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Abstract

Floods resulting from high-intensity rainfall events are known to be difficult to simu-

late. The catchment response to such events is very heterogeneous due to complex

combinations of hydrological processes at fine temporal and spatial scales. The goal of

this study is to find a way to inform the structure of a hydrological model on the vari-

ability in catchment response to rainfall events. To that end, rainfall intensity was used

as a proxy for the activation of fast heterogeneous runoff processes. We developed

three hypotheses that increase the versatility of a hydrological model by modifying the

volume and temporal distribution of effective rainfall when high-intensity rainfall

events occur. These modifications were implemented within the GR5H lumped

rainfall–runoff model. The different model versions were run on 229 French catch-

ments where 10 652 flood events were selected. Model performance was assessed

considering five groups of catchments, and model performance was also evaluated

based on three event characteristics. Results showed that introducing a dynamic

dependency of fluxes to rainfall intensities at the hourly time step helps to improve the

simulation of floods, especially on Mediterranean catchment areas. Generic values of

the additional parameters are proposed to limit the increase in calibration complexity.

1 | INTRODUCTION

1.1 | High-intensity rainfall events and
heterogeneous processes

Floods caused by high-intensity rainfall events are difficult to predict.

In temperate climates, they occur most frequently in the summer or at

the beginning of autumn, when soils are relatively dry, causing non-

linear streamflow responses (Chappell et al., 2017). It is common to

read that infiltration-excess runoff processes (or Hortonian runoff;

Horton, 1933) play a major role in the generation of these events

(e.g. Lana-Renault et al., 2007; Latron & Gallart, 2008; Manus

et al., 2009). However, some studies report saturation mechanisms

(e.g. Braud et al., 2014; Estrany et al., 2010) and contributions of sub-

surface storages to streamflow (e.g. Chappell et al., 2017;

Hugenschmidt et al., 2014) to be active even for very intense rainfall

events in summer. Overall, there is an interplay of varied flood-

generating processes that are scale-dependent (e.g. Blöschl &

Sivapalan, 1995; McDonnell et al., 2021), such as local soil saturation

(Garambois et al., 2014) and threshold in the connectivity between

catchment storages and the stream network through lateral pipe flow

processes from the hillslopes (e.g. Uchida et al., 2005; van Meerveld &

McDonnell, 2006). Last, these floods are often characterized by short

response times to rainfall events making them even harder to predict

since fewer data are available for parameter estimation and evaluation

of simulations (e.g. Perrin et al., 2007).
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1.2 | On the need to improve model structures

Hydrological models have poorer performance on catchments where

these floods occur, especially when there is a strong seasonality of

antecedent soil moisture conditions (e.g. McMillan et al., 2016;

Melsen et al., 2018). This is mainly due to the non-linearity of the pro-

cesses involved in the catchment response that hydrological models—

which are simplifications in time, space, and processes

(e.g. Hrachowitz & Clark, 2017)—struggle to characterize. For exam-

ple, Astagneau, Bourgin, et al. (2021) showed that the GR5H model

(Ficchì et al., 2019; Le Moine, 2008) tends to underestimate flood vol-

umes in summer especially when high-intensity rainfall events occur.

Recent advances in hydrological modelling have mostly been achieved

through the development of better parameterization procedures

(e.g. de Lavenne et al., 2019; Mizukami et al., 2019; Moussa &

Chahinian, 2009; Pool et al., 2021), the use of additional data to

streamflow (e.g. Bouaziz et al., 2021; Nijzink et al., 2018; Rakovec

et al., 2016), or the development of small headwater catchment

models guided by an improved understanding of underlying hydrologi-

cal processes, e.g., through isotopic measurements (e.g. Birkel

et al., 2014; Kuppel et al., 2018). However, there is still room for

model structural improvements and development of other perceptual

models at the meso- (100–1000 km2) and regional scales

(>10 000 km2; for example, Fenicia & McDonnell, 2022; Fenicia

et al., 2022), since model structure imperfections are one of the main

sources of uncertainty in streamflow prediction (e.g. Clark et al., 2008;

Knoben et al., 2020). In particular, there is a need for modelling the

contribution of highly heterogeneous processes taking place at fine

spatiotemporal scales to river flows at larger scales (Blöschl

et al., 2019).

1.3 | Model improvements from better diagnostics

In recent years, model improvement has also been achieved through

the use of better evaluation and diagnostic frameworks. In this

respect, several studies used hydrological signatures in order to assess

model “realism,” adequacy, and performance and therefore go beyond

the simple evaluation of models by aggregated statistics (e.g. Gupta

et al., 2008; McMillan et al., 2017; Yilmaz et al., 2008). For example,

de Boer-Euser et al. (2017) compared the performance of 11 models

on the Meuse basin and found differences in their ability to reproduce

several signatures (e.g. signatures describing flashy dynamics) while

yielding similar overall performance. Euser et al. (2013) proposed a

multi-objective evaluation framework to assess the ability of a hydro-

logical model to simulate different hydrological signatures emphasiz-

ing different characteristics of the hydrograph and therefore different

processes. Another way to evaluate models is to look for dominant

parameters for a given catchment in order to identify simulated domi-

nant processes and then link the results with hydroclimatic conditions

(e.g. Herman et al., 2013). These frameworks enable multi-hypothesis

testing (e.g. Blöschl, 2017; Clark et al., 2011) and therefore allow us to

evaluate the value of making a model more complex for a given

catchment (e.g. Hrachowitz et al., 2014). However, identifying situa-

tions where the modification of a model component improves stream-

flow simulation and model robustness remains a challenging task (van

Esse et al., 2013).

1.4 | Fast catchment response in models

When computing runoff production, modellers commonly define sev-

eral flow components. This can be achieved by setting a partitioning

coefficient from a single production store outflow, which can be a fixed

parameter as in the GR models (Perrin et al., 2003) or a calibrated

parameter as in the IHACRES model (Jakeman & Hornberger, 1993).

Flow partitioning can also be applied to multiple runoff production

store outflows, such as in the MORDOR model (Garavaglia et al., 2017;

Garçon, 1996). In some versions of the HBV model (Bergström, 1976;

Parajka et al., 2007; Seibert & Vis, 2012) and in the FLEX-Topo model

(Savenije, 2010), a “very-fast” runoff component is calculated from the

upper routing store when it reaches a certain threshold.

