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ABSTRACT
The systems using insertion and deletion systems are used in several areas of theoret-
ical computer science, ranging from linguistics to DNA computing. In this paper we
investigate insertion and deletion systems within the regulated rewriting framework.
We consider various regulation mechanisms already studied in the area of insertion-
deletion systems and recall several results, but also elaborate some new results and
also consider new control mechanisms.
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1. Introduction

2. Definitions

In this section we recall some basic notions and definitions used in formal language
theory. For further notions and results in formal language theory we refer to textbooks
like [5] and [11].

The set of non-negative integers by N. An alphabet V is a finite non-empty set of
abstract symbols. Given V , the free monoid generated by V under the operation of
concatenation is denoted by V ∗; the elements of V ∗ are called strings, and the empty
string is denoted by λ; V ∗ \ {λ} is denoted by V +. The cardinality of a set M is
denoted by |M |.

(E)Corresponding author
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2.1. Grammars and Normal Forms

Definition 1. A string grammar is a construct G = (N, T, P, S) where N is the
alphabet of nonterminal symbols, T is the alphabet of terminal symbols, P is a set
of productions (or rules) of the form α → β with α, β ∈ (N ∪ T )∗, and S ∈ N is the
start symbol.

If all rules in P are of the form A → w with with A ∈ N and w ∈ (N ∪ T )∗, then
G is called context-free.

If all rules in P are of the forms A → uBv with A, B ∈ N and u, v ∈ T ∗ or A → u
with A ∈ N and u ∈ T ∗, then G is called linear.

If all rules in P are of the forms A → uB with A, B ∈ N and u ∈ T ∗ or A → λ
with A ∈ N , then G is called regular.

A string v is derivable from a string u, u, v ∈ (N ∪ T )∗, if and only if u = xαy
and v = xβy for some x, y ∈ (N ∪ T )∗ and there exists a production α → β in P ; we
write u =⇒G v. The reflexive and transitive closure of the derivation relation =⇒G

is denoted by =⇒∗
G. The string language generated by G is denoted by L (G) and

defined as the set of terminal strings derivable from the start symbol, i.e., L (G) =
{w | w ∈ T ∗ and S =⇒∗

G w}.
The family of regular, linear, context-free, and recursively enumerable string lan-

guages is denoted by REG, LIN , CF , and RE, respectively. Two languages of strings
L and L′ are considered to be equal if and only if L \ {λ} = L′ \ {λ}.

2.1.1. Penttonen normal form

For every recursively enumerable language L ⊆ T ∗ there exists a string grammar in
Penttonen normal form (N, T, P, S) where the productions in P are of the following
forms:

XY → XZ, X, Y, Z ∈ N,

X → Y Z, X, Y, Z ∈ N,

X → a, X ∈ N, a ∈ T ∪ {λ}.

2.1.2. Geffert normal form

As elaborated in [7], for every recursively enumerable language L ⊆ T ∗ there exists a
grammar in Geffert normal form ({S} ∪ NT , T, P, S) where the productions in P are
of the following forms:

S → uSv, u, v ∈ (NT ∪ T )∗, |uv| > 0,

S → λ

together with one of the following variants of cooperative erasing rule:
(I) AA → λ and BBB → λ, in which case NT = {A, B},

(II) ABBBA → λ, in which case NT = {A, B},
(III) ABC → λ, in which case NT = {A, B, C},
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(IV) AB → λ and CC → λ, in which case NT = {A, B, C}, or
(V) AB → λ and CD → λ, in which case NT = {A, B, C, D}.

The rules S → uSv, u, v ∈ (NT ∪ T )∗, and S → λ may be considered as linear
rules over the “terminal” alphabet NT ∪ T :

Corollary 2. For each recursively enumerable language L ⊆ T ∗ there exists a gram-
mar G′ = ({S}, {A, B, C} ∪ T, P ′, S) such that L(G′) ∩ T ∗ = L and P ′ contains only
linear rules and the special rule ABC → λ.

Proof. (sketch) We only have to take the grammar in Geffert normal form G =
({S, A, B, C}, T, P, S) generating L and define P ′ = P with the only difference be-
tween P and P ′ that in P the symbols A, B, C are non-terminal symbols, whereas in
P ′ these symbols are terminal, which makes the rules containing S linear ones in P ′.

□

Similar results can easily be established for the other non-cooperative rules listed
above for the Geffert normal form.

Based on the proofs given in [7], various special variants for the linear rules over
the “terminal” alphabet NT ∪ T have been elaborated, for example, see [6, 8, 10].

Throughout this paper, we will use a special Geffert normal form where these
“linear” rules S → uSv from the Geffert normal form are transformed into a set of
“left-” and “right-linear” rules using a standard approach, e.g., see [10, 12] for more
details. These “left-” and “right-linear” rules are of the forms X → bY and X → Y b
with X, Y ∈ N and b ∈ NT , where N is is the new alphabet of non-terminal symbols
including S.

