clustering-based embedded feature selection approach described in Section 4.

3. Color Texture Features

In this paper, we propose to apply our approach with two popular texture descriptors
known for their computational simplicity: the reduced size chromatic cooccurrence matrix
(RSCCM) [34,35] and the extended opponent color local binary pattern (EOCLBP) [10,36].
These two descriptors are computed from images coded in different color spaces and
require defining a neighborhood N in which the spatial interactions within and between
the color components of neighbor pixels are both taken into account. For the first descriptor,
Haralick features are extracted from different configurations of RSCCM. For the second
one, we propose extracting statistical features from the histograms of many EOCLBP
configurations [14].

3.1. Color Spaces

Color images are usually acquired by devices that code the colors in the RGB color
space. However, the color of pixels can be represented in different color spaces which
respect different physical, physiologic, and psycho-visual properties. These color spaces
can be categorized into four families: the primary spaces; the luminance–chrominance
spaces; the perceptual spaces; and the independent color component spaces [35].

Since the choice of a color space directly impacts the classification results, many
authors have tried to compare the results obtained using different color spaces in order to
find the most suited one for a given application [30,32,33]. The synthesis of these works
shows that there is no color space well suited to represent all types of textures. To solve this
problem, a few studies have proposed multi-color space approaches [10]. These approaches
simultaneously exploit the properties of multiple color spaces by combining them and
thus overcome the difficulty of choosing a single relevant color space. Although these
approaches have shown their relevance with variable numbers of considered color spaces,
it appears that a limited number of color spaces representative of each family is sufficient
to improve classification performances [3,10]. Moreover, many of these spaces require
knowing the properties of the illumination and the acquisition system to be independent
of the device. As these parameters are not known for all image datasets, we propose to
describe textures with only device-dependent color spaces that do not need this knowledge.
In addition to the RGB color space, a color space belonging to each of the four families is
considered herein:

• RnGnBn normalized primary space obtained by dividing each color component value
by the sum of the three ones;

• YCbCr luminance–chrominance space which separates the achromatic and chromatic
signals for the television signal transmission;

• I1I2I3 independent color component space which provides the less correlated compo-
nents as possible;

• HSV perceptual space which attempts to quantify the subjective human color per-
ception using the intensity, the hue, and the saturation components with the hex-
cone model.
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Figure 2 shows the image of a texture acquired in the RGB color space and converted
into each of the used color spaces. Converted images are displayed in false colors by
additive mixing and their three color channels are displayed below in grayscale. This figure
highlights that the texture can be perceived with different appearances depending on the
color component and shows the interest of combining multiple color spaces.

RGB HSV I1I2I3 YCbCr RnGnBn

Figure 2. Image of a texture acquired in the RGB color space and converted into the HSV, I1I2I3,
YCbCr and RnGnBn device-dependent color spaces.

The subsequent sections describe the color textures features extracted from images
coded in these five three-dimensional spaces whose color components are denoted C1, C2
and C3 for a given C1C2C3 color space.

3.2. Haralick Features Extracted from Chromatic Cooccurrence Matrices

This section presents the chromatic cooccurrence matrix and its possible configurations
from which features are extracted to describe a color texture.

3.2.1. Chromatic Cooccurrence Matrices

This descriptor is the extension to color of the gray level cooccurrence matrix (GLCM)
operator that is considered as a two-dimensional histogram of gray level pairs of neighbor
pixels. An important property of this operator is its invariance to orientation changes when
all the directions of neighbor pixels are taken into account. The chromatic cooccurrence ma-
trix (CCM) considers both the spatial interactions within and between the color components
of neighbor pixels in the image plane and the color distribution in a color space [34,35].

Let Q be the number of levels used to quantify the color components C1, C2 and C3 of
a given color space. A reduced size chromatic cooccurrence matrix (RSCCM) is a Q×Q
CCM, where the parameter Q is reduced in order to decrease the memory storage cost and
thus, the time required to extract texture features from these matrices [35].

The normalized RSCCM m
Cg ,Cg′
N [I] measures the spatial interactions in the neighbor-

hood N between the two color components Cg and Cg′ (g, g′ ∈ {1, 2, 3}) of an image I. In
addition to the quantization level Q, the neighborhoodN is a second parameter defined by
the user.

For an image coded in a color space C1C2C3 with a quantization level Q and a given
neighborhood N , six normalized RSCCMs can be computed:

• Three within-component matrices (g = g′) mC1,C1
N [I], mC2,C2

N [I] and mC3,C3
N [I];

• Three between-component matrices (g 6= g′) mC1,C2
N [I], mC1,C3

N [I] and mC2,C3
N [I] where

m
Cg ,Cg′
N [I] and m

Cg′ ,Cg

N [I] are symmetric.
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The choice of component pairs (within and between component matrices) can be
viewed as a third parameter of this descriptor. The next subsection deals with the different
configurations that an RSCCM can take.

3.2.2. RSCCM Configurations

Before calculating a chromatic cooccurrence matrix, several parameters have to be set
and adjusted. This configuration is complex when the color and spatial properties of the
analyzed textures are heterogeneous. This principally depends on:

• The number of normalized RSCCM taken into account for a given color space;
• Q, the quantization level that defines the size of the RSCCM;
• N , the pixel neighborhood in which cooccurrences are counted. N is controlled by

two other parameters:

– The neighborhood direction: four two-directional neighborhoods are usually
used to compute direction-dependent cooccurrence matrices: 0◦, 45◦, 90◦, and
135◦. In order to simultaneously take into account all the possible directions of
an observed texture, an isotropic 3× 3 neighborhood is generally used with a
number of eight neighbors located in the four directions.

– The neighborhood distance: this distance, denoted δ, is the spatial infinity-norm
distance separating each pixel from its neighbors.

Figure 3 gives some examples of RSCCM configurations. Examples (a–d) show con-
figurations using the four directional 2-neighborhoods 0◦, 90◦, 45◦ and 135◦, respectively,
at the distance δ associated with the R color component of the RGB color space so that
within-component matrices are computed with the (R, R) component pair. Example (e)
shows a configuration using the 3× 3 isotropic 8-neighborhood (δ = 1) associated with the
(B, G) component pair such that a between-component matrix can be computed.

(a) (b) (c) (d) (e)

Figure 3. Possible parameter settings of the RSCCM descriptor in the RGB color space:
(a) 2-neighborhood and 0◦ direction with the (R, R) component pair; (b) 2-neighborhood and 90◦

direction with the (R, R) component pair; (c) 2-neighborhood and 45◦ direction with the (R, R) com-
ponent pair; (d) 2-neighborhood and 135◦ direction with the (R, R) component pair; and (e) (3× 3)
8-neighborhood with the (B, G) component pair.

In this paper, an isotropic (2× δ + 1)× (2× δ + 1) neighborhood is used with a num-
ber of eight neighbors located in the four directions. Thus, we propose to adjust RSCCM
configurations depending on two parameters: the quantization level Q and the neighbor-
hood distance δ, assuming that these two parameters control the representation of textures
acquired with different observation conditions. Haralick features are thus extracted from
RSCCM configurations resulting from each of the following pairs (δ, Q):

(1, 16) (1, 32) (1, 64) (1, 128) (1, 256)
(2, 16) (2, 32) (2, 64) (2, 128) (2, 256)
(3, 16) (3, 32) (3, 64) (3, 128) (3, 256)
(5, 16) (5, 32) (5, 64) (5, 128) (5, 256)

(10, 16) (10, 32) (10, 64) (10, 128) (10, 256)
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3.2.3. Haralick Features Extracted from RSCCM

The cooccurrence matrices are able to represent the texture but they are not directly
used for color texture classification purposes because of the large amount of information
they contain. To reduce it while preserving the relevance of these descriptors, Haralick
proposed statistical features that can be extracted from each matrix [34]. We propose using
the first 13 Haralick features: energy, homogeneity, contrast, correlation, variance, inverse
difference moment, sum average, sum entropy, entropy, difference variance, difference
entropy, and two measures of correlation I and II [49].

A color texture is then represented by Haralick features extracted from RSCCM with
different parameter settings and computed from images coded in multiple color spaces.

3.3. Texture Features Extracted from Color Local Binary Pattern Histograms

This section presents the color local binary pattern and its possible configurations
from which features are extracted to describe a color texture.

3.3.1. Color Local Binary Pattern Histograms

Color LBPs are extensions to the color of the local binary pattern (LBP) operator that
captures the local texture properties of a gray level image [36]. An important property of
this operator is its invariance to monotonic gray-scale changes caused, for example, by
illumination variations. In order to characterize the whole color texture image, the LBP
operator is applied on each pixel and for each pair of components in the color space C1C2C3.
Considering a pair of components (Cg, Cg′), (g, g′ ∈ {1, 2, 3}), the color LBP labels a pixel
with the component Cg by thresholding its neighborhood N in the component Cg′ and by
encoding the result as a binary number.

The consideration of the Extended Opponent Color LBP (EOCLBP) operator gives rise
to nine LBP images:

• Three within-component LBP images (g = g′) with the pairs (C1, C1), (C2, C2) and
(C3, C3);

• Six between-component (g 6= g′) with the pairs (C1, C2), (C1, C3), (C2, C3), (C2, C1),
(C3, C1) and (C3, C2).

The choice of the considered pairs of color components can be viewed as a parameter
of this descriptor. The LBP images are usually not exploited directly and most authors
prefer to use LBP histograms where histogram bins are considered as texture features [36].
Another original idea is to extract statistical features such as Haralick features from LBP
images [50].