Some hydrological models explicitly simulate infiltration-excess

overland flow. Their formulation is often based on the Green–Ampt

infiltration equation (Green & Ampt, 1911) or one of its extensions

(Beven, 2021) to estimate the soil infiltration capacity rate. Then, if

the intensity rate is higher than the infiltration capacity rate, ponding

starts and surface runoff is generated. This is the case for some ver-

sions of TOPMODEL (Beven et al., 2021; Beven & Kirby, 1979) where

soil infiltration is based on an extension of the Green–Ampt equation

(Beven, 1984). Some hydrological models, like the SWAT model

(Arnold et al., 2012), include the SCS-CN method (SCS, 1956) to esti-

mate surface runoff. Several studies have focused on modifying the

SCS-CN formulation to improve streamflow simulation (e.g. Mishra

et al., 2004; Verma et al., 2020, 2021). For example, Pang et al. (2020)

modified the SCS-CN to take slopes and precipitation intensity into

account. They found that their new formulation performed better

than their reference model in simulating floods of the Chao River

watershed. In the JULES land-surface model (Best et al., 2011), a local

surface runoff component is calculated when the throughfall rate

becomes higher than the rate of maximum infiltration. Largeron et al.

(2018) showed that calculating a variable maximum infiltration rate

was not sufficient to overcome model deficiencies in the case of

flooding from intense rainfall. Beven (2021) argues that while we can

make local predictions of infiltration-excess runoff, it is not possible

to estimate its contribution to the flood hydrograph at larger scales.

One way to deal with this issue is to increase model temporal and spa-

tial resolutions with “exhaustive” process description, but these

models suffer from overparameterization problems (e.g. Andréassian

et al., 2012; Beven, 1993), especially when no other data than stream-

flow are available for model validation.

Several conceptual rainfall–runoff models use dedicated functions

to simulate more runoff when high-intensity rainfall events occur,

even when the soil moisture content is low. For example, the MOD-

SUR model (Ledoux et al., 1989) has a parameter controlling the

threshold at which the production function generates runoff for low
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antecedent soil moisture conditions. This parameter depends on the

soil type. Another attempt at simulating infiltration-excess runoff in a

conceptual way was made by Willems (2014). The conceptual infiltra-

tion equation was changed to simulate more runoff in the case of high

rainfall intensities and wetness conditions without, however, making

the surface runoff coefficient dependent on rainfall intensities.

Recently, Peredo et al. (2022) introduced a function in the semi-

distributed version of the GR5H model (Lobligeois et al., 2014) to gen-

erate more effective rainfall in the case of high-intensity rainfall

events under low antecedent soil moisture conditions, and obtained

some improvements in the simulation of autumn floods of the Aude

River without degrading the simulation of winter floods.

1.5 | Scope of the paper

We need to improve the ability of hydrological models to characterize

the catchment response to intense rainfall, especially under low ante-

cedent soil moisture conditions and at scales where field work experi-

ments are not always available for model validation. We have seen

that several issues arise with the current perceptual models applied at

the catchment scale when only streamflow time series are available.

The objective of this study is to evaluate the benefit of making a

better use of rainfall intensity to inform the structure of a hydrological

model on catchment response to intense rainfall events. Three ques-

tions arise from our objective:

1. Which fluxes of a lumped rainfall–runoff model should vary with

rainfall intensity at the event and catchment scale?

2. Can we identify catchments and hydro-meteorological conditions

for which rainfall intensity rate functions significantly improve

flood simulation?

3. Is there enough information in rainfall and streamflow time series

to derive stable-in-time parameter values associated with the new

modelling functions?

To address these questions, we developed a large number of

modelling hypotheses aimed at dynamically modifying the storages

and fluxes of a lumped rainfall–runoff model using rainfall intensity

rates. Three of these hypothesis are discussed in detail in this article.

We first present the data used to evaluate our hypotheses. Then, we

introduce the methodological basis behind our hypotheses and the

framework to evaluate performance and adequacy in regard to our

objectives. The main results are then presented, analysed, and dis-

cussed considering seasonality and catchment hydroclimatic condi-

tions before summarizing the main conclusions of our research.

2 | DATA AND METHODS

2.1 | Catchment set and hydroclimatic data

Our catchment set originates from the work of Ficchì et al. (2016) and

Astagneau, Bourgin, et al. (2021). It consists of 229 catchments across

metropolitan France, representing a variety of hydroclimatic conditions,

where human activities and snow processes have limited impacts on

river flows. The hydroclimatic and morphological characteristics of this

dataset can be found in Table 1 of Astagneau, Bourgin, et al. (2021).

Some of these characteristics are reported in Table 1 and in Figures 1

and A1. Rainfall inputs were retrieved from the Comephore reanalysis

(Tabary et al., 2012), which provides data at a 1-km resolution, and are

aggregated at the catchment scale. Potential evaporation (PE) daily

time series (TS) were calculated with the Oudin et al. (2005) formula

using daily temperature TS from the SAFRAN product (Delaigue

et al., 2020; Vidal et al., 2010). They were then disaggregated at the

hourly time step by applying a parabolic distribution between 6:00 AM

and 7:00 PM (UTC). Instantaneous streamflow TS were retrieved from

the French hydrometric database (Leleu et al., 2014) and interpolated

at the hourly time step. A total of 19 years of hourly meteorological TS

and between 8 and 19 years of hourly streamflow TS were available

for these catchments. Two independent sub-periods of 9.5 years each

were defined. The first period (P1) runs from 1 January 2000 to 30 June

2009 and the second period (P2) runs from 1 July 2009 to

31 December 2018. In both sub-periods, an automated procedure was

used to select flood events. Peak flows higher than the 95th stream-

flow quantile were selected. Then, the start of an event was defined as

the time at which streamflow exceeds 20% of the flood peak. The end

of an event was defined as the time at which streamflow is inferior to

25% of the flood peak. This selection led to a set of 10 652 flood

events. Corresponding rainfall events were selected by shifting the

streamflow event time window by the catchment lag time (TL), which

was estimated as the time shift that maximizes the cross-correlation

between streamflow and rainfall TS. Each event was visually inspected

to mitigate errors arising from the automated procedure.

2.2 | Catchment clustering

Aiming to investigate the links between hydroclimatic properties and

flood-generating processes, we divided our catchment set into five

groups by performing a clustering procedure. We used four indicators

based on the selected rainfall and streamflow events and five indica-

tors based on catchment hydroclimatic properties (see Table 2).