2.2. Insertion-Deletion Systems

Definition 3. Let V be an alphabet. An insertion / deletion rule is a triple
(u, x, v)ins / (u, x, v)del, where x ∈ V + and u, v ∈ V ∗.

The application of the rule r : (u, x, v)ins (labeled by r) to a string w yields the
string w′ if w = zuvz′ and w′ = zuxvz′, for some z, z′ ∈ V ∗, and we write w =⇒r w′.
In a similar way, the application of the rule r′ : (u, x, v)ins to a string w yields the
string w′ if w = zuxvz′ and w′ = zuvz′, for some z, z′ ∈ V ∗, and we write w =⇒r′ w′.
Hence, r corresponds to the rewriting rule uv → uxv and r′ corresponds to the rule
uxv → uv. However, we would like to note that for an insertion rule both contexts u
and v are allowed to be empty, which is not allowed in traditional Chomsky grammars.
We also remark that it is possible to simulate such rules with Chomsky grammars by
using an additional non-terminal symbol systematically inserted before and after all
other symbols in order to mark a possible insertion site, and at the end all remaining
copies of this symbols have to be erased.

As usual, by =⇒R we denote the set {=⇒r| r ∈ R} and the transitive and reflexive
closure of =⇒R by =⇒∗

R.

Definition 4. An insertion-deletion system is a quadruple (V, T, A, R), where
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• V is an alphabet,
• T ⊆ V is the terminal alphabet,
• A ⊆ V ∗ is a finite set of initial strings (axioms),
• R ⊆ V ∗ × V + × V ∗ × {ins, del} is a finite set of insertion and deletion rules.

The language generated by the system Γ = (V, T, A, R) is defined as follows:

L(Γ) = {x ∈ T ∗|∃y ∈ A : y =⇒∗
R x}.

The size of an insertion-deletion system Γ = (V, T, A, R) is defined as the tuple
(n, m, m′; p, q, q′), where

n = max{|x| | (u, x, v)ins ∈ R} p = max{|x| | (u, x, v)ins ∈ R}
m = max{|u| | (u, x, v)ins ∈ R} q = max{|u| | (u, x, v)ins, ∈ R}

m′ = max{|v| | (u, x, v)ins ∈ R} q′ = max{|v| | (u, x, v)ins ∈ R}

By INSm,m′

n DELq,q′

p we denote the family of languages generated by insertion-
deletion systems of size (n, m, m′; p, q, q′).

In the following, we will also use the notation I(u, x, v) for the insertion rule
(u, x, v)ins and the notation D(u, x, v) for the deletion rule (u, x, v)del.

3. Insertion-Deletion Systems with Regular Control

In this section we first consider the

3.1. Insertion-Deletion Systems with Regular Control

We now define the general model of insertion-deletion systems with regular control:

Definition 5. An insertion-deletion system with regular control is a construct Γ =
(V, T, A, R, L) where Γ = (V, T, A, R) is an insertion-deletion system and L is a regular
language over the set of labels for the labeled insertion-deletion rules in R. A valid
derivation in Γ then is a derivation for which the sequence of labels for the applied
rules is in L.

3.2. Insertion-Deletion Systems with Contextless Rules

We recall that it is known, [cfinsdelTCS], that insdels 200300 and 300200 can simu-
late specific computationally complete normal forms of type-0 grammars, where each
production is simulated by one or a few insertions followed by one or a few deletions.
These insdel operations are called M-related.

We claim that each derivation (or a fragment of a derivation) of any insdel system
without context can be reordered in such a way that all insertions precede all deletions,
yielding the same string. Together with a known technique, [cfinsdelTCS], that shows
how to generate precisely the language of the simulated grammar, it follows that the
same language can be simulated in (ID)∗ mode, where I is the set of all insertion
operations and D is the set of all deletion operations.
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We do it by proving an even more general statement: given a derivation in a
contextless insdel, the same string can be derived by delaying a deletion operation for
arbitrarily long, provided that the order of deletion operation is preserved.

In the second part of this subsection, we show computational completeness of
insertion-deletions systems of size-200300 and size-300200 with associated Szilard lan-
guages of the form (ID)∗.

In this paper we show that contextless insertion-deletion systems, including the
optimal computationally complete ones, are in some sense tolerant with respect to the
order of deletions with respect to the order of insertions. We consider two somewhat
extreme cases, calling them eager deletion (where each insertion is followed by a
deletion and each deletion is preceding by insertion) and lazy deletion (where all
deletions are performed only after all insertions have been done).

3.2.1. Lazy deletion mode

Lemma 6. Let δ be a (fragment of a) derivation in a contextless insdel system γ =
(V, T, A, I, D), δ = w1 ⇒del w2 ⇒ins w3. There exists an equivalent (fragment of a)
derivation δ′ = w1 ⇒ins w′

2 ⇒del w3 in γ.