Instead of using the bins of EOCLBP histograms, we propose to extract two different
types of statistical features from these histograms in order to provide color texture features
consistent with those of other descriptors [14]. In order to characterize the textures acquired
with different observation conditions, these features are extracted from several EOCLBP
configurations presented in the next subsection.

3.3.2. EOCLBP Configurations

Due to its popularity, many variants of the basic LBP operator, such as the rotation
invariant LBP or the uniform LBP that reduces its dimensionality, as well as their few
extensions to color, have been proposed the last two decades [36,51].

The definition of the original LBP operator with its 3 × 3 neighborhood has then
been generalized by using a circular neighborhood N so that the EOCLBP parameters are
defined by:

• The number of LBP histograms taken into account for a given color space;
• A circular neighborhood N controlled by

– P, the number of neighbor pixels that determines the dimensionality of the LBP
histograms. For example, a 3× 3 neighborhood with P = 8 neighbors gives rise
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to a 28 = 256-dimensional LBP histogram. For each pair of color components, a
color texture is thus described by a 2P-dimensional histogram;

– δ, the distance between each pixel and its neighbors. This distance is equal to the
radius of the circle around the central pixel. Generally, when a neighbor pixel
is not confused with the circle, a bilinear interpolation is used to estimate its
location. Here, the neighborhood is pre-sampled.

Figure 4 gives some examples of EOCLBP configurations with different values of P and
δ as well as different pairs of color components in the RGB color space. In these examples,
neighbor pixels are numbered from 0 to P− 1. The configurations in the examples (a), (b)
and (d) are used to compute between-component LBP images while those in examples (c)
and (d) allow computing within-component LBP images.

(a) (b) (c) (d) (e)

Figure 4. Possible parameter settings of the EOCLBP descriptor in the RGB color space: (a) P = 8 and
δ = 1 with the (R, G) component pair; (b) P = 8 and δ = 2 with the (G, R) component pair; (c) P = 12
and δ = 3 with the (G, G) component pair; (d) P = 16 and δ = 3 with the (G, B) component pair; and
(e) P = 16 and δ = 4 with the (B, B) component pair.

With these parameters, many LBP configurations are available in order to characterize
textures in different scales. In this paper, we propose to consider EOCLBP configurations
resulting from each of the following pairs (P, δ):

(8, 1) (8, 2) (8, 3) (8, 5) (8, 10)
(12, 2) (12, 3) (12, 5) (12, 10)
(16, 2) (16, 3) (16, 5) (16, 10)

3.3.3. Statistical Features Extracted from EOCLBP Histograms

With the EOCLBP operator, a color texture can be represented by nine LBP histograms
that are concatenated to constitute a vector containing 9× 2P features for a given color
space C1C2C3. Several approaches have been proposed to reduce the dimensionality of
such a feature space, such as the uniform LBP operator. Some authors have selected the
most discriminant bins that constitute the LBP histograms [36]. Other authors reduced the
number of histograms with only three within-component LBP histograms or by adding
only three out of six between-component LBP histograms, assuming that the opponent
pairs such as (C1, C2) and (C2, C1) are highly redundant [30]. Another approach consists of
selecting, among the nine LBP histograms, the most discriminant ones for the considered
application [10].

In this paper, we propose to extract statistical features from each LBP histogram to
constitute a reduced dimensionality statistical feature vector [14]. For this purpose, two
types of statistical features are proposed:

• Six first-order statistical features: mean, median, mode, standard deviation, and two
interquartile ranges;

• Eleven second-order statistical features extended from the first 11 Haralick features
presented in Section 3.2.3 and adapted to deal with histograms.



J. Imaging 2022, 8, 217 12 of 29

4. Compact Hybrid Multi-Color Space Descriptor

This section presents the method used to define the proposed CHMCS descriptor
which provides a hybrid and compact representation of color textures.

4.1. Hybrid Multi-Color Space Representation

By combining the texture features extracted from several configurations of differ-
ent descriptors computed with images coded in multiple color spaces, a color texture is
represented in a high-dimensional feature space.

Let Nspac, be the number of considered color spaces, Np
con f , be the number of configu-

rations associated with the pth descriptor and Np
f eat be the number of color texture features

extracted from each configuration of the pth descriptor. The total number D of color texture
features is given by the relation (1):

D = Nspac ×∑
p

(
Np

con f × Np
f eat

)
. (1)

where Np
con f can be computed as the product between Np

pair, the number of color component

pairs considered in each color space for the pth descriptor, and Np
para, the number of

parameter combinations associated with the pth descriptor. Table 1 presents the possible
dimensionalities of the feature space depending on these values.

Table 1. Dimensionality of color texture feature spaces.

Descriptor N p
con f = Dimensionality

p Nspac N p
pair × N p

para N p
f eat

RSCCM 1 1 6× 1 13 78
EOCLBP 2 1 9× 1 17 153

RSCCM 1 5 6× 1 13 390
EOCLBP 2 5 9× 1 17 765

RSCCM 1 1 6× 25 13 1950
EOCLBP 2 1 9× 13 17 1989

RSCCM 1 5 6× 25 13 9750
EOCLBP 2 5 9× 13 17 9945

By simultaneously considering the RSCCM and EOCLBP descriptors as well as all the
combinations presented in the last two rows of this table, we build a hybrid multi-color
space descriptor by concatenating a total number of D = 19,695 color texture features. Due
to the curse of dimensionality, it is essential to reduce this number in order to define a
compact representation of color textures.

4.2. Compact Representation

The proposed clustering-based embedded feature selection (CEFS) approach consists
of three stages:

1. First, an automatic feature clustering algorithm is applied in order to divide the
feature set into a number of clusters in which features are redundant or correlated;

2. Then, one feature is sequentially selected per group;
3. Finally, the dimensionality of the feature space is determined.

The two first stages of the CEFS approach significantly speeds the selection procedure
up since a large number of redundant features are eliminated at each step. Indeed, the filter
model-based sequential feature selection procedure is applied to all the features belonging
to the different clusters so that only one feature per cluster is selected at each iteration
step. Features belonging to the same cluster are removed and thus not considered in the
next steps of the selection procedure. The feature clustering stage is fully automatic and
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does not require any parameters to be adjusted. This multi-criterion approach associates
two complementary measures presented in the following subsections: a correlation-based
criterion to cluster the feature set and a distance-based criterion to evaluate the relevance
of each candidate feature space. The last subsection presents the third stage of the CEFS
approach which uses the accuracy of a classifier operating in each feature subspace selected
at different dimensions in order to determine the relevant feature space dimensionality.

4.2.1. Notations

Let S = {F1, F2, · · · , Fk · · · , FD} be a set of D features where Fk is the kth feature of this
set. Feature selection aims to define a subset Sd̂ ⊂ S with a reduced number d̂ of features.

In a supervised context where the class labels of the color texture are known, this
procedure is applied on training data of N color texture samples. The training data can be
represented in the D-dimensional feature space by the N × D data matrix X:

X =



x1
1 x2

1 · · · xk
1 · · · xD

1

x1
2 x2

2 · · · xk
2 · · · xD

2
...

...
. . .

...
. . .

...
x1

i x2
i · · · xk

i · · · xD
i

...
...

. . .
...

. . .
...

x1
N x2

N · · · xk
N · · · xD

N


.

Each of the D columns of the matrix X is the N-dimensional feature vector

xk =
(

xk
1, xk

2, · · · , xk
i , · · · , xk

N

)T
∈ RN that represents a feature Fk (k = 1, · · · , D) and each

of the N rows of the matrix X is the D-dimensional sample vector
xi =

(
x1

i , x2
i , · · · , xk

i , · · · , xD
i

)
∈ RD that represents the ith color texture sample (i = 1, · · · , N)

so that:

X =



x1
x2
...

xi
...

xN


=
(
x1 x2 · · · xk · · · xD).

Let m =
(

m1, m2, . . . , mk, . . . , mD
)

be the D-dimensional mean feature vector where

mk is the mean of N elements of xk defined by Equation (2):

mk =
1
N

N

∑
i=1

xk
i . (2)

The matrix X is associated with an N-dimensional vector
y = (y1, y2, · · · , yi, · · · , yN)

T ∈ RN that represents the class labels of the training data
where yi is the class label of the ith color texture sample (i = 1, · · · , N). Let NC be the
number of classes.

Let mj =
(

m1
j , m2

j , . . . , mk
j , . . . , mD

j

)
be the D-dimensional mean feature vector of class

j where mk
j is the mean of the feature Fk computed on the N/NC samples labeled to the jth

class:

mk
j =

NC
N

N

∑
i=1
yi=j

xk
i . (3)
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4.2.2. Feature Clustering

The clustering of the feature set S is based on a dependency graph where the nodes are
the considered color texture features which are linked by an edge if they are correlated. Two
features are correlated if the absolute value of their Pearson’s linear correlation coefficient
is higher than a threshold [52]. The correlation ρ between two color texture features Fk and
Fl represented by their vector xk and xl , respectively, is defined by the following equation:

ρ(xk, xl) =
∑N

i=1(xk
i −mk)(xl

i −ml)√
∑N

i=1(xk
i −mk)2 ×∑N

i=1(xl
i −ml)2

, (4)

If xk and xl are totally correlated, the value of ρ tends to its limits 1 or −1, and if they are
completely uncorrelated, ρ is close to zero. Features directly connected are considered
to be “dependent” and the features which are indirectly connected via other features are
considered to be “long dependent”. The proposed clustering algorithm aims to put into
the same feature cluster the dependent and long dependent features. Given a correlation
threshold, two features Fk and Fl belonging to S are considered to be long dependent if
∃Fm ∈ S , Fk is dependent and so, connected to Fm and Fl is dependent and so, connected to
Fm in the dependency graph.