Two indices were calculated to characterize rainfall events: the

mean rainfall intensity, intP, and the spatial variability in cumulative

rainfall, spatP (or “spatial coefficient of variation in precipitation event

volume”; Tarasova et al., 2020). They were calculated as follows:

intP¼ 1
nt

Xnt
t¼1

μ Px,tð Þ1≤ x≤ nx
h i

, ð1Þ

spatP¼
σ
Pt¼nt

t¼1
Px,t

� �
1≤ x≤ nxPnt

t¼1
μ Px,tð Þ1≤ x≤ nx
h i ð2Þ

in which Px,t is the rainfall of grid cell x at time t, nt is the duration of

the rainfall event (in time steps), nx is the number of grid cells of the
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catchment (based on a 100-m resolution flow direction grid), μ is the

mean, and σ is the standard deviation. Large values of intP indicate

that there was a large amount of rainfall in a short period. Large values

of spatP indicate that a large proportion of the rainfall event occurred

in a small portion of the catchment. Antecedent soil moisture condi-

tions can have a significant influence on flood-generating processes

TABLE 1 Basic characteristics of the
catchment dataset. Modified from
Astagneau, Bourgin, et al. (2021)

Characteristic Min Q25 Median Mean Q75 Max

Area (km2) 3.54 164.1 354.1 680.3 772.3 7918

Mean flow (Qm) (mm/year) 35 262 349 437 524 1398

Mean annual temperature (�C) 8.2 9.8 10.4 10.6 11.1 14.3

Mean annual precipitation (Pm) (mm) 651 818 937 990 1097 2108

F IGURE 1 Location of the five hydroclimatic groups of catchments and distributions of four characteristics in these groups. The distributions
are presented between the 5th and 95th percentiles

4 of 21 ASTAGNEAU ET AL.
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(Berghuijs et al., 2014; Blöschl et al., 2013). We used the soil wetness

index (SWI) calculated by the ISBA surface model (Coustau

et al., 2015; Thirel et al., 2010a, 2010b). The SWI was aggregated at

the catchment scale and retrieved at the start of rainfall events to

attribute one value to each flood event.

Coefficients of variability CVc (i.e. the ratio of standard deviation

to mean value of a given event characteristic c) were calculated to

associate event characteristics with catchment properties. In other

words, for each flood characteristic, a value of its variability between

events was attributed to each catchment.

We used unsupervised random forest (RF; Breiman, 2001) and

hierarchical clustering algorithms available in the R environment

(Liaw & Wiener, 2002; R Core Team, 2021) to classify the catchments

according to the aforementioned characteristics (Table 2). RF is a

powerful tool for detecting non-linear dependencies between vari-

ables and has been used in many hydrological studies (e.g. Saadi

et al., 2019; Stein et al., 2021). More details about the use of random

forest algorithms for water science applications can be found in Tyra-

lis et al. (2019).

The clustering procedure led to five groups of catchments

(Figures 1 and A1). We give here a few comments on their main

characteristics:

• Group 1: they have lower values of rainfall and flow magnitude

and lower values of variability in flood antecedent wetness condi-

tions than the catchments of groups 4 and 5 but higher values than

the catchments of groups 1 and 2.

• Group 2: they have the slowest flow dynamics with the highest

rainfall–runoff lag times and the highest values of flow autocorrela-

tion at 24 h.

• Group 3: they have slow flow dynamics but higher rainfall–runoff

coefficients and higher values of wetness index than the catch-

ments of group 2.

• Group 4: they are characterized by very different hydroclimatic

conditions than the catchments of groups 1 to 3. They have faster

flow response to rainfall, higher variability in event rainfall inten-

sity, and higher variability in event antecedent wetness conditions,

which indicates a strong flow seasonality. They are mostly located

in the Rhône basin and the Mediterranean area. Seven catchments

are tributaries of the Seine River. They share most of the charac-

teristics of the other catchments of group 4 except for the magni-

tude of rainfall, which falls in the lower part of the distribution.

• Group 5: they have lower variability in cumulative rainfall spatial

variability. It means that the rainfall fields associated with their

flood events can be spatially highly variable, but, if so, this variabil-

ity does not change much between events. They have higher

values of streamflow magnitude than the catchments of group

4. They are all located in the Rhône basin and the Mediterra-

nean area.

2.3 | Hydrological modelling

We made three modelling hypotheses on the possible dependence of

the storages and fluxes of the GR5H lumped hydrological model on

rainfall intensity rates (Figure 2), starting with a “reference” model

version. All versions include an explicit interception store as proposed

by Ficchì et al. (2019). The GR5H model has been used in several

hydrological modelling studies and usually yields high streamflow per-

formance over large sets of catchments (e.g. Astagneau, Bourgin,

et al., 2021; Ficchì et al., 2016, 2019). Its structure may, however,

experience difficulties to simulate streamflow response to specific

hydrological events, in particular the high-intensity rainfall events.

We first introduce the relevant specificities of the reference

model version and then the rationales behind the three modelling

hypotheses.

TABLE 2 Event and catchment characteristics used for catchment clustering

Characteristic Type Definition/reference Abbreviation

Variability in event rainfall intensity (�) Event-based Equation (1) CVintP

Variability in event cumulative rainfall spatial

variability (�)

Event-based Equation (2) CVspatP

Variability in event antecedent soil wetness

condition (�)

Event-based Coustau et al. (2015) CVantSWI

Variability in event duration (�) Event-based – CVduration

Rainfall–runoff lag time (h) Hydroclimatic Ficchì (2017) TL

Wetness index (�) Hydroclimatic Pm/PEm Wi

Runoff coefficient (�) Hydroclimatic Qm/Pm Rc

Magnitude of high flows (�) Hydroclimatic Q99/Qm Qmag

Flow autocorrelation at 24 h (�) Hydroclimatic – RQ_24 h

Magnitude of intense rainfall (�) Hydroclimatic P99/Pm; Ficchì (2017) Pmag

Note: Q99 is the 99th streamflow percentile. P99 is the 99th rainfall percentile. Qm is the mean streamflow. Pm is the mean rainfall. PEm is the mean

potential evapotranspiration.
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2.3.1 | Reference model

The GR5H rainfall–runoff model used in this study consists of an

interception store, a production store, two unit hydrographs (UHs),

and a routing store. A net rainfall flux (Pn) is calculated from the inter-

ception store and either fills the production store or becomes effec-

tive rainfall (Pr). The instantaneous production rate (or the fraction of

net rainfall that becomes effective rainfall) is calculated as follows:

η¼ S
X1

� �2

¼ s2 ¼1� Ps
Pn

¼ Pr
Pn

ð3Þ

with S the level of the production store (mm), X1 the production store

capacity (mm), s the production store filling rate, and Ps (mm/h) the

rainfall infiltrating (and remaining in) the production store (see Astag-

neau, Bourgin, et al., 2021, for the complete set of equations

of GR5H).

A percolation flux calculated from the production store is then

added to Pr. A total of 10% (fixed partitioning coefficient B = 0.1) of

Pr goes to a direct branch where it is routed to the catchment outlet

by a symmetric UH. The remaining 90% (1 � B = 0.9) of Pr goes to a

second branch where it is routed to the catchment outlet by an asym-

metric UH and a routing store. The flow exiting the routing store (Qr)

is added to the flow exiting the symmetric UH (Qd) to form the final

simulated flow.