Proof. Then one of two cases must hold: either insertion happens to the left of the
deletion, or it happens to the right of the deletion. For our purpose, if it happens
in the same position, it can be classified as either. The two cases are symmetric, let
us consider the first one. Let the deleted string be u ∈ D and the inserted string be
v ∈ I. Then there exists strings x1, x2, x3 ∈ V ∗ such that w1 = x1x2ux3, w2 = x1x2x3
and w3 = x1vx2x3. It is easy to see that there exists an equivalent derivation where
the deletion is delayed until after the insertion: δ′ = x1x2ux3 ⇒ins x1vx2ux3 ⇒del

x1vx2x3.
The second case, where the insertion is performed to the right of the deletion, is sim-

ilar: δ = x1ux2x3 ⇒del x1x2x3 ⇒ins x1x2vx3 and δ′ = x1ux2x3 ⇒ins x1ux2vx3 ⇒del

x1x2vx3. As mentioned before, the same-position case can be seen as either, with
x2 = λ. □

A deletion can be delayed until after multiple insertions.

Corollary 7. In a derivation of a contextless insdel, a deletion operation can be
postponed until an arbitrary number of insertion operations, provided that the order
of deletion operations is unchanged.

Proof. It suffices to consider any derivation where some deletion precedes insertion,
and replace such a fragment δ by an equivalent fragment δ′ using previous corollary.
If the following operations are also insertions, the same process can be repeated. □

The same (delaying a deletion) can be done for multiple deletion operations.

Corollary 8. Let δ be a derivation in a contextless insdel, and let c ∈ (I ∪ D)∗ be
its associated control sequence. Let cI = (i1, · · · , im) be the sequence of insertion
operations from c and cD = (d1, · · · , dn) be the sequence of deletion operations from
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c. Then for any c′ ∈ cI � cD there exists an equivalent derivation δ′ with control
sequence c′ if the following condition holds: ij precedes dk in c implies ij precedes dk

in c′.

Proof. δ can be reordered into an equivalent δ′ one deletion operation at a time using
previous corollary, from right instances of deletion to left. □

Deletions can be delayed until the end of the derivation.

Corollary 9. Let δ be a derivation in a contextless insdel. There is an equivalent
derivation δ′ where its control sequence is in I∗D∗.

Proof. Let c ∈ (I ∪ D)∗ be the control sequence of δ. Let cI = (i1, · · · , im) be the
sequence of insertion operations from c and cD = (d1, · · · , dn) be the sequence of
deletion operations from c. Then, by previous corollary, a derivation δ′ exists with
the control sequence cIcD, because cIcD ∈ cI � cD and all insertions precede all
deletions in δ′. □

Therefore, contextless insdels are universal also in in lazy deletion mode.

Theorem 10. L(INS0,0
2 DEL0,0

3 , I∗D∗) = (INS0,0
3 DEL0,0

2 , I∗D∗) = RE.

Proof. For any L ∈ RE there exist insdels γ of size 200300 generating L and γ′ of
size 300200 generating L, [cfinsdelTCS]. Since lazy deletion mode yields a subset of
derivations, it follows that in lazy deletion mode, the languages generated by γ and
γ′ are subsets of L. Conversely, by the previous corollary, each string w ∈ L can also
be generated by the same insel systems also in lazy deletion mode, so L(γ, I∗D∗) =
L(γ′, I∗D∗) = L. This proves the claim. □

We would like to note how a subset of a variant of a copy language may originate
as a control sequence of such operations in case of size 300300.

Remark 11. Consider insdels of size 300300. In [cfinsdelTCS] it is shown that they
generate RE in unrestricted mode, while the proof makes it obvious that (ID)∗ mode
is enough, since each production of the underlying type-0 grammar is simulated by
an insertion followed by a deletion. This pair of operations are called M-related, and
this relation is a bijection since the label of the underlying grammar production is
used in both, and only in them. In this context, for any insertion operation o, let us
denote its m-related deletion operation by o′. The control sequence in (ID)∗ mode
is a concatenation of oo′ pairs. Let w be the sequence of insertion operations in a
derivation, and let w′ be the sequence of deletion operations in the same derivation.
We note that |w| = |w′| and n-th symbol of w is an operation which is M-related to
the operation which is n−th symbol of w′. By the previous corollary, these operations
can be reordered, and the controlled sequence of such an equivalent reordering is ww′.

3.2.2. Eager deletion mode

The computational completeness of insels of size 300300 in (ID)∗ mode follows directly
from the proof of their computational completeness in the unrestricted mode. As we
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show below, for sizes 200300 and 300200 this result also holds, but needs more arguing.
The idea is that we take an arbitrary derivation in an unrestricted mode and shuffle
in some dummy-operations, which either do not affect the derivation or are harmless
(not leading to the terminal string).