As in many clustering algorithms such as K-means and affinity propagation, the
parameter setting, generally adjusted by a user, is crucial because it directly impacts
the clustering result. The originality of our approach is that it automatically adjusts
the correlation threshold which is the only parameter of the clustering algorithm. This
operation is performed by varying the correlation threshold and then evaluating the
clustering quality.

The clustering algorithm partitions the feature set S into a number Nt of clusters de-
pending on the value t of the correlation coefficient threshold (t = {0.75, 0.8, 0.85, 0.9, 0.95})
so that S = {C1, C2, · · · , Ca, · · · , CNt} where Ca is the ath cluster of features (a = 1, · · · , Nt).

It is assumed that the more the clusters are well separated and compact, the higher
the clustering quality is. The clustering quality evaluation is so performed using a measure
of cluster separability and compactness defined by Equation (5):

Tr(S) = trace(((W + B)−1)× B), (5)

where trace(A) is the trace of the matrix A, B is the between-cluster scatter matrix defined
by Equation (6) and W is the within-cluster scatter matrix defined by Equation (7).

B =
1
D

Nt

∑
a=1
|Ca| × (µa − µ)(µa − µ)T , (6)

W =
1
D

Nt

∑
a=1

D

∑
k=1

Fk∈Ca

(
xk − µa

)(
xk − µa

)T
. (7)

In these equations, |Ca| is the cardinal of Ca, µ = (µ1, µ2, . . . , µi, . . . , µN)
T , is the N-

dimensional mean sample vector with µi, the mean of the D elements of xi defined by
Equation (8) and µa =

(
µa

1, µa
2, . . . , µa

i , . . . , µa
N
)T is the N-dimensional mean sample vector

of the cluster a (a = 1, · · · , Nt) with µa
i , the mean of the ith sample computed on the features

belonging to the ath cluster defined by Equation (9):

µi =
1
D

D

∑
k=1

xk
i . (8)
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µa
i =

1
|Ca|

D

∑
k=1

Fk∈Ca

xk
i . (9)

The correlation threshold t̂ used by the clustering algorithm is the one for which Tr
is maximum. Let us note that the higher the correlation threshold is, the less the number
of initial connections between features is, the less the number of correlated and also long
correlated features is, and therefore the greater the number of clusters is.

4.2.3. Sequential Feature Selection

Then, a sequential forward selection (SFS) approach, based on a filter model, is applied

to the feature set S =
Nt̂⋃

a=1
{Ca} previously clustered.

Since features in the same cluster are considered redundant, only one feature from
each cluster is selected by using the filter model.

Following a forward sequential strategy, the feature selection algorithm selects, at
each iteration step, a feature from the candidate feature set depending on the value of the
evaluation function. For this purpose, each of the remaining candidate features is added
to the feature subset under construction in order to consider as many feature subsets as
there are candidate features. As for the feature clustering step, we used a distance-based
measure as an evaluation function. Previously, the trace criterion was applied to measure
the cluster separability and compactness. In this stage of the feature selection process,
this criterion, defined by Equation (5), was used to measure the class separability and
compactness and evaluate the discriminating power of a candidate feature space. Here, B
represents the between-class scatter matrix defined by Equation (10) where the number of
samples N

NC
is equal for each class and W represents the within-class scatter matrix defined

by Equation (11).

B =
1

NC

NC

∑
j=1

(
mj −m

)(
mj −m

)T , (10)

W =
1
N

NC

∑
j=1

N

∑
i=1
yi=j

(
xi −mj

)(
xi −mj

)T , (11)

where yi = j means that the sum is applied to all the samples whose class label yi is equal
to j, the index of the considered class.

The selected feature subset at each iteration step d of the procedure is the subset for
which the trace criterion is the maximum.

Once a feature is added to this subset, the cluster in which this feature belongs is
removed to update the remaining candidate feature set that will be evaluated at the next
iteration step (d + 1). As a consequence, the number of candidate features dramatically
decreases at each step. On the one hand, this feature cluster removal reduces the feature
redundancy and, on the other hand, this stage accelerates the selection procedure compared
to a classical sequential feature selection method.

4.2.4. Determination of the Relevant Feature Space Dimensionality

Finally, the last step of the feature selection scheme consists of determining the dimen-
sion of the relevant feature subspace. Since the evaluation function associated with the
filter model is monotonic, it cannot be directly used to determine the dimension of the final
feature space. The proposed embedded method integrates a classifier whose accuracy is
measured once a feature is added at each step d of the procedure. For this purpose, the train-
ing set is divided into a training image subset and a validation image subset from which the
classification accuracy is measured following a K-fold evaluation. (K− 1) folds are used to
constitute a training image subset and the remaining fold is assigned to a validation image
subset from which the classification accuracy is measured. This cross-validation procedure
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is repeated 10 times with different distributions of the training set images in the validation
and training subsets [53]. For each d-dimensional feature subspace selected at each step d,
this accuracy is estimated as the mean rate R̄d of well-classified validation images over the
K folds and over the 10 repetitions. Since this measure tends to be stabilized after a limited
number of iteration steps, the procedure stops when a maximum number dmax of iteration
steps is reached or when all the clusters of features are removed. dmax is a parameter that
controls the learning processing time. The dimension d̂ of the selected feature subspace is
the one for which R̄d is maximum (d = 1, · · · , dmax). The accuracy is measured using the
nearest neighbor classifier associated with the L1 distance because no parameters need to
be adjusted.

4.2.5. Algorithm

Algorithm 1 presents how the CEFS procedure runs.

Algorithm 1 The CEFS procedure.

1. Cluster the feature set S so that S =
Nt̂⋃

a=1
{Ca} (see Section 4.2.2);

2. Start with the empty set (d = 0, Sd = ∅);
3. Add the feature, denoted F∗, which maximizes Tr(Sd ∪ {Fk}) | Fk ∈ {S}:

F∗ = argmax
Fk∈{S}

Tr(Sd ∪ {Fk}); (12)

4. Update (Sd+1 = Sd ∪ {F∗}, d = d + 1);
5. Remove the cluster in which F∗ belongs (S = S\Ca | F∗ ∈ {Ca});
6. Measure accuracy as the mean rate R̄d of well classified validation images;
7. Go to 3 if d ≤ dmax or S = ∅;
8. End with the computation of the dimension d̂, otherwise:

d̂ = argmax
1≤d≤dmax

R̄d. (13)

5. Experimental Results

This section firstly presents the image databases on which the experiments were
carried out. A first fine analysis of the results reached by our approach on one of these
databases is performed. The results obtained with the five databases are then presented,
compared, interpreted and discussed.

5.1. Datasets

In order to highlight the contribution of our approach, we performed an evaluation on
five benchmark color texture databases: Outex, NewBarktex2, USPTex, STex, and Parquet:

• Outex contains a very large number of surface textures acquired under controlled
conditions by a 3-CCD digital color camera and whose size is 746× 538 pixels. These
textures are split up into 29 categories of color texture images such as wood, fabric,
wallpaper, sand, tile,... [54]. To build the Outex set, 68 color texture images from
12 categories of this database are split up into 20 disjoint sub-images whose size is
128× 128 pixels (see Figure 5 for a sample of each category), giving rise to 68 different
texture classes. Among these 1360 sub-images, 680 are used for the training subset
and the remaining 680 are considered as testing images. This dataset is known as the
Outex_TC_00013 test suite.
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Figure 5. Samples from the Outex dataset among the 68 color texture classes. Each of the 12 surface
categories (from top-left to bottom-right: canvas, cardboard, carpet, foam, paper, rubber, tile, granite,
sandpaper, wool, wood, and barley-rice) included in this dataset is represented herein by one image.

• The BarkTex database includes six tree bark classes, with 68 images per class. To
build the NewBarkTex2 dataset, a region of interest, centered on the bark and whose
size is 128× 128 pixels, is first defined [2]. We thus obtain a set of 68 sub-images
per class (see Figure 6 for a sample of each class). Half of these images are used
for the training and the remaining 204 for the testing stage. Since the sub-images
of this dataset come from different original images, the textures of the training and
testing subsets are weakly correlated. This decomposition is available at: https:
//www-lisic.univ-littoral.fr/~porebski/NewBarkTex2.zip (accessed on 20 May 2022).

Figure 6. Samples illustrating the six tree bark color textures of the NewBarkTex2 dataset (from left
to right: Betula pendula, Fagus silvatica, Picea abies, Pinus silvestris, Quercus robus, and Robinia
pseudacacia).

• USPtex contains 191 natural color textures acquired under an unknown but fixed light
source [4]. The images are split up into 128× 128 disjoint sub-images (see Figure 7 for
randomly selected samples of different categories due to the large number of classes).
Since the original image size is 512× 384 pixels, this makes a total of 12 sub-images
by a texture. For our experiments, this initial image dataset is split up in order to
build a training and a testing image subset: six images are considered for the training
and the six others are used as testing images. This decomposition is available at:
https://www-lisic.univ-littoral.fr/~porebski/USPtex.zip (accessed on 27 January
2016).

Figure 7. Samples of different categories from the USPtex dataset among the 191 color texture classes.

• The Salzburg texture image database (Stex) is a large collection of 476 color texture
images, whose acquisition conditions are not defined. Each of the 476 original images
were split up into 16 non-overlapping 128× 128 sub-images (see Figure 8 for randomly

https://www-lisic.univ-littoral.fr/~porebski/NewBarkTex2.zip 
https://www-lisic.univ-littoral.fr/~porebski/NewBarkTex2.zip 
https://www-lisic.univ-littoral.fr/~porebski/USPtex.zip
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selected samples of different categories due to the large number of classes). For
our experiments, this initial image dataset is split up in order to build a training
and a testing image subset: eight images are considered for the training and the
other eight are used as testing images. This decomposition is available at: https:
//www-lisic.univ-littoral.fr/~porebski/Stex.zip (accessed on 20 November 2017).