2.3.2 | Modelling hypotheses

• Volume hypothesis: The first hypothesis is based on the assumption

that, at the scale of a rainfall event, when intensities are high and

soil moisture is low, the reference model underestimates the

effective rainfall volume (part of net rainfall that does not infiltrate

the production store).

• Temporal distribution hypothesis: The second hypothesis is based on

the assumption that there is enough simulated effective rainfall,

but that the temporal distribution of effective rainfall should be

modified when rainfall intensities are high to allow more of the

effective rainfall to reach the outlet during the event.

• The third hypothesis is a combination of the first and second

hypotheses.

The concept of “enough effective rainfall” can be seen as funda-

mentally conceptual: It is only used here to explicate our modelling

hypotheses. In addition, the effective rainfall volume and its temporal

distribution are closely related concepts and their separation depends

to some extent on the chosen time window.

Our starting points to construct the first modelling hypothesis are

the formulations proposed by Ficchì (2017) and Peredo et al. (2022).

They tested a modification of the effective rainfall rate calculation

within the production store of the GR5H model. Equation 3 implies

that Pr depends on Pn. However, the instantaneous production rate

does not: It only depends on the reservoir filling rate. Therefore, when

the production store level is low, the production rate becomes small

even for large values of rainfall intensity that will mostly fill the pro-

duction store. The time required for the production store to reach a

level high enough to produce more effective rainfall might be too long

in the case of fast flood events under low antecedent soil moisture

conditions. To cope with this problem, Ficchì (2017) proposed making

the instantaneous production rate dependent on the net rainfall inten-

sity using the following expression (also used but in a different con-

text by Saadi, 2020):

η0 ¼ 1� γð Þ:s2þ γ, ð4Þ

F IGURE 2 Diagram of the modifications (in red) made to the original GR5H model (in black)
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γ¼1� exp �Pn� i1ð Þ ð5Þ

with i1 an additional parameter in h/mm and γ a rainfall intensity coeffi-

cient. This formulation enables the production store to produce more

effective rainfall when its level is low but when rainfall intensities are high

(Figures 3 and 4). When the production store level is high or when rainfall

intensities are small, the production rate tends toward the reference

GR5H calculation (Equation 3). The function is disabled when i1 = 0.

For the second modelling hypothesis, we made the effective rain-

fall partitioning between the two branches of the routing function

vary with rainfall intensities: The assumption is that for larger rainfall

intensities, faster processes occur in the catchment. Therefore, the

model needs to route the effective rainfall faster than usual by divert-

ing a higher fraction of Pr to the direct branch (see Andrieu

et al., 2021, for an application with geomorphological instantaneous

unit hydrographs). Note that this dynamic effective rainfall partition-

ing into two branches (direct and indirect) is conceptual, which means

F IGURE 3 Variation in production rate given a production store level and a rainfall intensity rate (first modelling hypothesis)

F IGURE 4 Variation in production rate (first modelling hypothesis) when the production store is theoretically empty (η'[s = 0] = γ)

F IGURE 5 Variation in effective rainfall partitioning with rainfall intensities (second modelling hypothesis)
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that it aims to reproduce the catchment behaviour rather than any

specific local physical process.

The partitioning coefficient B is calculated as follows:

B¼0:9� tanh
Xt
j¼t1

Pn jð Þ:i2
 !2

þ0:1

t1 ¼ t�2:X4þ1

ð6Þ

with X4 the UH half-time constant and i2 an additional parameter in

h/mm. When i2 equals 0, B equals 0.1. This is a way to disable the

function when rainfall intensities are low or when there is no rainfall

at all. The shape of the intensity function differs from the first model-

ling hypothesis because B only depends on Pn here. We made the

assumption that when intensities are low, B should not vary from its

original value. B should also gradually increase with rainfall rates

(Figure 5). A rain smoothing function was introduced to place less

emphasis on 1-h rainfall values that can be subject to large uncer-

tainties especially in the case of large rainfall intensities. Therefore

B varies with the net rainfall intensity of the current time step and also

of the previous time steps.

The shape of the unit hydrograph used in the direct branch UH

was modified (exponent changed from 1.25 to 2.5) because of the

resulting hydrograph shape when B increases (not shown here; for

more details, see Figure 9.11 of Le Moine, 2008). This change was

applied for all three modelling hypotheses. A linear store was added

after the UH of the direct branch to improve the transfer of effective

rainfall. The outflow of the linear store is calculated as follows (dis-

crete formulation; see Appendix C of Le Moine, 2008):

Qd,Δt ¼KL�Lt ð7Þ

with QdΔt the specific volume (mm) exiting the linear store between

time t � 1 and time t, KL � [0;1] the dimensionless linear store coeffi-

cient, and Lt the updated store level.

Lt ¼ Lt�1þQdHU,Δt ð8Þ

with QdHU,Δt the specific volume (mm) exiting the direct UH between

time t � 1 and time t and entering the linear store.

Table 3 summarizes the four model versions used in this study.

Overall, the proposed modifications increasingly modify model func-

tioning as rainfall intensity increases, and are neutral in the case of

low rainfall intensity (and in the case of high soil moisture for the

volume hypothesis). In total, approximately 100 versions were tested

but are not detailed here for the sake of brevity. They mostly con-

sisted in testing different shapes of the intensity functions, adding a

dependency of the partitioning coefficient to the production store fill-

ing rate, routing the supplementary effective rainfall by the direct-

branch, and changing the shapes of the UHs.

2.4 | Calibration and evaluation

We estimated the free parameters of the four model versions (see

Table 3) following the method used in Astagneau, Bourgin, et al.

(2021): The models were calibrated for each catchment on two inde-

pendent sub-periods P1 and P2 (see Section 2.1) and the EGD

(exhaustive gridding discretization) calibration algorithm (Perrin

et al., 2008) was applied considering a warm-up period of 2 years to

initialize the states of the models. The EGD method proceeds in two

steps: First, a screening of the parameter space is performed to find a

starting point from 3n parameter sets (with n the number of parame-

ters); second, a local-gradient-based optimization is run to find the

parameter set that gives the highest performance. The Kling–Gupta

efficiency criterion (KGE; Gupta et al., 2008) was used as objective

function. The GR5H model was run and modified in the R environ-

ment (Astagneau, Thirel, et al., 2021; R Core Team, 2021) with the

airGR package (Coron et al., 2017, 2020).