Lemma 12. Let δ = A ⇒∗ w be a derivation in a contextless insdel γ =
(V, T, A, I, D), and let X /∈ V be a new non-terminal system. Consider a new
insdel γ′(n) = (V ′, T ′, A′, I ′, D′) where V ∪ {X}, T ′ = T ∪ {X}, A′ = XnA,
I ′ = I ∪ {ins(X)}, D′ = D ∪ {del(X)}. Then there exists n ∈ N and a deriva-
tion δ′ = XnA ⇒∗ w′ in eager deletion mode where w′ ∈ X∗w.

Proof. Notice that δ is also a derivation in γ′(0). Find all places where deletion
is preceded by another deletion (or is the first step), and perform ins(X) in the
beginning of the string every time it happens (so every del is preceded by an ins).
Now let us assume we start with a sufficient number of symbols X, e.g., it suffices
to take n to be the number of times an insertion is followed by another insertion in
δ (or is the last step). Then, perform del(X) every time it happens (so every ins is
followed by a del; this preserves the property that every del is preceded by an ins).
Denote the resulting derivation by δ′. Clearly, δ′ yields a string in X∗w, because it
only differs from δ by additional symbols X, and it is a derivation in eager deletion
mode. □

We claim that with this technique generation of every terminal string can be done
in eager deletion mode, and it is also impossible to over-generate.

Corollary 13. In the previous lemma, for the constructed insdel γ′ = γ′(n), the
projection of L(γ′) on V equals L(γ).

Proof. One inclusion follows by the lemma, since a derivation has been constructed
yielding a string in X∗w. It remains to argue that out of (T ∪ {X})∗, only strings in
L(γ)�X∗ can be derived.

Indeed, from any derivation in γ′ producing a string in (T ∪ {X})∗ we can extract
a derivation in γ by removing operations ins(X) and del(X) and initial symbols X,
and clearly γ is a valid derivation yielding some string w ∈ T ∗. Therefore, the string
produced in γ′ is in L(γ)�X∗. This proves the corollary. □

Corollary 14. For any contextless insdel of size at least 200200, another insdel of
the same size can be constructed generating the same language in (ID)∗ mode.

Proof. Let γ = (V, T, A, I, D) be such an insdel system. Consider γ′(n) =
(V ′, T ′, A′, I ′, D′) from the previous lemma. It remains to transform it into an ins-
del that generates the same language modulo symbols X, but does not start with
any symbols X and does not yield any symbols X. Let γ′′ be a new insdel system
(V ′, T, A, I ′′, D′′) where I ′′ = I ′ ∪ {ins(XX)} and D′′ = D′ ∪ {del(XX)}. Notice
that X is now a non-terminal and the axiom is the same as in γ. We claim that
L(γ′′) = L(γ′′, (ID)∗) = L(γ).
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First, we argue that each string from L(γ) is generated by γ′′ in eager dele-
tion mode. Notice that any derivation δ′ in γ′ is also a (fragment of) a deriva-
tion in γ′′. The necessary number n of starting symbols X can be produced by
(ins(XX), del(X))n applied in the beginning of the string, and any symbols X re-
maining in the start of the string yielded by γ′ can be removed by some operation
sequence in (ins(X), del(XX))∗. Notice that such derivation is in eager deletion
mode.

It remains to argue that no other string can be produced except those in L(γ).
Notice that all symbols X /∈ T must be deleted in order to reach a terminal string,
and the process of inserting and removing them cannot alter the projection of the
sentential form onto T , concluding the converse part of the proof, so the same string
can always be produced (the “garbage” symbols X can always be cleaned up by
suitable insertions or deletions of X and XX).

Therefore, L(γ′′, (ID)∗) = L(γ), which proves the corollary. □
We now conclude that insdels of size 200300 and 300200 are computationally com-

plete also in eager deletion mode.

Theorem 15. L(INS0,0
2 DEL0,0

3 , (ID)∗) = (INS0,0
3 DEL0,0

2 , (ID)∗) = RE.

3.3. Time-Varying Insertion-Deletion Systems

Time-varying insertion-deletion systems are a special case of insertion-deletion sys-
tems with regular control where the regular control language has the special form
(R1 . . . Rn)∗ with the Ri, 1 ≤ i ≤ n, being finite sets of rules:

Definition 16. A time-varying insertion-deletion system is insertion-deletion system
with regular control Γ = (V, T, A, R, L) where L = (R1 . . . Rn)∗ and Ri ⊆ R, 1 ≤ i ≤
n; n is called the period.

In a time-varying insertion-deletion system Γ = (V, T, A, R, L) the set of avaiable
rules changes periodically with period n, i.e., in step mn+k, m ≥ 0, of any derivation
exactly the rules in Rk may be used.

We now show that any grammar in special Geffert normal form can be simulated
by a time-varying insertion-deletion system with period 5.

Theorem 17. For any RE language L we can construct a time-varying insertion-
deletion system Γ of size (1, 1, 0; 1, 1, 0) and period 5 such that L(Γ) = L.