Figure 8. Samples of different categories from the Stex dataset among the 476 color texture classes.

• The Parquet database is composed of fourteen varieties of wood for flooring [3]. Each
type of wood presents several grades ranging from 2 to 4 which are considered as
independent classes, leading to a total of 38 different classes. The main challenge with
this database is that, within each type of wood, the grades are very similar to each
other. Moreover, the sizes of the acquired images are different and the number of
samples per class varies from 6 to 8. As in [13], six samples per class are retained and
the images are center-cropped so that the final dimension of the images ranges from
480× 480 to 1300× 1300 pixels (see Figure 9 for a sample of different classes belonging
to the OAK wood category). For each texture, three images are considered for the
training and the other 3 are used as testing images. This decomposition is available at:
https://www-lisic.univ-littoral.fr/~porebski/Parquet.zip (accessed on 10 June 2020).

Figure 9. Samples of the OAK wood category from the Parquet dataset among the 38 color tex-
ture classes.

Table 2 summarizes the color texture datasets used in the experiments of this paper.

Table 2. Experimented color texture datasets.

Dataset Image Number of Number of Number of
Size Classes Images Images/Class

Outex 128× 128 68 1360 20
NewBarkTex2 128× 128 6 408 68

USPtex 128× 128 191 2292 12
Stex 128× 128 476 7616 16

Parquet 480× 480 to 38 228 6
1300× 1300

https://www-lisic.univ-littoral.fr/~porebski/Stex.zip
https://www-lisic.univ-littoral.fr/~porebski/Stex.zip
https://www-lisic.univ-littoral.fr/~porebski/Parquet.zip
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5.2. Color Texture Feature Combinations

In order to highlight the contribution of combining several descriptor configurations,
we propose to compare the CHMCS descriptor with different color texture representations,
each coming from one descriptor:

• Single parameter setting and single color space (SPSC): this representation uses only
one color space and a predefined parameter setting of the descriptor;

• Single parameter setting and multiple color space (SPMC): this representation uses
multiple color spaces associated with a predefined parameter setting of the descriptor;

• Multiple parameter setting and single color space (MPSC): this representation uses
only one color space and is based on several parameter settings of a same descriptor;

• Multiple parameter setting and multiple color space (MPMC): this representation uses
multiple color spaces associated with several parameter settings of a same descriptor.

These various representations aim to determine which parameters really impact the
classification results. To show this impact without being influenced by other parameters
such as those of the classifier, we decide to use the nearest neighbor classifier because it
does not need any parameter to adjust. As for the learning stage, this classifier is associated
with the L1 distance and applied on the test image subsets. The accuracy is measured as
the percentage of well-classified test images. All experiments were performed with the
Matlab software using the CALCULCO computing platform supported by SCoSI/ULCO
(Service Commun du Système d’Information from the University of Littoral Côte d’Opale)
with different CPU and RAM. In addition, the online version of the CATAcOMB (Colour
Furthermore, Texture Analysis Toolbox for Matlab) toolbox available at https://bitbucket.
org/biancovic/catacomb accessed on 23 May 2022 and first released in February 2019 is
used for comparisons with other approaches [13].

Table 3 indicates the number of features used for each of the color texture representa-
tions above presented and applied to different descriptors.

Table 3. Color texture representations where Nspac is the number of considered color spaces, Np
pair is

the number of color component pairs considered in each color space, Np
para is the number of parameter

combinations, Np
f eat is the number of color texture features extracted from each configuration of the

pth descriptor, and D is the total number of color texture features.

Representation Descriptor p Nspac N p
pair N p

para N p
f eat D

SPSC RSCCM 1 1 6 1 13 78
SPSC EOCLBP 2 1 9 1 17 153

SPMC RSCCM 1 5 6 1 13 390
SPMC EOCLBP 2 5 9 1 17 765

MPSC RSCCM 1 1 6 25 13 1950
MPSC EOCLBP 2 1 9 13 17 1989

MPMC RSCCM 1 5 6 25 13 9750
MPMC EOCLBP 2 5 9 13 17 9945

CHMCS RSCCM + EOCLBP – 5 – – – 19, 695

When these representations are associated with the dimensionality reduction scheme
presented in the previous section, they give rise to other compact color texture descriptors
that we compare in the next subsections. During the learning stage of these experiments,
dmax is set to 100 so that the learning processing time is reduced and K is set to 3 for the
K-fold cross-validation which is repeated 10 times.

5.3. Extensive Analysis on the USPtex Dataset

First, we provide a detailed analysis of the results reached by the proposed approach
on the USPtex dataset.

https://bitbucket.org/biancovic/catacomb
https://bitbucket.org/biancovic/catacomb
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Table 4 shows the results obtained for each representation presented in the previous
section with several color spaces and the parameter settings of different descriptors taken
into account either individually or jointly. This table is organized as follows:

• For a given color space and a given parameter setting of a descriptor (RSCCM or
EOCLBP), the accuracy obtained with the corresponding compact SPSC representation
is indicated with the feature space dimension between brackets.

• For each parameter setting of a descriptor (RSCCM or EOCLBP) associated with
multiple color spaces, the accuracy obtained with the corresponding compact SPMC
representation is indicated in the last column with the feature space dimension be-
tween brackets. The previous two columns show, respectively, the mean accuracy and
the accuracy interval computed from the five color spaces.

• For each color space associated with multiple parameter settings of a descriptor
(RSCCM or EOCLBP), the accuracy obtained with the corresponding compact MPSC
representation is indicated in the last row of the corresponding descriptor with the
feature space dimension between brackets. The previous two rows show, respectively,
the mean accuracy and the accuracy interval computed from the different parameter
settings of the descriptor.

• For each descriptor, the accuracy obtained with the corresponding compact MPMC
appears in the last corresponding cell (boxed value in the last column and last row).

• The three last rows give the results when the two descriptors (Hybrid: RSCCM and
EOCLBP) are combined where the last cell indicates the accuracy obtained with the
CHMCS descriptor (bold and boxed value).

The analysis of this table allows first to draw conclusions on the impact of SPMC
(multiple color spaces) or MPSC (several parameter settings) representations compared to
SPSC ones for each descriptor:

• By comparing the accuracy in the last column (SPMC) for each row (chosen parameter
setting) of each descriptor with the maximum accuracy obtained with a single color
space, the SPMC representation always outperforms the SPSC ones (+9.36% on aver-
age for the two descriptors) with higher dimensionality feature spaces (63.9 for SPMC
and 30.9 for SPSC on average for the two descriptors). Thus, combining multiple color
spaces improves the classification results compared to a single color space which is
previously unknown.

• By comparing the accuracy in the last row (MPSC) for each column (chosen color
space) of each descriptor with the maximum accuracy obtained with a single pa-
rameter setting, there are only two cases (out of 190) where the SPSC representation
outperforms the SPMC ones. These two cases only appear with the parameter setting
(256, 1) of the RSCCM descriptor underlined in the table. On average, for the two
descriptors, an accuracy increase of +10.18% is observed with the MPSC representa-
tion for a slight increase in the feature space dimensionality (42.0 for MPSC and 30.9
for SPSC). Compared to a single parameter setting which is previously unknown, the
combination of several parameter settings globally improves the classification results.

For each descriptor independently considered, the compact MPMC (95.63% for RSCCM
and 95.64% for EOCLBP) representation also provides higher accuracy than the best SPSC
ones that is underlined and written in bold in Table 4 (94.24% for the (256, 1) parameter
setting of RSCCM in the YCbCr color space and 92.32% for the (12, 2) parameter setting of
the EOCLBP in the I1I2I3 color space). On average, MPMC representations provide higher
accuracy than the SPMC (93.02% for RSCCM and 93.12% for EOCLBP) and MPSC (90.17%
for RSCCM and 91.39% for EOCLBP) ones. However, there are three cases (underlined and
written in italic in Table 4) where the SPMC representation, only with EOCLBP, outperforms
a bit for this dataset. The combination of several descriptor configurations (multiple color
spaces and parameter settings) is thus always preferred compared to representations where
a predefined configuration is previously chosen (color space, parameter settings of the
descriptor or both).
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For each of the two descriptors used in this paper, Figures 10 and 11 show, respec-
tively, the distribution of the selected features when a MPMC representation is used. The
distribution of color spaces, color component pairs, descriptor parameters, and features
extracted from the descriptor are represented by pie charts.

Table 4. Classification accuracy (in % of well-classified test images) for the USPtex dataset. For each
descriptor, the best result reached by an SPSC representation is written in bold and underlined. The
results obtained with MPMC and CHMCS representations are boxed (and bold written for CHMCS).
Other italic and/or underlined annotations refer to other discussed results.