Model performance was first evaluated following the evaluation

framework of Astagneau, Bourgin, et al. (2021): The overall perfor-

mance in simulating the entire hydrograph is first assessed using the

KGE index; then, the performance of the models in simulating floods

is evaluated by calculating two performance metrics on each flood

event independently – a volume error criterion (or event relative bias,

β) and the Nash–Sutcliffe efficiency criterion (NSE; Nash &

Sutcliffe, 1970). The catchment mean flow was used as the bench-

mark for the calculation of NSE on events. The NSE was calculated to

cover more properties of the flood hydrograph than the volume effi-

ciency criterion alone. We calculated a bounded version of these cri-

teria to enable a better comparison between catchments and

between events (Mathevet et al., 2006). Both bounded criteria take

values between �1 and 1. Negative values of β indicate underestima-

tion of the flood volume, positive values indicate overestimation. Neg-

ative values of the bounded NSE criterion indicate that the catchment

mean flow is a better predictor than the model in simulating a flood

event. When the NSE value tends toward 1, the observed and

TABLE 3 List of the four model versions tested

Modification Equation(s) Abbreviation No. of free param.

None (3) M0 (Benchmark GR5H) 5

Production store (4) and (5) M1-Pr 6

Partitioning coefficient and direct branch (6), (7), and (8) M2-B 7

Production store, partitioning coefficient

and direct branch

(4), (5), (6), (7), and (8) M3-Pr-B 8

Note: Pr is the effective rainfall. B is the partitioning coefficient.
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simulated flood hydrographs tend to match perfectly. This bounded

criterion enables a better graphical representation of the model

results because values of the original NSE criterion that are lower than

�1 draw the distribution toward large negative values. This transfor-

mation equals zero when NSE is zero. β was also calculated on the

streamflow time series without the observed and simulated flood

events to investigate possible compensations between high-flow and

low-flow periods. We considered two seasons for the evaluation of

flood performance. Flood peaks occurring between May and October

were labelled as summer floods. Flood peaks occurring between

November and April were labelled as winter floods. Flood simulations

were then analysed according to the five groups of catchments

defined in Section 2.2 and three event characteristics: mean rainfall

intensity, spatial variability in cumulative rainfall, and antecedent soil

moisture conditions (SWI). All the results are presented using cross-

validation simulations, which means that the criteria were calculated

on P1 while model simulations were generated with the parameter

sets estimated on P2 and vice versa. As the GR5H model was used in

a continuous mode, the simulations of the flood events that we have

evaluated were not run separately. They were extracted from the two

continuous time series (P1 and P2) of model simulations (cross-

validation values). We performed the Wilcoxon rank test

(Wilcoxon, 1945) to detect statistically significant changes in perfor-

mance between the three modelling hypotheses and the reference

model (at significance level 0.05). The resulting p values are reported

in the text.

3 | RESULTS

3.1 | Overview of model performance

First, Figure 6 shows the distribution of model performance over the

229 catchments and 10 652 flood events. In calibration mode, for

F IGURE 6 Overall performance (one value for each catchment) (a), performance in simulating 8290 winter events and 2362 summer events
(b,c), performance outside flood periods (d) for the three modelling hypotheses compared to the reference model (cross-validation values). The
red crosses indicate a significant change from the reference model. The distributions are presented between the 5th and 95th percentiles
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both sub-periods, all three model versions show an improvement over

the reference version M0 (p values of 0.39, 1.8e�3 and 6.0e�4 in the

order of model numbering): they have higher median values and a

smaller dispersion of the KGE index than the reference model (6a).

M3-Pr-B exhibits the highest KGE values and M2-B the second high-

est (see Table 3 for naming). In validation mode, all three models have

similar KGE values to M0. M2-B and M3-Pr-B have higher median

KGE values than M0 for both sub-periods (p values of 0.19 and 0.18

respectively).

Event performance as assessed by the NSE index increases in

summer for all model versions (p values of 0.03, 7.0e-5 and

7.2e-6 in the order of model numbering) with M3-Pr-B having

the highest median NSE values and M2-B the second highest

(6b). In winter, M1-Pr performs equally to M0 (p value of 0.50).

The median NSE values of M2-B and M3-Pr-B are higher than

the median NSE of M0 (p values of 1.3e�7 and 7.1e�9, respec-

tively). In terms of volume error performance in summer,

M3-Pr-B has the median value closest to zero and the smallest

dispersion (6c; p value <2.2e�16). Both M1-Pr and M2-B have

median values closer to zero and smaller dispersion of volume

error than M0 (p values of 1.0e�9 and 1.2e�14, respectively),

with M2-B having the smallest bias of the two. In winter, the vol-

ume error of M2-B and M3-Pr-B is close to the reference model

(p values of 0.80 and 0.32, respectively). There is a slight degra-

dation of the volume error of M1-Pr toward negative values com-

pared to M0 (p value of 0.01). The distributions of the volume

error values calculated outside the periods of flood events show

that M1-Pr and M3-Pr-B tend to produce larger overestimations

of streamflow in summer (p values of 0.08 and 0.36, respectively)

than M0 and M2-B (6d). In winter, the median values of this cri-

terion are close to the reference model with a slight degradation

toward negative values for M1-Pr and M3-Pr-B (p values of 0.40

and 0.50, respectively). M2-B exhibits a similar distribution to M0

(p value of 0.63). This overview of model performance showed

that the proposed model versions have similar overall perfor-

mance but that simulation of summer floods is improved both in

terms of NSE and volume error. Simulation of winter floods is

not degraded and is even improved for M2-B and M3-Pr-B. The

volume hypothesis leads to an overestimation of volume outside

periods of flood events. Overall, the largest improvements in

terms of flood performance compared to the reference model are

achieved by the combination of the two modelling hypotheses

(M3-Pr-B).

3.2 | Variation in performance within
hydroclimatic groups

We refine the analysis by looking at model performance in simulat-

ing summer floods considering each group of catchments identified

in Section 2.2. Figure 7 shows that summer flood performance

increases for all groups of catchments. The smallest increase in sum-

mer flood performance is for catchments of group 2 (for the NSE

distributions, p values of 0.92, 0.52, and 0.46 in the order of model

numbering). The largest increases in summer flood performance are

found for groups 4 and 5 where the three modelling hypotheses

perform better than the reference model, especially in terms of

event bias. For these two groups, the reference model greatly

underestimates flood volumes in summer and yields the lowest

flood performance compared to the other three groups. The

M3-Pr-B model has the highest flood performance, especially for

catchments of group 5 (for the NSE distributions, p value of 7.4e-4).