Proof.
Consider an arbitrary grammar G = (N, T, S, P ) in special Geffert normal form

generating L.
We then construct a time-varying insertion-deletion system

Γ = (V, T, A, R = (R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5, L = (R1R2R3R4R5)∗)

with period 5 as follows:
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For any rule r : X → bY ∈ P we add following rules to Γ:

R1 : r.1 : (λ, r, λ)ins

R2 : r.2 : (r, X, λ)del

R3 : r.3 : (r, Y, λ)ins

R4 : r.4 : (r, b, λ)ins

R5 : r.5 : (λ, r, λ)del

For any rule r : X → bY ∈ P we add following rules to Γ:

R1 : r.1 : (λ, r, λ)ins

R2 : r.2 : (r, X, λ)del

R3 : r.3 : (r, b, λ)ins

R4 : r.4 : (r, Y, λ)ins

R5 : r.5 : (λ, r, λ)del

For rule r : S → λ ∈ P we add following rules to Γ:

R1 : r.1 : (λ, r, λ)ins

R2 : r.2 : (r, S, λ)del

R3 : r.3 : (r, #, λ)ins

R4 : r.4 : (r, #, λ)del

R5 : r.5 : (λ, r, λ)del

For the rule r : ABC → λ we add following rules to Γ:

R1 : r.1 : (λ, r, λ)ins

R2 : r.2 : (r, A, λ)del

R3 : r.3 : (r, B, λ)ins

R4 : r.4 : (r, C, λ)del

R5 : r.5 : (λ, r, λ)del

Note that this cycle ensures A, B, and C to be deleted in this particular order. □

Corollary 18. For any RE language L we can construct a time-varying insertion-
deletion system Γ of size (1, 0, 1; 1, 0, 1) and period 5 such that L(Γ) = L.

Proof. Obvious. □
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4. Matrix, Programmed and Graph-Controlled Insertion-Deletion Sys-
tems

4.1. (1, 1, 0; 1, 1, 0) + programmed control = RE

The construction for the time-varying insertion-deletion system elaborated in the
proof of Theorem 17 has to be modified in order to serve as the basis for the con-
struction of the corresponding programmed insertion-deletion system, as in contrast
to the graph-controlled version all nodes in the control graph can be initial and final
nodes as well.

Let

Γ = (V, T, A, R = (R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5, L = (R1R2R3R4R5)∗)

be the time-varying system from Theorem 17. Then the system modified for the
programmed control has the form Γ′ = (V ′, T, A, RrISISES′

E , R′
2, R′

3, R′
4, R′

5, R′
1).

The new alphabet contains some additional symbols which will force Γ′ to always
start and end the simulation in the correct phases V ′ = V ∪ {SI , SE , S′

E , rI , rE}.
The sets of rules are shifted circularly by 1 to the left with respect to Γ in order

to reduce the number of modifications to get the programmed control.
The new symbol rI corresponds to the deletion of the symbol SI from the axiom

and is simulated by the following sequence of rules:

R′
2 : rI .2 : (rI , SI , λ)del

R′
3 : rI .3 : (rI , #, λ)ins

R′
4 : rI .4 : (rI , #, λ)del

R′
5 : rI .5 : (λ, rI , λ)del

R′
1 : rI .1 : (λ, r, λ)del

where r corresponds to any other rule of the simulated grammar, and r ̸= rI . Thus,
Γ′ must start by carrying out the sequence of rules rI .i and thus must start with rI .2
in R′

2, since no other simulating rule in any component is applicable to the axiom.
To ensure that Γ′ halts correctly when no more simulations are possible, after

having completed a whole number of simulations, its rules include a clean-up phase
which erases SE and S′

E . This phase is started by the insertion of rE instead of a
normal rule marker. The action associated with rE are the following:

R′
2 : rE .2 : (rE , SE , λ)del

R′
3 : rE .3 : (rE , #, λ)ins

R′
4 : rE .4 : (rE , #, λ)del

R′
5 : rE .5 : (λ, rE , λ)del

R′
1 : rE .1 : (rE , S′

E , λ)del

Note that this sequence of actions does not insert any other rule symbol, rendering the
rules in the corresponding components inapplicable and thus stopping the derivation.
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Compared to Γ, Γ′ includes several new symbols and the associated rules meant to
ensure that starting the simulation in any other component than R′

2 will never lead
to a terminal string. In particular, if the simulation starts in R′

1 by inserting a new
rule marker r, then there will always be an extra rule marker (either rI or an r) in
the string which will never be deleted.

The particularity of this construction is that Γ′ uses a programmed graph control
with a circular structure:

R′
2

R′
3

R′
4

R′
5R′

1

5. Insertion-Deletion Systems with Activation of Rules

Activation at least two steps forward A(2) is sufficient to simulate time variance.
Activation A(k) subsumes time-variance with period k: A(k) ⊇ TV (k). Note that
A(1) is strictly less powerful than A(2), so A(1) will probably not be enough to
simulate TV (k).