Descriptor Setting RGB HSV YCbCr I1I2I3 RnGn Bn Min–Max Mean SPMC

R
SC

C
M

(16,1) 82.98 (22) 91.27 (47) 88.83 (34) 89.35 (31) 68.76 (29) [68.76–91.27] 84.24 (32.6) 93.11 (78)

(16,2) 82.02 (27) 88.22 (32) 88.05 (30) 88.39 (24) 69.46 (30) [69.46–88.39] 83.23 (28.6) 94.15 (69)

(16,3) 80.11 (24) 89.44 (41) 85.95 (34) 86.56 (43) 66.41 (31) [66.41–89.44] 81.69 (34.6) 93.19 (84)

(16,5) 75.83 (13) 87.44 (41) 82.64 (38) 82.81 (29) 61.52 (30) [61.52–87.44] 78.05 (30.2) 91.10 (70)

(16,10) 71.99 (17) 82.98 (37) 76.00 (30) 77.75 (32) 58.55 (27) [58.55–82.98] 73.46 (28.6) 88.22 (100)

(32,1) 82.29 (23) 90.75 (39) 91.89 (41) 91.36 (36) 78.45 (28) [78.45–91.89] 86.95 (33.4) 95.03 (99)

(32,2) 82.98 (26) 89.97 (49) 90.40 (38) 88.74 (30) 75.65 (27) [75.65–90.40] 85.55 (34.0) 95.03 (99)

(32,3) 82.02 (23) 89.44 (46) 89.18 (32) 89.27 (30) 73.56 (28) [73.56–89.44] 84.69 (31.8) 93.98 (98)

(32,5) 78.01 (15) 87.87 (44) 85.69 (36) 86.48 (26) 71.38 (20) [71.38–87.87] 81.88 (28.2) 91.01 (60)

(32,10) 72.60 (15) 84.64 (34) 81.76 (32) 82.90 (31) 67.19 (23) [67.19–84.64] 77.82 (27.0) 89.88 (88)

(64,1) 83.51 (31) 90.93 (47) 92.76 (31) 93.11 (33) 82.37 (26) [82.37–93.11] 88.53 (33.6) 94.85 (96)

(64,2) 83.07 (29) 91.10 (41) 92.67 (40) 91.89 (27) 80.72 (23) [80.72–92.67] 87.89 (32.0) 94.50 (96)

(64,3) 82.02 (26) 89.79 (42) 91.27 (22) 90.75 (27) 77.92 (20) [77.92–91.27] 86.35 (27.4) 93.19 (96)

(64,5) 77.92 (21) 87.78 (42) 87.26 (25) 87.35 (22) 77.05 (17) [77.05–87.78] 83.47 (25.4) 92.50 (94)

(64,10) 72.51 (18) 84.03 (36) 82.72 (24) 84.56 (31) 72.86 (17) [72.51–84.56] 79.34 (25.2) 89.79 (56)

(128,1) 83.42 (33) 91.01 (37) 93.63 (34) 93.28 (32) 82.81 (27) [82.81–93.63] 88.83 (32.6) 95.29 (88)

(128,2) 82.90 (31) 90.66 (45) 91.97 (34) 92.76 (37) 80.98 (27) [80.98–92.76] 87.85 (34.8) 94.24 (91)

(128,3) 81.41 (28) 90.23 (39) 91.54 (28) 90.66 (37) 78.36 (19) [78.36–91.54] 86.44 (30.2) 93.37 (78)

(128,5) 78.01 (23) 88.31 (33) 88.83 (26) 88.83 (26) 74.87 (18) [74.87–88.83] 83.77 (25.2) 93.11 (82)

(128,10) 74.78 (19) 85.17 (38) 84.90 (23) 86.48 (30) 70.33 (18) [70.33–86.48] 80.33 (25.6) 90.49 (56)

(256,1) 83.33 (27) 91.89 (44) 94.24 (36) 93.37 (39) 85.17 (26) [83.33–94.24] 89.60 (34.4) 94.94 (93)

(256,2) 82.81 (32) 90.49 (45) 93.28 (35) 92.41 (37) 84.56 (27) [82.81–93.28] 88.71 (35.2) 94.33 (95)

(256,3) 82.46 (29) 89.35 (48) 92.41 (32) 90.31 (37) 83.07 (24) [82.46–92.41] 87.52 (34.0) 94.59 (65)

(256,5) 79.06 (24) 86.82 (34) 89.79 (27) 89.53 (31) 80.28 (20) [79.06–89.79] 85.10 (27.2) 93.54 (56)

(256,10) 74.08 (24) 84.12 (36) 86.39 (24) 86.13 (32) 75.65 (17) [74.08–86.39] 81.27 (26.6) 92.15 (66)

Min–Max [71.99–83.51] [82.98–91.89] [76.00–94.24] [77.75–93.37] [58.55–85.17] [58.55–94.24 ] [73.46–89.60] [88.22–95.29]

Mean 79.69 (24.0) 88.55 (40.7) 88.56 (31.4) 88.60 (31.6) 75.12 (24.0) [75.12–88.60] 84.10 (30.3) 93.02 (82.1)

MPSC 84.21 (25) 91.62 (45) 93.54 (26) 93.46 (46) 88.05 (41) [84.21–93.54] 90.17 (36.6) 95.63 (84)

EO
C

LB
P

(8,1) 83.68 (39) 87.20 (24) 89.79 (22) 88.37 (36) 80.19 (19) [80.19–89.79] 85.85 (28.0) 92.90 (37)

(8,2) 82.55 (28) 87.52 (40) 90.05 (27) 88.31 (26) 82.37 (23) [82.37–90.05] 86.16 (28.8) 95.40 (41)

(8,3) 84.47 (37) 86.13 (24) 91.10 (24) 89.41 (24) 83.71 (23) [83.71–91.10] 86.96 (26.4) 94.59 (50)

(8,5) 77.57 (44) 84.47 (33) 84.53 (21) 84.03 (38) 79.32 (24) [77.57–84.53] 81.98 (32.0) 91.45 (40)

(8,10) 60.30 (46) 71.64 (50) 72.51 (50) 73.56 (49) 71.73 (27) [60.30–73.56] 69.95 (44.4) 87.26 (46)

(12,2) 84.99 (26) 87.87 (27) 90.31 (16) 92.32 (33) 83.33 (24) [83.33− 92.32] 87.77 (25.2) 96.28 (50)

(12,3) 84.73 (34) 88.31 (19) 90.84 (36) 90.05 (32) 84.99 (23) [84.73–90.84] 87.78 (28.8) 95.38 (37)

(12,5) 82.72 (43) 85.34 (47) 86.56 (39) 88.37 (29) 84.21 (20) [82.72–88.37] 85.44 (35.6) 93.28 (48)

(12,10) 65.10 (26) 76.06 (50) 75.92 (45) 73.33 (27) 70.94 (34) [65.10–76.06] 72.27 (36.4) 86.13 (47)

(16,2) 85.08 (28) 89.35 (25) 91.80 (32) 91.45 (34) 83.45 (33) [83.45–91.80] 88.23 (30.4) 96.16 (50)

(16,3) 87.00 (27) 89.09 (31) 92.06 (23) 91.45 (30) 84.50 (18) [84.50–92.06] 88.82 (25.8) 96.86 (49)

(16,5) 82.37 (44) 85.69 (34) 88.57 (26) 89.79 (36) 84.03 (23) [82.37–89.79] 86.09 (32.6) 93.89 (50)

(16,10) 68.76 (32) 78.01 (36) 79.67 (31) 76.88 (31) 76.18 (48) [68.76–79.67] 75.90 (35.6) 91.01 (50)

Min–Max [60.30–87.00] [71.64–89.35] [72.51–92.06] [73.33–92.32] [70.94–84.99] [60.30–92.32] [69.95–88.82] [86.13–96.86]

Mean 79.18 (34.9) 84.36 (33.9) 86.44 (30.1) 85.95 (32.7) 80.69 (26.1) [79.18–86.44] 83.32 (31.5) 93.12 (45.8)

MPSC 89.53 (50) 91.27 (29) 94.59 (42) 94.59 (37) 87.00 (29) [87.00–94.59] 91.39 (37.4) 95.64 (89)

H
yb

ri
d Min–Max [60.30–87.00] [71.64–91.89] [72.51–94.24] [73.33–93.37] [58.55–85.17] [58.55–94.24] [69.95–89.60] [86.13–96.86]

Mean 79.43 (29.45) 86.45 (37.2) 87.50 (30.7) 87.27 (32.1) 77.90 (25.0) [77.90–87.50] 83.71 (30.9) 93.07 (63.9)

Hybrid 94.68 (49) 94.85 (31) 95.55 (49) 96.68 (51) 87.69 (30) [87.69–96.68] 93.89 (42.0) 97.70 (51)
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For the RSCCM descriptor (see Figure 10), d̂ = 84 color texture features are selected
from the 9750 available ones with the USPtex dataset. These features are equally derived
from the five spaces with the RnGnBn color space as the most selected (29%). The six pos-
sible pairs of components are also selected equally but the three within-component pairs
represent more than half of the pairs. Among the 25 available combinations of parameters,
15 are exploited by the descriptor with quantization levels and neighborhood distances
which are very different. Among 13 Haralick features, 11 are selected with a dominance of
the contrast feature (25%).

Figure 10. Distribution of the selected features for the RSCCM descriptor with the MPMC representa-
tion for the USPtex dataset. This distribution is shown for the descriptor settings, color spaces, color
component pairs and Haralick features.

For the EOCLBP descriptor (see Figure 11), d̂ = 89 color texture features are selected
from the 9945 available ones with the USPtex dataset. These features are derived from
all color spaces with the RGB color space as the most selected (44%). All possible pairs
of components are selected where the three within-component pairs represent more than
half of the pairs. Among the 13 available combinations of parameters, 10 are exploited
by the descriptor with different numbers of neighbors and neighborhood distances. The
standard 3× 3 isotropic 8-neighborhood seems to be the most often selected (27%). Among
the 17 available statistical features, 10 are selected with a dominance of the homogeneity
measure (24%).

This study confirms that, for a given descriptor, there is no unique color space, pair of
components, parameter setting or feature extracted which is relevant. Indeed, the selected
configuration varies with the considered descriptor. These results justify the approach
proposed in this paper.