F IGURE 7 Distribution of flood performance (cross-validation values) over 2362 summer floods divided into five groups of catchments. The
red crosses indicate a significant change from the reference model. The distributions are presented between the 5th and 95th percentiles
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The volume hypothesis (M1-Pr) performs better in terms of event

bias than the temporal distribution hypothesis (M2-B) for catch-

ments of group 5 (p values of 3.5e�9 and 9.0e�7 respectively). For

the other four groups, M2-B has higher flood performance than

M1-Pr. We will only focus on M3-Pr-B and catchments of groups

4 and 5 in the analyses that follow.

F IGURE 8 Variation in event performance (cross-validation values) against three event characteristics for two groups of catchments. Floods
were divided into 10 quantile classes per characteristic and cluster group. A total of 1932 events for cluster 4 and 1508 events for cluster 5 are
considered here
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3.3 | Performance and flood characteristics

Considering all floods occurring in the catchments of groups 4 and

5, we investigate the relationships between bias in simulating floods

and three event characteristics (defined in Section 2.2) for the refer-

ence model and the third modelling hypothesis (Figure 8). Figure 8a,

b show that the reference model underestimates flood volumes

when there are large rainfall intensities. For these events, the event

bias values of M3-Pr-B are less dispersed and the median is closer

to 0.

For catchments of group 4, the event bias values of the reference

model tend to be lower with increasing spatial variability in cumulative

rainfall (Figure 8c). The event bias obtained with the new model ver-

sion follows the same trend but with less dispersed values and a

median value closer to 0. The decrease in performance with increasing

rainfall spatial variability is less pronounced for catchments of group

5 (Figure 8d). The reference model clearly underestimates flood vol-

umes for both groups of catchments under low antecedent soil

moisture conditions. Under these conditions, M3-Pr-B performs bet-

ter, especially for floods of group 5.

Figure 9 shows the simulation of six flood hydrographs for two

different Mediterranean catchments with typical streamflow

responses to intense rainfall. The flood hydrographs presented on

Figure 9 were retrieved from two different sub-periods (validation

periods P1 and P2), which means that the parameter values are not

necessarily the same between the events (two different calibration

periods were used). The Loup River at Tourrettes-sur-Loup (206 km2,

group 5) and the Estéron River at Sigale (262 km2, group 4) are

located in southern France (see Figure 1). The Estéron River is a tribu-

tary of the Var River, and the Loup River flows directly into the Medi-

terranean Sea. These catchments are characterized by high seasonal

variations in streamflow and steep slopes. Severe floods can occur,

usually in winter or in the beginning of autumn and sometimes due to

intense convective rainfall events. These examples were selected to

illustrate our results and complement the presentation of the scores

with boxplots. They cannot be considered as representative of the

F IGURE 9 Simulated (M0 and M3-Pr-B) and observed hydrographs of six floods that occurred in the Loup River at Tourrettes-sur-Loup and
the Estéron River at Sigale (cross-validation values)
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10 652 events of our dataset in the sense of exploiting the outputs of

a clustering procedure.

The summer flood of September 2006 that occurred in the Loup

River followed an intense rainfall event with intensities of up to

23 mm/h but evenly distributed over the entire catchment area. For

this event, the reference model clearly underestimated the peaks and

the overall flood volume. The M3-Pr-B on the other hand managed to

reproduce the flood volume and the flood peak better, although it is

still underestimated. The flood of December 2009 is associated with a

larger amount of, but less intense, rainfall. Both models are able to

reproduce the hydrograph shape. In the beginning of October 2015, a

smaller flood event (in terms of peak and volume) was followed by a

short and intense rainfall event. The spatial variability in this rainfall

event is slightly larger than the other two events and the total amount

of rainfall is almost three times smaller. For this event, the reference

model failed to simulate the catchment response, whereas the

M3-Pr-B model was able to reproduce the flood peak, volume, and

timing better, with a slight overestimation of the recession volume.

The flood of September 2006 that occurred in the Estéron River

followed a large and intense rainfall event with intensities of up to

14 mm/h mainly distributed over the entire catchment area. The ref-

erence model response to this event was clearly limited compared to

the catchment response. The new model version, on the other hand,

managed to reproduce the peak and timing of the flood but overesti-

mated the recession volume. The March 2011 flood was associated

with a smaller amount of rainfall and smaller intensities but was repro-

duced well by both models. In October 2018, a rainfall event with

cumulative rainfall in the same order of magnitude as the winter flood

of 2011, but highly variable in space, led to a fast and intense catch-

ment response. Both models greatly underestimated the flood volume

and peak of this event.

3.4 | Additional model parameters

The most complex model that we have introduced in this study is

M3-Pr-B, which has one additional reservoir and three additional free

parameters compared to M0. These parameters control the modifica-

tion of fluxes and storages of the model with varying rainfall

intensities. The additional functions we proposed were also made to

deactivate the functions in the case of low intensities and, for certain

values of i1, i2, and KL, are equivalent to M0. Figure 10 shows that

these parameters vary greatly between calibration periods, especially

i1 and to some extent i2. For some catchments, i1 or i2 is null in one

sub-period and above zero in the other, indicating that the intensity

function is disabled for one period but not for the other (see Equa-

tions 4, 5 and 6 and the related explanations). The same behaviour is

observed for KL, with several values equal to 1 but with smaller varia-

tions between periods and for more catchments.

As the additional parameters of the third modelling hypothesis vary

between calibration periods, the intensity functions are not activated in all

periods. As a consequence, on some catchments both the reference model

and the new modelling hypotheses are selected as the best performing

models. Figure 11 shows that the same modelling hypotheses are activated

in both calibration periods for 118 catchments of our dataset.

We investigated whether there are differences of parameter dis-

tributions between the five hydroclimatic groups of catchments.

Results indicate that i1 follows different distributions for groups 4 and

5 (Figure 12) with more values above zero, especially for catchments

of group 5 (85% of pairs [catchment, sub-period] have i1 values

greater than zero). This means that the first modelling hypothesis is

more often activated for catchments of group 5 than for the other

catchments. The distributions of i2 values are very similar between

the five groups. The distributions of KL are different between the five

groups. Group 5 has the lowest values of KL and group 2 has the high-

est number of values equal to 1 (no linear store on the direct branch).

4 | DISCUSSION

4.1 | On the available information content to
identify additional parameter values

4.1.1 | Activation of intensity-rate functions
between periods

The previous results indicate that the additional parameters of the

proposed intensity functions vary between the two calibration

F IGURE 10 Variation in additional M3-Pr-B free parameters between calibration periods
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periods, which implies some variations in the intensity function activa-

tion. In addition, the parameter distributions (Figure 12) and the per-

formance of the different modelling hypotheses (Figure 7)

demonstrate that the additional parameters and their sensitivity to

the chosen metrics differ between the groups of catchments. Parame-

ter identifiability can therefore be considered as catchment-depen-

dent. We refer to “parameter identifiability” for issues related to the

dependence of parameters to groups of catchments and to the varia-

tion of parameter values between calibration periods.