6. CD Grammar Systems

Definition 19. A CD grammar system is

The next example shows that using CD control the computational power of
insertion-deletion systems is strictly increased (we recall that in [9] it was shown
that insertion-deletion systems of size (1, 1, 1; 1, 1, 0) cannot generate the language
anbn).

Example 20. Consider the following CD insertion-deletion system Γ of size
(1, 1, 1; 1, 0, 0) with 3 components working in t-mode.

V = {a, b, X, Y }, T = {a, b}, A = {ab}.
R1 = {(a, X, b)ins, (X, Y, b)ins}.
R2 = {(X, a, Y )ins, (a, b, Y )ins}.
R3 = {(λ, X, λ)del, (λ, Y, λ)del}.
For the initial string ab no rule in components 2 and 3 is applicable. If component 1

is applied, then string aXY b is obtained. Next, only rules of components 2 or 3 are
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applicable. By using rules from component 3, the string ab is obtained again. If a
derivation using component 2 is applied, then string aXabY b is obtained. Now, only
rules of components 1 and 3 are applicable. By using those from component 3 the
string aabb is obtained. If using those from component 1, the string aXaXY bY b is
obtained.

By repeating the procedure above strings a3b3 and aXaXabY bY b are obtained. It
is easy to observe that strings of the last type can derive only strings of form anbn,
n > 2, because the contexts Xa, aX, Y b and bY are never used in rules.

Hence, L(Γ) = {anbn | n > 0}.

In a similar manner the non-context-free language {ww | w ∈ {a, b}∗} can be
generated.

Example 21. Consider the following CD insertion-deletion system Γ of size
(1, 1, 1; 1, 0, 0) with 3 components working in t-mode.

V = {a, b, X, Y, B, E, M}, T = {a, b}, A = {BME}.
R1 = {(B, X, u)ins, (M, Y, v)ins | u ∈ V \ {X}, v ∈ V \ {Y }}.
R2 = {(B, a, X)ins, (M, a, Y )ins}.
R3 = {(B, b, X)ins, (M, b, Y )ins}.
R4 = {(λ, X, λ)del, (λ, Y, λ)del}.
R5 = {(λ, B, λ)del, (λ, E, λ)del, (λ, M, λ)del}.
Like in the previous example, component 1 allows an insertion of a single copy of

X after the start marker B and of a single copy of Y after the middle marker M .
Then rules in components 2 or 3 are applied extending the string by the same single
letter after B and M . This works because there is a single context BX and MY .
Component 4 allows to erase symbols X and Y and the process can be repeated again.
At some moment, rules from component 5 can be applied, removing the markers B,
E and M in the string, and then stopping the derivation.

Hence, L(Γ) = {ww | w ∈ {a, b}∗}.

CD insertion-deletion systems of size (1, 1, 1; 1, 1, 0) can generate all linear lan-
guages.

Theorem 22. For any linear language L there exists n > 0 and a CD insertion-
deletion system Γ = (V, T, A, R1, . . . , Rn+2) such that L = L(Γ).

Proof. Consider an arbitrary linear grammar G = (V ′, T ′, S, P ) such that L(G) = L.
We may suppose that rules in P are left- and right-linear (of form X → bY , X → Y b
and X → λ). We also suppose that rules from G are labelled by natural numbers
from 1 to |P |.

The components of Γ are defined as follows.
T = T ′.
V = T ∪ V ′ ∪ {[i], [i′] | 1 ≤ i ≤ n}
Ri = {([i], Y, X)ins, ([i], b, Y )ins, (Y, X, λ)del | i : X → bY }.
Ri = {([i], Y, [i′])ins, (Y, b, [i′])ins, ([i′], X, λ)del | i : X → Y b}.
Ri = {(λ, X, λ)del | i : X → λ}.
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Rn+1 = {(v, [i], X)ins | v ∈ V \ {[j] ∪ [j′]|1 ≤ j ≤ n}, i : X → u, u ∈ V 2} ∪
{([i], [i′], X)ins | i : X → Y b}.

Rn+2 = {(λ, [i], λ)del, (λ, [i′], λ)del | 1 ≤ i ≤ n}.
The functioning of this system is similar to the examples above. Component Rn+1

introduces a symbol [i] before the nonterminal in the string. Next, only rules from
component i (and n + 2) are applicable. In component i the sequence bY (or Y b) is
obtained only in the right order (because of the insertion contexts). Also, in the same
component corresponding symbol X is deleted.

Finally, component Rn+2 cleans up symbols [i]and[i′] yielding a terminal string.
□

6.1. CD grammar systems with setmax and t-mode

6.1.1. Generating the copy language ww

To generate the copy language Lww = {ww | w ∈ T ∗} with CD grammar systems with
the set condition and in t-mode, we construct a CD system containing components
of the following form:

(I) one component [I(L, a, λ), I(R, a, λ)] for every a ∈ T ,
(II) one clean-up component [D(λ, L, λ), D(λ, R, λ)].

