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Admissibility in Alt x Alt is undecidable

Philippe Balbiani

Institut de recherche en informatique de Toulouse

Abstract

In this note, we prove that admissibility in Alt x Alt is undecidable.

1 Syntax

Let VAR be a countable set of atomic formulas called variables (x, ¥, etc). The for-
mulas are inductively defined by the following rule:

e pu=x|L|=¢[(oVy)]|vl¢]|[h]e.

The other Boolean constructs are defined as usual. We adopt the standard rules for
omission of the parentheses. The formulas (v)¢ and (h)¢ are the abbreviations defined
as follows:

o (v)¢:=[v]-9,
o (b =[]0,
The formulas [v]™¢ and [h]" ¢ are the abbreviations inductively defined as follows:
o [0]°¢ =4,
o [0]""¢ = [v][]" ¢,
o [h
[

The formulas (v)"¢ and (h)™¢ are the abbreviations defined as follows:
o (V)¢ = —[v]" g,
o (W) = —[h]" .

When T are pairwise distinct variables, we write ¢(Z) to denote a formula whose vari-
ables form a subset of . A substitution is a function o associating to each variable x
a formula o (). For all formulas ¢(Z), let 0(4(Z)) be ¢(o(x)). An inference rule is a

pair g consisting of a finite set I' of formulas and a formula ¢.




2 Semantics

Forall I,J e N,let I@Q J = {(4,7): 0 <i < Tand 0 < j < J}. Amodel is a triple
M =(1,J,V)where I, J € Nand V is a function associating a subset V () of I @ J
to each z € VAR. In this case, we shall say that M is based on I and J. The truth of
a formula ¢ in amodel M = (I,J,V) at (i,7) € I Q J, in symbols (i,7) FEm ¢, is
inductively defined as follows:

e (i,7) Em ziff (4,7) € V(x),

i) Fm L

i,J) Fam =it (i,5) Fa @,

i,J) Fm oV O (i, §) Fa @ or (i,5) Fam ¢,
)
)

i,5) FEm )@ iffif i < T then (i +1,5) FEp ¢,
i,5) Em [Al@iffif j < J then (i,j + 1) F ¢.

A formula ¢ is said to be true in a model M = (I, J, V'), in symbols = ¢, if for all
(4,7) € 1QJ. (i,7) Em ¢

(
(
(
(
(
(

3 Validity
We shall say that a formula ¢ is valid, in symbols = ¢, if for all models M, =g ¢.
Proposition 1 The set of all valid formulas is coN P-complete.

Proof: See [2, Theorem 8.53]. -
An inference rule g is said to be valid if for all models M, if Epq T then =aq ¢

Proposition 2 The set of all valid inference rules is undecidable.

Proof: See [2, Theorem 8.54]. -

4 Admissibility

We shall say that an inference rule g is admissible if for all substitutions o, if = o(T")

then = o (9).

Proposition 3 The set of all admissible inference rules is undecidable.

Proposition 3 is proved by a reduction of the following domino-tiling problem (II). See
[3] for details. An instance of (IT)isa 7-tuple Z = (A, V, H, Ay, Ag, A, AA;) where A
is a finite set of domino-types, V and H are binary relations on A and A, A4, A, and
A are subsets of A. A tiling of an instance Z = (A, V, H, Ay, Ag, A, A;) of (II) is
atriple (I, J, f) where I, J > 1 and f is a function associating an element f (i, j) € A



to each (i,5) € {1,...,1} x {1,...,J}. We shall say that a tiling (I, J, f) of an
instance Z = (A, V, H, Ay, Ag, A, A;) of (II) is correct if the following conditions
hold:

i) forall (i,5) € {1,..., 1 =1} x{1,....J}, (f(4,5), fi + 1,5)) € V,
i) forall (i,7) € {1,..., I} x {1,...,J =1}, (f(i,4), f(i,j + 1)) € H,
iii) forall j € {1,....J} f(I,§) € Ay,

(
(
(
() forall j € {1,...,J}, f(1,7) € Ag,
(v) foralli e {1,...,I}, f(i,J) € A,
(

vi) forall: € {1,...,1}, f(i,1) € A;.