This issue was also raised by van Esse et al. (2013) who found

that a more flexible model often yields equifinality of possible struc-

tures (also demonstrated here as an equifinality of parameters) for a

given catchment. One reason can be that on some catchments, most

of the flood events that we have selected occur in winter, which sug-

gests that the intensity functions are activated for a very small num-

ber of data points. Peredo et al. (2022) found that a function similar to

the first modelling hypothesis affects the effective rainfall volume

simulated on the Aude catchment only for a very few time steps and

mostly between July and December. Therefore, the estimation of the

added parameters can become very uncertain, especially since there

are more parameters to be estimated compared to the initial model

structure. Furthermore, as suggested by Astagneau, Bourgin, et al.

(2021), the KGE index calculated on the whole streamflow time series

might not be sufficiently informative to evaluate model performance

in simulating summer floods, especially since summer floods are often

shorter than winter floods and therefore less data points are available

for calculating a performance criterion. Although we used a multi-

objective framework for model evaluation, only the KGE index was

used for parameter estimation in this study. This parameter identifia-

bility issue could also be related to a possible temporal variability in

hydroclimatic conditions between the calibration periods. Finally,

there might just not be enough information in the rainfall time series

at the hourly time step to derive optimal parameter values at the

event scale.

4.1.2 | Can we estimate generic parameter values?

To limit the parameter identifiability issue, one solution would be to

either fix the values of the additional parameters, or prescribe them

F IGURE 11 Catchments on which the intensity functions of M3-Pr-B are activated on both calibration periods

F IGURE 12 Distributions of the additional M3-Pr-B free parameters for five groups of catchments
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using climatic or physical descriptors. Here, we investigated the use of

generic values of i1 and i2 for the third modelling hypothesis (M3-Pr-

B). We selected the combination (i1, i2)—for which X1–X5 and KL were

calibrated on P1 and P2 with the KGE objective function—that yielded

the maximum mean value of a composite criterion in calibration over

the 229 catchments of our dataset. This criterion is calculated as fol-

lows for each catchment and calibration period:

Ecomp ¼1
2

KGEbþNSE
b
ev

� �
KGEb ¼ KGE

2�KGE

NSE
b
ev ¼

1
nev

�
Xnev
i¼1

NSEi

2�NSEi
:

ð9Þ

KGEb is a bounded version of the KGE index. NSE
b
ev is the aver-

age bounded NSE calculated on the events of one catchment and one

calibration period. nev is the number of selected events on one catch-

ment and one calibration period.

i1 = 0.02 and i2 = 0.018 were selected as the best generic param-

eter values for the intensity functions of M3-Pr-B. Figure 13a shows

that i2 (temporal distribution hypothesis) is well identified among the

different parameter sets that were tested. Interestingly, an increase in

i1 (volume hypothesis) when i2 (temporal distribution hypothesis)

tends toward its optimal value degrades the composite criterion,

whereas an increase in i2 when i1 tends toward its optimal value

improves the composite criterion. This means that the temporal distri-

bution hypothesis is better adapted to make the GR5H model simu-

late catchment response to different flood-generating processes

across different hydroclimatic conditions and therefore improves its

versatility.

The third hypothesis run with the best generic i1 and i2 parame-

ters (M3-Fix-i1i2) improves the performance of the reference model

M0 for winter and summer events (validation), especially in terms of

bias in summer (p value of 5.3e�15). However, the performance in

simulating floods in validation periods is lower than the fully calibrated

version. Looking back at the performance of the fully calibrated vol-

ume hypothesis (M1-Pr; Figure 6), we can see that M3-Fix-i1i2

achieves the same level of performance as M1-Pr in simulating sum-

mer floods but M3-Fix-i1i2 seems to be more suited to simulating

winter floods. Although the volume hypothesis is almost not activated

(i1 = 0.002) when looking for generic values of the additional parame-

ters, the results of Section 3.2 indicate that this hypothesis is needed

to simulate the summer floods of several catchments in cluster

5. However, it might be too costly to activate this function for the

other catchments of our dataset where summer flood-generating pro-

cesses may have different properties at the catchment scale.

Overall, the generic parameters that we have identified can be

seen as starting points to improve the ability of the GR5H model to

better simulate streamflow in the case of flooding from intense rain-

fall. Their use enables a reduction of the parameter space during the

calibration process, which can be especially useful when not enough

data are available or when parameter identifiability is low.

4.2 | Rainfall intensity and hypothesis testing at
the catchment scale

4.2.1 | A better temporal distribution of increased
runoff production

Our results show that the second modelling hypothesis (temporal dis-

tribution hypothesis) performs better than the first hypothesis (vol-

ume hypothesis) in terms of overall performance and flood

performance over 229 catchments and 10 652 flood events. How-

ever, for several catchments of the Rhône River and the Mediterra-

nean arc, the first modelling hypothesis seems to be needed to

F IGURE 13 Sensitivity of the additional parameters to the composite criterion Ecomp over the 229 catchments (a). Distribution of
performance in simulating 8290 winter floods and 2362 summer floods for the third modelling hypothesis run with generic i1 and i2 values in
validation (b,c). M3-Fix-i1i2 is the model version with fixed i1 and i2 values for all catchments. The red crosses indicate a significant change from
the reference model. The distributions are presented between the 5th and 95th percentiles
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reproduce flood volume in the case of large intensities, as indicated

by the event bias values for summer events in cluster 5 (Figure 7). The

more frequent positive values of the associated additional parameter

(i1; Figure 12) for the third hypothesis (combination of the first and

the second hypotheses) confirm that the volume hypothesis is needed

to simulate summer floods in cluster 5. For these catchments, this

could mean that under low antecedent wetness conditions, the runoff

coefficient is higher in the case of intense rainfall events. Therefore,

improving the temporal distribution of effective rainfall is not suffi-

cient to simulate the flood hydrograph. However, we expect the

model to be able to simulate more volume at the event scale with the

first hypothesis, as the water balance is affected at the event scale in

that case whereas this is not the case for the second hypothesis. This

increased volume in the case of large intensities results in larger flow

overestimation outside flood periods (Figure 6d), which indicates that

the temporal distribution of the additional volume simulated at the

event scale should be improved as well.