Finally, Table 4 shows that the proposed CHMCS descriptor (97.70% boxed and bold
written in this table) outperforms any of all other representations. For the USPtex dataset,
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the two descriptors are relatively equally exploited and with all color spaces by the CHMCS
representation (see Figure 12).

Figure 11. Distribution of the selected features for the EOCLBP descriptor with the MPMC repre-
sentation for the USPtex dataset. This distribution is shown for the descriptor settings, color spaces,
color component pairs and statistical features.

Figure 12. Distribution of the two descriptors and the five color spaces with the CHMCS representa-
tion for the USPtex dataset.

5.4. Overall Results

In this subsection, the rest of the results are given for the five color texture datasets.
For each of the two descriptors (RSCCM and EOCLBP), Table 5 first highlights the

best results obtained with a compact SPSC representation. For each accuracy presented in
this table, the corresponding descriptor configuration is given in terms of parameter setting
and color space. This pair is different for the same descriptor on all datasets. This result
allows to generalize the conclusion of the previous section.

Table 6 shows how the selected features of the CHMCS descriptor for each dataset are
distributed. The second column of this table gives the dimension of the selected feature
space which is lower than dmax for all datasets. The next two columns count the number of
times that each of the two descriptors are selected: in parentheses is the number of different
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parameter settings of this descriptor (25 settings are candidates for RSCCM and 13 settings
are candidates for EOCLPB) and the number of its different color component pairs (6 pairs
are candidates for RSCCM and 9 pairs are candidates for EOCLPB). For most datasets, this
number is approximately equal except for the Parquet dataset where RSCCM is more often
selected. For the NewBarkTex2 dataset, it can be pointed that it is EOCLBP which is selected
a little more often. This table also shows that various parameter settings are used with the
two descriptors. The six available component pairs are used by the RSCCM descriptor for
four datasets (NewBarkTex2 only requires five pairs) while, for the EOCLPB, the number
of used component pairs is between six and nine. The last five columns count the number
of times each of the five color spaces is selected. All the color spaces are exploited by the
CHMCS descriptor.

Table 5. Accuracy (in % of well-classified test images) obtained by the best configuration of each
descriptor.

Dataset RSCCM EOCLBP
Best

Result Setting Color
Space

Best
Result Setting Color

Space

Outex 94.41 (128, 2) RGB 91.91 (12, 3) HSV
NewBarkTex2 80.39 (32, 5) YCbCr 82.37 (8, 2) YCbCr

USPtex 94.24 (256, 1) YCbCr 92.32 (12, 2) I1I2I3
Stex 89.57 (64, 1) I1I2I3 90.04 (16, 2) HSV

Parquet 85.96 (16, 1) HSV 78.94 (8, 1) HSV

Table 6. Distribution of the selected features.

Dataset d̂ Descriptor Color Spaces
RSCCM (25, 6) EOCLBP (13, 9) RGB HSV YCbCr I1I2I3 RnGnBn

Outex 36 17 (9, 6) 19 (9, 8) 12 8 6 5 5
NewBarkTex2 20 7 (6, 5) 13 (8, 7) 3 3 2 6 6

USPtex 51 28 (15, 6) 23 (11, 9) 19 5 5 13 9
Stex 75 37 (18, 6) 38 (10, 6) 19 20 16 9 11

Parquet 41 29 (12, 6) 12 (8, 9) 12 5 10 5 9

Table 7 gives the accuracy obtained on the five datasets with the proposed CHMCS
descriptor compared to those obtained with the compact SPSC, MPSC, SPMC, and MPMC
representations for each of the two descriptors. For the SPSC, SPMC and MPSC, the mean
of the classification rates are given as the measure of accuracy. In order to underline the
impact of the dimensionality reduction scheme, the accuracy obtained without selection
is also given. For each dataset, the highest accuracy is written in bold and the highest
accuracy reached by the other compact representations is underlined.

Table 7. Accuracy obtained (in % of well-classified test images) with the CHMCS descriptor compared
to other approaches. For each dataset, the highest accuracy is written in bold. The highest accuracy
reached by the other approaches is underlined. “With” and “Without” refer to the selection procedure.

Dataset RSCCM EOCLBP CHMCS
SPSC SPMC MPSC MPMC SPSC SPMC MPSC MPMC Without With

Outex 89.89 93.84 92.70 95.44 84.32 91.43 87.88 92.35 91.76 95.59
NewBarkTex2 69.97 77.65 71.76 82.84 74.39 83.82 88.82 90.69 87.25 94.61

USPtex 84.10 93.02 90.17 95.63 83.32 93.12 91.39 95.64 54.89 97.70
Stex 78.62 89.72 85.58 92.62 79.28 90.53 89.29 94.04 70.25 96.06

Parquet 74.66 80.21 79.29 83.33 69.33 71.93 69.82 73.68 57.89 86.84
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For all datasets, the CHMCS descriptor outperforms the other approaches and shows
the purpose of combining different descriptors. When a single descriptor is considered
(RSCCM or EOCLBP), compact representations that take into account several descriptor
configurations (MPMC) give the highest accuracy. Compared to Table 5, wherein the best
results appear with a predefined descriptor parameter setting and color space, the CHMCS
descriptor provides a higher accuracy and solves the difficult problem of a prior choice of
well-suited configuration. This is an essential key point of our approach. Classification
results drastically decrease when no selection is performed. The dimensionality reduction
scheme is thus the second essential key point for the success of the classification.

Table 8 indicates the dimensionality of the selected feature space from which the
classification rates of Table 7 are computed. For the SPSC, SPMC and MPSC, the mean
dimensionalities are computed. In all cases, the dimensions are less than dmax = 100, which
considerably reduces the classification time during the decision stage.

Table 8. Dimensionality of the feature space obtained with the CHMCS descriptor compared to other
approaches for each dataset.

Dataset RSCCM EOCLBP CHMCS
SPSC SPMC MPSC MPMC SPSC SPMC MPSC MPMC

Outex 11.44 17.28 13.00 27 26.43 33.00 31.00 59 36
NewBarkTex2 15.10 29.56 9.00 24 18.34 24.23 26.80 27 20

USPtex 30.33 82.12 36.60 84 31.53 45.74 37.40 89 51
Stex 29.63 29.60 87.04 83 36.38 47.15 39.40 67 75

Parquet 5.76 12.88 12.60 15 8.00 7.38 11.20 8 41

Finally, we propose to compare the relevance of the proposed CHMCS descriptor with
handcrafted color texture descriptors and deep learning approaches (see Table 9). Deep
learning, and more specifically, convolutional neural networks (CNNs) provide impressive
performances in computer vision problems such as image classification, object detection or
pattern recognition, and have become the benchmark computer vision technique of our
time. For a fair comparison, the accuracy is thus evaluated on the five color texture datasets
with image classification algorithms based on:

• Four popular pretrained CNN models that are fine-tuned with the training images of
the considered dataset: AlexNet, GoogleNet, ResNet18 and ResNet50 [25–27]. Here,
the last fully connected layer is modified to match the number of classes in each
target dataset;

• Five pretrained generic CNN models that provided the best overall results in [13]:
ResNet-50, ResNet-101, ResNet-152, VGG-VD-16 and VGG-VD-19 [27,28]. Here, the
order-sensitive output of the last fully connected layer is used to generate the features
and an L2 normalization of the resulting feature vector is achieved. The dimensionality
of this vector is 2048 for the ResNet models and 4096 for the VGG-VD ones;

• Four handcrafted color texture descriptors: OCLBP, IOCLBP, LCVBP, and SWOBP (see
Section 2) in addition to the best configuration determined for RSCCM and EOCLBP
(see Table 5). OCLBP, IOCLBP, and LCVBP descriptors were used to obtain a multiple
resolution feature vector by concatenating the histograms of their rotation-invariant
version computed with five 8-neighborhood distances (δ ∈ {1, 2, 3, 5, 10}). The dimen-
sionality of the OCLBP, IOCLBP and LCVBP descriptors are thus (36× 5× 6) = 1080,
(71× 5× 3 + 72× 5× 3) = 2145 and (36× 5× 4) = 720, respectively. The SWOBP
descriptor is used with the setting recommended by the authors (24 neighbors at a
distance δ = 3) so that its dimensionality is 2244 when the uniform pattern version
is used.

Except for the fine-tuned CNN models where the classification is performed directly by
the network, all the results are determined using the nearest neighbor classifier associated
with the L1 norm distance.
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Table 9. Comparison with handcrafted descriptors and deep learning approaches. Mean classification
rates are provided (written in italic) for each approach across the five datasets. For each dataset, the
best results are written in bold.