All components work in the mode setmax (set condition + t-mode), or set condition
+ = 2, or set condition + ≥ 2. The axiom / starting string of this CD grammar system
is LR.

This system works by non-deterministically choosing a terminal symbol and insert-
ing it both to the right of L and to the right of R. At most one insertion may happen
to the right of L, and at least one to the right of R, because of the set condition.
Both insertions must happen because of the t-mode / mode ≥ 2 / mode = 2. This
process goes on until the CD system chooses component (2) which erases the makers
L and R and thereby ends the derivation at a terminal string in Lww.

7. Conclusions

We have shown that contextless insertion-deletion systems, including those of optimal
size, i.e., 200300 and 300200, are computationally complete not only in the case
of not restricting the Szilard language associated with the derivations, but also in
extreme variants for the form of the associated Szilard language , such that alternating
insertions and deletions, or all insertions preceding all deletions.
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8. Ideas for the paper

Recall results on existing regulated insdel variants and propose new ones. Give some
small proofs for several new cases (not all). Give definitions in particular (not gener-
alized form!)

Proposed contents:

• Discussion on insdel and non-complete insdels.
• General discussion on regulated rewriting and also regulated RNA editing.
• Recall of results for matrix control. Discuss the ac case as well.
• Recall of results for graph control (also discuss 2 variants).
• Note for programmed grammars. Also discuss the ac case.
• Define prescribed sequences variant. Some proofs?
• Discuss Time-varying variant. Proofs.
• Recall semi-contextual and random-context variants.
• Discuss permitting, forbidding and ordered variants (also recal ordered graph-

control variant from our paper). Proofs.
• Regular and non-regular context conditions. Examples.
• Indian parallel variant?
• E(T)0L variant?
• Recall results from NEPs.
• Grammar systems CD-style variant. Proofs.
• Other variants? (scattered context, indexed, pure, etc)
• Different new rule execution strategies (e.g. each insertion step followed by a

deletion step, or first perform only insertions and then only deletions)

Cite [5].

9. Definitions

We suppose that the reader is familiar with standard notions and notations from
formal language theory. We refer to [11] for missing details. An alphabet is a non-
empty finite set of symbols. The set of all strings over an alphabet V is denoted by
V ∗. A string x is said to be a substring of a string w if w = uxv.

9.1. Special Geffert Normal Form

This is a verbatim copy from a published article. To reduce
A type-0 grammar G = (N, T, S, P ) is said to be in Geffert normal form [7] if

the set of non-terminals N is defined as N = {S, A, B, C, D}, T is an alphabet (of
terminal symbols) and P only contains context-free rules S → uSv with u ∈ {A, C}+

and v ∈ (T ∪ {B, D})+, as well as S → uv whenever S → uSv ∈ P , and two
(non-context-free) erasing rules AB → λ and CD → λ.
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We remark that, according to [7], the generation of a string using a grammar in this
normal form is performed in three stages. During the first two stages, only context-
free rules S → uSv can be applied; this follows from the fact that u ∈ {A, C}+ and
v ∈ ({B, D} ∪ T )+. Moreover, the terminal symbols are generated first, so during
the first stage, the string can be described by the regular expression (A|C)∗ST ∗,
which changes to (A|C)∗S(B|D)∗T ∗ during the second stage. Assuming a terminal
derivation, switching back to the first stage is not possible. The second stage is
finalized by applying a rule of the form S → uv. During the third stage, only non-
context-free rules can be applied, because the symbol S is no longer present in the
string. Moreover, in each step only one such rule can be applied. Note that the
symbols A, B, C, D are treated like terminals during the first two stages and so, each
rule S → uSv is, in a sense, “linear”. We would also like to remark that according
to the construction from Theorem 1 from [7] it is possible that u = λ for some rules,
however, v can never be the empty string.

Throughout this paper, we will use the special Geffert normal form (SGNF) [6, 8,
10]. This normal form is obtained by transforming “linear” rules from Geffert normal
form to a set of “left- and right-linear” rules using a standard approach, see [10] for
more details. Additionally, for commodity reasons, the terminals are generated at
the left side of the string, which means by the remark above that “linear” rules from
Geffert normal form that have to be transformed are of the form S → uSv where
v = λ for some rules, while u is never the empty string (†). Hence, for a grammar
in SGNF, it is possible to split the set of non-terminals into disjoint sets as follows:
N = NS ∪ NT ∪ NL ∪ NR, where NT = NAC ∪ NBD, with NAC = {A, C}, and
NBD = {B, D}, NS = {S, S′}, NL (resp. NR) is the set of non-terminals appearing
in the left-hand-side of “left-linear” (resp. “right-linear”) rules except for S. We cite
below some of the interesting properties of a grammar G in SGNF:

(I) G has only two (non-context-free) erasing rules AB → λ and CD → λ, and
several “right-linear” and “left-linear” rules of one of the following forms; notice
that due to Condition (†) above, we start with generating the non-empty part
with “right-linear” rules and then might even skip the “left-linear” rules.