Here, we made the assumption that the effective rainfall volume

produced by the model can be separated from its temporal distribu-

tion. This is certainly not always true, as a more delayed distribution

of effective rainfall would result in a lower simulated flood volume

and therefore in a lower simulated runoff coefficient at the event

scale. The performance of the third modelling hypothesis

(e.g. Figure 6b,c) shows that the model needs both an increase in run-

off production (first hypothesis) and a faster transfer at the event

scale (second hypothesis). The third modelling hypothesis adapts to

more heterogeneous flood-generating processes in summer while

keeping its ability to simulate floods under wetter conditions.

Overall, the results indicate that more complexity is needed to

simulate floods of catchments in groups 4 and 5. Conversely, the

intensity functions do not seem to be needed for catchments in clus-

ter 2. The catchments in cluster 2 are associated with the most con-

stant hydroclimatic conditions between events (low variability in

rainfall intensities, low variability in rainfall spatial variability, low vari-

ability in antecedent wetness conditions, low variability in flood dura-

tion) and with the slowest catchment response to rainfall (high time

lag and high flow autocorrelation at 24 h) indicating very uniform

flood-generating processes that the reference model seemed to cap-

ture well. This confirms that a robust parsimonious model can perform

well under wetter and more uniform hydroclimatic conditions without

unnecessary complexity (e.g., Jakeman & Hornberger, 1993), but some

adaptation of its structure might be needed to simulate streamflow

response to more heterogeneous processes (e.g. Knoben et al., 2020),

especially at the hourly time step (Ficchì et al., 2019).

4.2.2 | Spatial variability in rainfall intensities

The analysis of performance in simulating floods in clusters 4 and

5 depending on three causative processes further indicates the value

of our modelling hypotheses in a Mediterranean context. Figure 8a,b

indicate that the floods following the 10% most intense rainfall events

are less underestimated by the new model version. The upper part of

the error distribution also indicates that there might be a small bias

toward overestimation of 25% of these events. Extreme rainfall

events, especially in summer, are known to be subject to large uncer-

tainties (e.g. Ruiz-Villanueva et al., 2012; Zhang et al., 2017) in their

estimation, making the interpretation of the upper part of the error

distribution difficult to establish.

Overall, the results show that bias in simulating floods associated

with high-intensity rainfall events under low antecedent soil moisture

conditions is reduced for many catchments located in the Mediterranean

area. However, we noticed that for catchments in cluster 4, and for

events with large values of the spatial variability index, the new model

still largely underestimates flood volumes, while this is not the case for

the catchments in cluster 5. This result can first appear counter-intuitive

since we used a spatially lumped model in our study. However, looking

at the cluster's hydroclimatic properties (Figures 1 and A1), we can see

that there is a higher variability in the rainfall spatial variability coefficient

between events for catchments in cluster 4 than for catchments in clus-

ter 5. This could mean that the lumped GR5H model is better able to

reproduce flood volumes when rainfall events usually affect the same

area of the catchment. This explanation is consistent with the findings of

Lobligeois et al. (2014), who showed that the impact of spatial resolution

of rainfall on model performance is catchment-dependent. Another

explanation could be that the flood events associated with high spatial

variability for catchments in cluster 4 are not associated with very

intense rainfall at the catchment scale for the whole duration of the

events, whereas the intensities associated with the flood events of catch-

ments in cluster 5 in the case of large values of spatial variability are suf-

ficient to make the new model simulate more volume. These low

intensity values could also be the result of large uncertainties that are

sometimes associated with short-duration rainfall events (e.g. Ruiz-

Villanueva et al., 2012; Zhang et al., 2017). Overall, separating rainfall

spatial variability from rainfall intensity allowed us to highlight the benefit

of making better use of rainfall intensity information for flood simulation.

However, many rainfall events occurring in summer are intense and

highly variable in space, and the benefits of using a finer spatial resolu-

tion remains to be investigated in order to generalize the findings of

some recent studies (e.g. Loritz et al., 2021; Peredo et al., 2022).

5 | CONCLUSIONS

The objective of this study was to use rainfall intensity as a proxy for

the activation of fast hydrological processes in order to improve the

simulation of summer floods by a conceptual lumped rainfall–runoff

model. We worked at the catchment scale, with a large catchment set,

and made three modelling hypotheses on the dependence of the

fluxes of our model to hourly rainfall intensity rates:

• The first hypothesis consists in assuming that large rainfall intensi-

ties increase the volume of effective rainfall.

• The second hypothesis consists in assuming that large rainfall

intensities induce a faster routing of effective rainfall to the catch-

ment outlet.
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• The third hypothesis combines the first two hypotheses, modifying

both the volume and the routing of effective rainfall.

Our results showed that the three hypotheses increased the abil-

ity of the hydrological model to simulate summer floods, especially in

terms of volume error, and particularly for tributaries of the Rhône

River and catchments located in the Mediterranean area. The third

hypothesis shows the highest performance in capturing the stream-

flow response to more heterogeneous storms in summer, while main-

taining good performance in simulating winter floods. We name this

new model GR5H-RI. Our results indicate that there is a clear benefit

in introducing a dependency of the storages and fluxes of a lumped

conceptual model on rainfall intensities (at least at the hourly time

step). Our work obviously has some limitations; the lumped configura-

tion tested here may be restrictive for some catchments, especially

where the spatial organization of rainfall varies between events. Fur-

thermore, the values of the additional parameters are difficult to esti-

mate, because the intensity-dependent functions are only activated

on very few time steps. To overcome this issue, we proposed default

values for two of the additional parameters, which cause a decrease in

model performance in comparison to the fully calibrated model, but

still enable a better simulation of floods in comparison to the refer-

ence model. Regionalizing the parameters of the intensity-dependent

function (with relationships between these parameters and catchment

meteorological properties) would be another solution.

Our hope is that a better simulation of floods from intense rainfall

will lead to improvements in flood forecasting, providing that our

functions are compatible with the assimilation of real-time rainfall and

streamflow data. There is a potential for using the proposed modelling

hypotheses in a Mediterranean context, especially since an intensifica-

tion of extreme rainfall events is to be expected with climate change

in some parts of this region (e.g. Tramblay & Somot, 2018). Further

tests will be conducted in future studies to evaluate the value of this

functions to simulate and forecast extremes, for example by using

post-estimations of peak discharges of extreme events that occurred

in Mediterranean catchments (e.g. the 2nd October 2020 Alex storm

in south-eastern France; Payrastre et al., 2022). Finally, even if this

paper only discusses the application of the three above modelling

hypotheses to the GR5H structure, we believe that they can be

applied to other models. Depending on the specificities of each model,

the first, second or third hypothesis may prove to be the most

suitable.
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APPENDIX A

A.1 | A Cluster characteristics

F IGURE A1 Distribution of six characteristics of the five hydroclimatic groups of catchments. The distributions are presented between the
5th and 95th percentiles
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