5 Reduction

Considering an instance Z = (A, V, H, Ay, Ag, A, A;) of (IT), we will define an
inference rule Rz such that Rz is not admissible iff there exists a correct tiling of Z.
Let d1,...,d, be a list of Z°s domino-types. We will use the variables x1,...,x, in
correspondence with its elements. We will also use the variables y, z. Let us consider
the following formulas:

é12 [v][h]~(zp A z) where 1 < b,c < aand b # c,

¢t ][] (zp = [v] V{ze: 1 < c<aand (6,6.) €V}) wherel <b<a,
¢3: ][] (e = [ V{ze: 1 < c<aand (6,0.) € H}) where 1 < b < a,
¢az [][h](y Aol L — Vi{ap: 1 <b<aanddp € Ay},

¢t Wy A—z = [v](z = V{zp: 1 <b<aandd, € Ag})),

o6t [W][h](z A[h]L = V{xp: 1 <b<aandd, € A, }),

o7t W](—y Az — [hl(y = V{zp: 1 <b<aandd, € Ar})),

¢s: y = [v]y A[hly,

b9t z — [v]z A [h]z,

P10t~y — [v]-w,

@112 —z = [h]-z.

Let 't = {d)lv ¢2» ¢3a ¢47 ¢57 ¢67 ¢77 ¢8 ¢97 ¢107 ¢11}9 'l/}I = _'(_'y A <h>y Az A
(Wyz A ][] V{xp: 1 <b<a})and Ry = % Obviously, the size of Rz is quadratic
in the size of Z. Let us demonstrate that Rz is not admissible iff there exists a correct
tiling of 7.



6 Onlyif

Suppose Rz is not admissible. Let o be a substitution such that = ¢(I'z) and = o (7).
Let M = (I,J,V) be a model such that jcxq o(¢pz). Since = o(T'z), therefore
Eam o(T'z). Let (4,7) € I Q) J be such that (4, j) ~Eam o(z). Without loss of gen-
erality, we can assume (4, j) = (0,0). Hence, (0,0) = o(y), (0,0) = (h)o(y),
(0,0) Fm a(2), (0,0) e (v)o(z) and (0,0) = [o][h] Vio(zp): 1 < b < a}.
Since = 0(T'z), therefore

(1) forall (4,5) e IR J, (i,5) Eam o(T1).

Since (0,0) Eam (h)o(y) and (0,0) Eam (v)o(z), therefore I, J > 1. Since (0,0) =l
[v][h] V{o(xp): 1 < b < a}, therefore (1,1) Eam V{o(zp): 1 <b<a}.

Lemma 1 Let (i,5) € {1,...,I}x{1,..., J}. There exists exactly oneb € {1,...,a}l}
such that (i, j) Em o(xp).

Proof: Use (1), ¢1—¢3 and the fact that (1,1) Eaq \/{o(zp): 1 <b < a}. 4

Forall (4,5) € {1,...,I} x{1,...,J},letb(s, j) be the unique b € {1,...,a} deter-
mined by Lemma 1 and such that (i, j) = o(xp). Let f be the function associating
the element 0(; ;) € A toeach (4,7) € {1,...,I} x {1,...,J}.

Lemma 2 (1, J, f) is a correct tiling of T.

Proof: Use (1), ¢o—¢11 and the fact that (0,0) FEa o(y), (0,0) Eam (RYo(y),
(0,0) Feaq 0(2) and (0,0) Eaq (v)o(2).

7 If

Let (I, J, f) be a correct tiling of Z. Let o be the substitution such that

o forallb € {1,...,a},0(xy) = V{{(v) o] LA(RY =I[R] L: (i,5) € {1,..., I} x[}
{1,...,J}and f(i,5) = 0p},

o a(y) = [n]7 L,
o o(z) = [v] L.
Lemma 3 |= o(Tz).
Lemma 4 [ o(¢7).

By Lemmas 3 and 4, Rz is not admissible.
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