• X → bY, where X ∈ NR ∪ {S}, b ∈ T ∪ NAC , Y ∈ NR ∪ NL ∪ NS , X ̸= Y,

• X → Y b, where X ∈ NL, b ∈ NBD, Y ∈ NL ∪ NS , X ̸= Y ,
• S′ → λ.

(II) We can assume that rules rewriting a symbol different from S are deterministic:
for each X ̸= S, there is a single rule X → ab ∈ P . This property can be
achieved, as we can choose different nonterminals in NR ∪ NL for each “linear”
rule S → α that is going to be simulated by “right-linear” and “left-linear”
rules.

(III) The computation in G is done in three stages described below.
• Generating terminals at the left end of the string. The sentential form at

this stage can be described by the regular expression T ∗(N \ NT )(NBD)∗.
We remark that at this stage only one non-terminal from N \NT is present
in the string.
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• Generation of symbols from NAC . The sentential form at this stage can be
described by the regular expression T ∗(NAC)∗(N \ NT )(NBD)∗. As above,
at this stage only one non-terminal from N \ NT is present in the string.

• Erasing stage. The sentential form at this stage can be described by the
regular expression T ∗(NAC)∗(AB|CD)(NBD)∗. We remark that there is
only one matching pair AB or CD present in the string.

The transition from stage 1 to stage 2 is performed when the last rule producing
a terminal is applied (X → bY , b ∈ T ). The transition from stage 2 to stage 3
is performed by applying the rule S′ → λ.

9.2. Insertion-deletion

Add definitions for matrix, graph-control and programmed
variants

9.3. Non-complete insertion-deletion

Insertion-deletion of following sizes is shown to be not complete:
(1, 1, 0; 1, 1, 1)
(1, 1, 1; 1, 1, 0)
(1, 1, 0; 2, 0, 0)
(2, 0, 0; 1, 1, 0)
(2, 0, 0; 2, 0, 0)
(1, 0, 0; p, 0, 0)
(n, 0, 0; 1, 0, 0)
Hence, we should take rules from this list for the regulation.

10. Results

Similar proofs as for (110110) may be done for 110200 and
200100 and even 100110/110100 (however in this case the
proof would be longer).

10.1. Ordered insertion-deletion systems

Theorem 23. The language L = a∗b∗ cannot be generated by any ordered insertion-
deletion system of size (1, 1, 0; 1, 1, 0).

Proof. The proof needs yet to be formalized. Here is the idea.
Consider a long enough string anbm and a symbol a that was inserted by an inser-

tion rule (say (x, a, λ)ins):
z ∈ A, z =⇒∗ uxv =⇒ uxav =⇒∗ w ∈ T .
If after insertion of a rule (x, a, λ)ins has priority, then the computation never

stops and the result is empty. Otherwise, only rule of type (a, y, λ)... has the priority.



18 A. Alhazov, R. Freund, S. Ivanov, S. Verlan

Repeat the reasoning. At some moment, either we will consume all non-terminals
(recall that we cannot delete terminals) and stop, so (x, a) will have the priority
again, or we will insert terminals indefinitively, hence never stopping. □

While I’m quite confident about same result for 110200 and
200110, it might be different for 111110...

It also seems that only very simple languages can be gen-
erated by ordered variants – as far as a terminal symbol is
inserted, it is inserted perpetually...

Also we recall that combining priorities/ordering and graph-control yields the CC
with 110100/100110 (see [2]).

11. CD insertion-deletion systems

For CD insertion-deletion systems working in = k and ≥ k mode, the proof is the
same like in the time-varying case (put the corresponding 5 rules per component and
have as many components as rules).

In t-mode the situation is different, as it is possible to show that there is no
computational completeness for standard cases (110110, 110200, 200110) using the
same method as in the original insdel. The main idea: when generating a∗b∗, if a
letter a is inserted, then any number can be inserted (because of the t-mode) and we
cannot distinguish them.

The case 111110 is a bit different. More power is obtained with CD control:
One can generate anbn as follows (even with CF deletion only):
axiom: ab
C1: (a, X, b)ins, (X, Y, b)ins

C2: (X, a, Y )ins, (a, b, Y )ins

C3: (λ, X, λ)del, (λ, Y, λ)del

Similarly, anbncn or xx can be obtained.
One can generate all CF languages:
For a rule r : X → bY :
C : (¬r, r, X)ins

Rr : (r, Y, X)ins, (r, b, Y )ins, (Y, X, λ)del

D : (λ, r, λ)del

For a rule r : X → Y b:
C : (¬r, r, X)ins, (r, r′, X)
Rr : (r, Y, r′)ins, (Y, b, r′)ins, (r′, X, λ)del

D : (λ, r, λ)del, (λ, r′, λ)del

Works because there is only one non-terminal in the string.
Unfortunately, I could not find a way to simulate AB → λ...
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