Descriptor
Dataset

Average
Outex NewBarkTex2 USPtex Stex Parquet

Our approach
CHMCS 95.59 94.61 97.70 96.06 86.84 94.16

Fine-tuned CNN models
ResNet50 86.03 94.61 99.39 97.30 64.04 88.27
Resnet18 84.12 89.71 96.60 95.22 51.75 83.48

GoogleNet 80.29 88.73 97.12 92.70 42.98 80.36
AlexNet 86.03 91.18 93.02 91.44 50.00 82.33

Pretrained generic CNN models
ResNet-50 89.26 91.18 99.48 97.27 54.39 86.32

ResNet-101 88.09 90.69 98.95 96.48 56.14 86.07
ResNet-152 85.74 89.71 99.04 96.82 58.77 86.02
VGG-VD-16 85.44 84.31 96.95 94.51 51.75 82.59
VGG-VD-19 85.15 87.25 97.29 94.62 47.37 82.34

Traditional handcrafted color texture descriptors
IOCLBP 93.09 69.61 93.54 91.70 68.42 83.27
OCLBP 94.12 72.55 93.19 90.76 69.30 83.98
LCVBP 90.00 89.22 94.33 91.81 75.44 88.16
SWOBP 86.32 90.20 94.15 90.20 69.30 86.03

Best RSCCM 94.41 80.39 94.24 89.57 85.96 88.91
Best EOCLBP 91.91 82.37 92.32 90.04 78.94 87.12

This table shows that our approach based on supervised learning provides results
which are consistent with those achieved with deep learning networks and superior to
traditional handcrafted color texture descriptors. On average, it gives better results than
pretrained CNN-based approaches. For two datasets (Outex and Parquet), the proposed
texture representation outperforms the CNN-based representation with the highest accu-
racy (ResNet50) and provides the same result for the NewBarkTex2 dataset. The smaller
the database is, the more the proposed descriptor seems to outperform this network. CNN-
based methods fail when the number of training samples is low, as with the Parquet dataset,
while our approach gives satisfactory results. Moreover, the CHMCS representation is able
to discriminate the color textures of different classes which are very similar to each other as
in the Parquet dataset, whereas the pretrained CNNs do not seem suitable for fine-grained
texture classification with small inter-class and large intra-class variations, as shown in [13].
Thus, our approach remains very stable with any of the color texture dataset compared to
CNNs. The results achieved by the proposed CHMCS representation with only two basic
descriptors (RSCCM and EOCLBP) are very encouraging and lead to consider that they can
be improved, even for large datasets, by adding other descriptors which provided notable
results in Table 9.

6. Conclusions

In this paper, we proposed a compact, hybrid and multi-color space texture represen-
tation based on two key points:

• The combination of texture features extracted from several parameter settings of
different descriptors computed from images coded in multiple color spaces.
This representation simultaneously takes into account the different color and spatial
properties of the textures to be analyzed and overcomes the difficulty of a prior
parameter setting.

• The dimensionality reduction of the feature space by a clustering-based sequential
forward selection procedure.
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The proposed selection procedure uses a feature subset search algorithm associated
with a multi-criteria evaluation and is applied to the features automatically grouped
into clusters beforehand. Feature clustering is performed from a dependency graph
which is constructed using a correlation measure. Based on a distance measure, only
one feature per cluster is selected at each iteration step of the sequential forward
procedure and the cluster to which this feature belongs is removed from the feature
set. Following an embedded model, the dimension of the feature space is finally
determined by an accuracy measure computed from a validation image subset based on
a repeated K-fold cross-validation.

In most traditional approaches, the texture descriptors are used with a predefined
setting of the parameters and computed from images coded in a chosen color space. The
principal contribution of the proposed approach is to combine the manifold configurations
of descriptors including the color spaces in order to take into account the possible low
inter-class and high intra-class appearance variations of the color textures to be classified.
Another key point of this approach is the use of a correlation coefficient whose threshold
is automatically determined by evaluating the feature clustering quality with a cluster
separability and compactness measure so that no parameter requires adjustment

The results obtained with five benchmark texture databases show that combining the
different configurations of a texture descriptor always improves the accuracy compared
to approaches that use a prior predefined configuration. The proposed compact hybrid
multi color space descriptor provides, on average, better results compared to deep learning
approaches. Although the results obtained with the ResNet50 network are better when the
number of data is large, this CNN-based representation fails when the dataset is small.

The proposed method could be extended by adding other descriptors in order to
produce a better performance, even if the datasets are large. It can also be improved
by adding criteria guaranteeing the stability of the feature selection procedure when the
number of features is high compared to the number of training samples. Classification
results could obviously be enhanced by using more sophisticated classifiers. However, our
approach provides a high level of dimensionality reduction and competitive classification
accuracy with a reasonable processing time and very few parameters to adjust.

Author Contributions: Conceptualization and methodology, all authors; investigation, M.A.; soft-
ware, M.A. and A.P.; writing—original draft preparation, N.V.; writing—review and editing, all
authors; supervision, N.V., A.P., R.O.H.T. and S.E.F. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors gratefully acknowledge the scholarships received from CNRST-
Morocco (Centre National de la Recherche Scientifique et Technique) grant number 2UM5R2019
and the University of Littoral Côte d’Opale (ULCO) in France. The authors would like to thank the
reviewers for their helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cusano, C.; Napoletano, P.; Schettini, R. T1K+: A database for benchmarking color texture classification and retrieval Methods.

Sensors 2021, 21, 1010. [CrossRef] [PubMed]
2. Porebski, A.; Vandenbroucke, N.; Macaire, L.; Hamad, D. A new benchmark image test suite for evaluating colour texture

classification schemes. Multimed. Tools Appl. 2014, 70, 543–556. [CrossRef]
3. Bianconi, F.; Fernández, A.; González, E.; Saetta, S.A. Performance analysis of colour descriptors for parquet sorting. Expert Syst.

Appl. 2013, 40, 1636–1644. [CrossRef]
4. Backes, A.R.; Casanova, D.; Bruno, O.M. Color texture analysis based on fractal descriptors. Pattern Recognit. 2012, 45, 1984–1992.

[CrossRef]
5. Liu, L.; Chen, J.; Fieguth, P.; Zhao, G.; Chellappa, R.; Pietikäinen, M. From BoW to CNN: Two decades of texture representation

for texture classification. Int. J. Comput. Vis. 2019, 127, 74–109. [CrossRef]

http://doi.org/10.3390/s21031010
http://www.ncbi.nlm.nih.gov/pubmed/33540828
http://dx.doi.org/10.1007/s11042-013-1418-8
http://dx.doi.org/10.1016/j.eswa.2012.09.007
http://dx.doi.org/10.1016/j.patcog.2011.11.009
http://dx.doi.org/10.1007/s11263-018-1125-z


J. Imaging 2022, 8, 217 28 of 29

6. Bianconi, F.; Fernández, A.; Smeraldi, F.; Pascoletti, G. Colour and texture descriptors for visual recognition: A historical overview.
J. Imaging 2021, 7, 245. [CrossRef]

7. Cusano, C.; Napoletano, P.; Schettini, R. Combining multiple features for color texture classification. J. Electron. Imaging 2016,
25, 061410. [CrossRef]

8. Khan, F.S.; Anwer, R.M.; Van De Weijer, J.; Felsberg, M.; Laaksonen, J. Compact color–texture description for texture classification.
Pattern Recognit. Lett. 2015, 51, 16–22. [CrossRef]

9. Alimoussa, M.; Porebski, A.; Vandenbroucke, N.; Oulad Haj Thami, R.; El Fkihi, S. Clustering-based sequential feature selection
approach for high dimensional data classification. In Proceedings of the 16th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications (VISAPP), INSTICC, Online, 8–10 February 2021; SciTePress: Rome,
Italy, 2021; Volume 4, pp. 122–132. [CrossRef]

10. Porebski, A.; Hoang, V.T.; Vandenbroucke, N.; Hamad, D. Multi-color space local binary pattern-based feature selection for
texture classification. J. Electron. Imaging 2018, 27, 011010. [CrossRef]

11. Banerji, S.; Sinha, A.; Liu, C. New image descriptors based on color, texture, shape, and wavelets for object and scene image
classification. Neurocomputing 2013, 117, 173–185. [CrossRef]

12. Shu, X.; Song, Z.; Shi, J.; Huang, S.; Wu, X.J. Multiple channels local binary pattern for color texture representation and
classification. Signal Process. Image Commun. 2021, 98, 116392. [CrossRef]

13. Bello-Cerezo, R.; Bianconi, F.; Di Maria, F.; Napoletano, P.; Smeraldi, F. Comparative evaluation of hand-crafted image descriptors
vs. off-the-shelf CNN-based features for colour texture classification under ideal and realistic conditions. Appl. Sci. 2019, 9, 738.
[CrossRef]

14. Alimoussa, M.; Vandenbroucke, N.; Porebski, A.; Oulad Haj Thami, R.; El Fkihi, S.; Hamad, D. Compact color texture
representation by feature selection in multiple color spaces. In Proceedings of the 14th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP), INSTICC, Prague, Czech Republic, 25–27
February 2021; SciTePress: Rome, Italy, 2019; Volume 4, pp. 436–443. [CrossRef]

15. Jain, A.; Duin, R.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 4–37. [CrossRef]
16. Hsu, H.H.; Hsieh, C.W.; Lu, M.D. Hybrid feature selection by combining filters and wrappers. Expert Syst. Appl. 2011,

38, 8144–8150. [CrossRef]
17. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
18. Song, Q.; Ni, J.; Wang, G. A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Trans. Knowl.

Data Eng. 2013, 25, 1–14. [CrossRef]
19. Hall, M. Correlation-based feature selection for discrete and numeric class machine learning. In Proceedings of the Seventeenth

International Conference on Machine Learning (ICML-2000), Standord, CA, USA, 29 June–2 July 2000; pp. 359–366.
20. Zhu, X.; Wang, Y.; Li, Y.; Tan, Y.; Wang, G.; Song, Q. A new unsupervised feature selection algorithm using similarity-based

feature clustering. Comput. Intell. 2019, 35, 2–22. [CrossRef]
21. Harris, D.; Niekerk, A.V. Feature clustering and ranking for selecting stable features from high dimensional remotely sensed data.

Int. J. Remote Sens. 2018, 39, 8934–8949. [CrossRef]
22. Li, B.; Wang, Q.; Member, J.; Hu, J. Feature subset selection: A correlation-based SVM filter approach. IEEJ Trans. Electr. Electron.

Eng. 2011, 6, 173–179. [CrossRef]
23. Zhu, K.; Yang, J. A cluster-based sequential feature selection algorithm. In Proceedings of the 9th International Conference on

Natural Computation (ICNC 2013), Shenyang, China, 23–25 July 2013; pp. 848–852.
24. Yousef, M.; Jung, S.; Showe, L.; Showe, M. Recursive Cluster Elimination (RCE) for classification and feature selection from gene

expression data. BMC Bioinform. 2007, 8, 144. [CrossRef]
25. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
26. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9. [CrossRef]

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27 June–1 July 2016; pp. 770–778. [CrossRef]

28. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd
International Conference on Learning Representations (ICRL 2015), San Diego, CA, USA, 7–9 May 2015. [CrossRef]

29. Nanni, L.; Paci, M.; Brahnam, S.; Lumini, A. Comparison of different image data augmentation approaches. J. Imaging 2021,
7, 254. [CrossRef] [PubMed]

30. Mäenpää, T.; Pietikäinen, M. Classification with color and texture: Jointly or separately? Pattern Recognit. 2004, 37, 1629–1640.
[CrossRef]

31. Bianconi, F.; Harvey, R.W.; Southam, P.; Fernandez, A. Theoretical and experimental comparison of different approaches for color
texture classification. J. Electron. Imaging 2011, 20, 043006. [CrossRef]

32. Bello-Cerezo, R.; Bianconi, F.; Fernández, A.; González, E.; Maria, F.D. Experimental comparison of color spaces for material
classification. J. Electron. Imaging 2016, 25, 061406. [CrossRef]

http://dx.doi.org/10.3390/jimaging7110245
http://dx.doi.org/10.1117/1.JEI.25.6.061410
http://dx.doi.org/10.1016/j.patrec.2014.07.020
http://dx.doi.org/10.5220/0010259501220132
http://dx.doi.org/10.1117/1.JEI.27.1.011010
http://dx.doi.org/10.1016/j.neucom.2013.02.014
http://dx.doi.org/10.1016/j.image.2021.116392
http://dx.doi.org/10.3390/app9040738
http://dx.doi.org/10.5220/0007578704360443
http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.1016/j.eswa.2010.12.156
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.1109/TKDE.2011.181
http://dx.doi.org/10.1111/coin.12192
http://dx.doi.org/10.1080/01431161.2018.1500730
http://dx.doi.org/10.1002/tee.20641
http://dx.doi.org/10.1186/1471-2105-8-144
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.48550/arXiv.1409.1556
http://dx.doi.org/10.3390/jimaging7120254
http://www.ncbi.nlm.nih.gov/pubmed/34940721
http://dx.doi.org/10.1016/j.patcog.2003.11.011
http://dx.doi.org/10.1117/1.3651210
http://dx.doi.org/10.1117/1.JEI.25.6.061406


J. Imaging 2022, 8, 217 29 of 29

33. Cernadas, E.; Fernández-Delgado, M.; González-Rufino, E.; Carrión, P. Influence of normalization and color space to color texture
classification. Pattern Recognit. 2017, 61, 120–138. [CrossRef]

34. Palm, C. Color texture classification by integrative co-occurrence matrices. Pattern Recognit. 2004, 37, 965–976. [CrossRef]
35. Porebski, A.; Vandenbroucke, N.; Macaire, L. Supervised texture classification: Color space or texture feature selection? Pattern

Anal. Appl. 2013, 16, 1–18. [CrossRef]
36. Pietikäinen, M.; Zhao, G.; Hadid, A.; Ahonen, T. Computer Vision Using Local Binary Patterns; Number 40 in Computational

Imaging and Vision; Springer: Berlin/Heidelberg, Germany, 2011; 209p.
37. Bianconi, F.; Bello-Cerezo, R.; Napoletano, P. Improved opponent color local binary patterns: An effective local image descriptor

for color texture classification. J. Electron. Imaging 2017, 27, 1–10. [CrossRef]
38. Lee, S.H.; Choi, J.Y.; Ro, Y.M.; Plataniotis, K.N. Local color vector binary patterns from multichannel face images for face

recognition. IEEE Trans. Image Process. 2012, 21, 2347–2353. [CrossRef]
39. Song, T.; Feng, J.; Wang, S.; Xie, Y. Spatially weighted order binary pattern for color texture classification. Expert Syst. Appl. 2020,

147, 113167. [CrossRef]
40. Nhat, H.T.M.; Hoang, V.T. Feature fusion by using LBP, HOG, GIST descriptors and Canonical Correlation Analysis for face

recognition. In Proceedings of the 26th International Conference on Telecommunications (ICT 2019), Hanoi, Vietnam, 8–10 April
2019; pp. 371–375. [CrossRef]

41. Liu, P.; Guo, J.M.; Chamnongthai, K.; Prasetyo, H. Fusion of color histogram and LBP-based features for texture image retrieval
and classification. Inf. Sci. 2017, 390, 95–111. [CrossRef]

42. Zhu, C.; Bichot, C.E.; Chen, L. Multi-scale color local binary patterns for visual object classes recognition. In Proceedings of the
20th International Conference on Pattern Recognition (ICPR 2010), Istanbul, Turkey, 23–26 August 2010; pp. 3065–3068. [CrossRef]

43. Chormunge, S.; Jena, S. Correlation based feature selection with clustering for high dimensional data. J. Electr. Syst. Inf. Technol.
2018, 5, 542–549. [CrossRef]

44. Das, S. Filters, wrappers and a boosting-based hybrid for feature selection. In Proceedings of the Eighteenth International
Conference on Machine Learning (ICML-2001); Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2001; pp. 74–81.

45. Yu, L.; Liu, H. Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the
Twentieth International Conference on Machine Learning (ICML-2003), Washington, DC, USA, 21–24 August 2003; Fawcett, T.,
Mishra, N., Eds.; AAAI Press: Menlo Park, CA, USA, 2003; pp. 856–863.

46. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]

47. Covões, T.F.; Hruschka, E.R. Towards improving cluster-based feature selection with a simplified silhouette filter. Inf. Sci. 2011,
181, 3766–3782. [CrossRef]

48. Krier, C.; François, D.; Rossi, F.; Verleysen, M. Feature clustering and mutual information for the selection of variables in spectral
data. In Proceedings of the 15th European Symposium on Artificial Neural Networks (ESANN 2007), Bruges, Belgium, 25–27
April 2007.

49. Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973,
3, 610–621. [CrossRef]

50. Porebski, A.; Vandenbroucke, N.; Macaire, L. Haralick feature extraction from LBP images for color texture classification. In
Proceedings of the First International Workshops on Image Processing Theory, Tools and Applications, Sousse, Tunisia, 23–26
November 2008. [CrossRef]

51. Liu, L.; Fieguth, P.; Guo, Y.; Wang, X.; Pietikäinen, M. Local binary features for texture classification: Taxonomy and experimental
study. Pattern Recognit. 2017, 62, 135–160. [CrossRef]

52. Biesiada, J.; Duch, W. Feature selection for high-dimensional data—A Pearson redundancy based filter. In Proceedings of the
Computer Recognition Systems 2; Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A., Eds.; Springer: Berlin/Heidelberg,
Germany, 2007; pp. 242–249. [CrossRef]

53. Kim, J.H. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data
Anal. 2009, 53, 3735–3745. [CrossRef]

54. Ojala, T.; Maenpaa, T.; Pietikainen, M.; Viertola, J.; Kyllonen, J.; Huovinen, S. Outex-new framework for empirical evaluation of
texture analysis algorithms. In Proceedings of the 16th International Conference on Pattern Recognition (ICPR 2002), Quebec
City, QC, Canada, 11–15 August 2002; IEEE Computer Society: Los Alamitos, CA, USA, 2002; Volume 1, pp. 701–706. [CrossRef]

http://dx.doi.org/10.1016/j.patcog.2016.07.002
http://dx.doi.org/10.1016/j.patcog.2003.09.010
http://dx.doi.org/10.1007/s10044-012-0291-9
http://dx.doi.org/10.1117/1.JEI.27.1.011002
http://dx.doi.org/10.1109/TIP.2011.2181526
http://dx.doi.org/10.1016/j.eswa.2019.113167
http://dx.doi.org/10.1109/ICT.2019.8798816
http://dx.doi.org/10.1016/j.ins.2017.01.025
http://dx.doi.org/10.1109/ICPR.2010.751
http://dx.doi.org/10.1016/j.jesit.2017.06.004
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1016/j.ins.2011.04.050
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1109/IPTA.2008.4743780
http://dx.doi.org/10.1016/j.patcog.2016.08.032
http://dx.doi.org/10.1007/978-3-540-75175-5_30
http://dx.doi.org/10.1016/j.csda.2009.04.009
http://dx.doi.org/10.1109/ICPR.2002.1044854

	Introduction
	Related Work
	Color Texture Representation
	Dimensionality Reduction by Feature Selection
	Clustering-Based Feature Ranking Approaches
	Clustering-Based Feature Subset Search Approaches


	Color Texture Features
	Color Spaces
	Haralick Features Extracted from Chromatic Cooccurrence Matrices
	Chromatic Cooccurrence Matrices
	RSCCM Configurations
	Haralick Features Extracted from RSCCM

	Texture Features Extracted from Color Local Binary Pattern Histograms
	Color Local Binary Pattern Histograms
	EOCLBP Configurations
	Statistical Features Extracted from EOCLBP Histograms


	Compact Hybrid Multi-Color Space Descriptor
	Hybrid Multi-Color Space Representation
	Compact Representation
	Notations
	Feature Clustering
	Sequential Feature Selection
	Determination of the Relevant Feature Space Dimensionality
	Algorithm


	Experimental Results
	Datasets
	Color Texture Feature Combinations
	Extensive Analysis on the USPtex Dataset
	Overall Results

	Conclusions
	References

