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Abstract

Using a Choquet integral model in the context of multiple criteria decision making often involves

assessing a capacity on the basis of preferences among alternatives given by a decision-maker. In

such circumstances, the elicited capacity is rarely unique. This lack of uniqueness complicates the

interpretation of classic indices, such as the interaction index between criteria. It is often the case

that the elicitation makes only use of binary alternatives, i.e., alternative that have either a neutral

or a satisfactory evaluation on each criteria. We give conditions guaranteeing that preferences

expressed on such alternatives can be represented by a Choquet integral model. On the basis of

these conditions, we show that a negative interaction among a group is never necessary, i.e., we

can always find a capacity for which this interaction is positive. Outside the framework of binary

alternatives, we propose a linear programming model allowing one to test whether the sign of the

interaction index remains unchanged for all capacities that are compatible with the preferences

expressed by the decision-maker.

Keywords: Choquet integral model, Multiple criteria decision making, Interaction index, Binary

alternatives.

JEL Codes: C44

1. Introduction

In Multiple Criteria Decision Making (MCDM), the additive value function model is popular among

practitioners and have solid theoretical foundations [19]. This model implies accepting an indepen-

dence hypothesis stating that changing a common evaluation of a criterion should not affect prefer-

ences between alternatives [3]. In some contexts, this hypothesis might be seen as restrictive [11].

Hence, several other models that do not require this independence hypothesis have been developed.
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A famous one is the Choquet integral model. Its use in MCDM was popularized through the work

of Michel Grabisch [7, 8]. The Choquet integral model is presently considered as a central tool in

MCDM when one wants to escape the independence hypothesis [10, 11, 12]. In this model, the

importance of criteria and groups of criteria is modelled using a “capacity”.

In the literature, the particular case of 2-additive capacities has received much attention [9]. This

case is often considered as a useful compromise between an additive model implying independence

and a general Choquet integral model (i.e., using a capacity that is not restricted to be 2-additive)

raising difficult elicitation and interpretation issues [15]. This model is often used in practice

(evaluation of comfort [13], performance measurement [2, 5], systems design [23]). Nevertheless,

the general case remains important. This is the subject of this paper.

When a capacity is elicited on the basis of preferences, one should expect its non-uniqueness.

This clearly complicates the interpretation of the aggregation model. For instance, within the entire

set of capacities that are compatible with the preference information, one capacity could exhibit

a positive interaction index between a given group of criteria, while another capacity in this set

might exhibit a negative one.

This question was first tackled in Mayag and Bouyssou [21] in the case of Choquet integral model

using 2-additive capacities. These results were extended in [16] removing the hypothesis that the

capacity is 2-additive but adding the hypothesis that there is no indifference in the preference

information that is collected. We remove this last hypothesis in the present paper.

We give necessary and sufficient conditions that preferences on binary alternatives obtained

from a decision maker can be represented by a Choquet integral model. This generalizes results

in [22] for the case of a Choquet integral model using a 2-additive capacity. We then show that,

under the same conditions, a capacity that is compatible with the preference information that

was collected can always be chosen so that interaction indices between all groups of criteria are

all strictly positive. Because the framework of binary alternatives is restrictive, we also propose

a linear programming model allowing to test for the existence of a capacity compatible with the

preference information that was collected and for the robustness of the sign of the interaction index

between a group of criteria.

The rest of this paper is organized as follows. We present our framework in Section 2. The

concept of necessary and possible interaction introduced in [21] is generalized in Section 3. Our

main results are presented In Sections 4 and 5. Section 6 present our linear programming model

allowing to go beyond the case of binary alternatives. A final section summarizes and concludes.
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2. Notation and preliminaries

2.1. The framework

Let X be a set of alternatives evaluated on a set of n criteria N = {1, 2, . . . , n}. For any subset

A ⊆ N , throughout this paper we use the notation A ⊆≥2 N if and only if |A| ≥ 2 (i.e., A contains

at least two criteria). The set X is assumed to be the Cartesian product X1×X2× . . .×Xn, where

Xi is the set of possible levels on criterion i ∈ N .

We will suppose that the criteria are recoded numerically using, for all i ∈ N, a function ui from

Xi into R. Using these functions we assume that the various recoded criteria are commensurate,

so that the application of the Choquet integral model is meaningful [14].

As in [14], we assume that the DM is able to identify on each criterion i ∈ N two reference

levels 0i and 1i:

• the level 0i in Xi is considered as a neutral level and we set ui(0i) = 0,

• the level 1i in Xi is considered as a good level and we set ui(1i) = 1.

For all x = (x1, . . . , xn) ∈ X, we sometimes write u(x) as a shorthand for (u1(x1), . . . , un(xn)). For

all S ⊆ N , we define the binary alternative aS = (1S , 0−S) in X such that ai = 1i if i ∈ S and

ai = 0i otherwise. We often write ai1i2...is instead of a{i1,i2,...,is}, where 1 ≤ s ≤ n. Moreover, we

write a0 instead of a∅. Our work makes use the set Bg which we define below.

Definition 1. The general set of binary alternatives is defined by,

Bg = {aS = (1S , 0−S) : S ⊆ N}.

The term “general” is used here since the set B = {a0, ai, aij : i, j ∈ N} ⊆ Bg is already defined

in the literature, under the name of binary alternatives [14, 22].

2.2. The Choquet integral

The Choquet integral [9, 10, 11] is an aggregation function known in MCDM as a tool generalizing

the weighted arithmetic mean. The Choquet integral uses the notion of capacity [4, 9] defined as a

function µ from the power set 2N into [0, 1] such that:

• µ(∅) = 0,

• µ(N) = 1,

• For all S, T ∈ 2N ,
[
S ⊆ T =⇒ µ(S) ≤ µ(T )

]
(monotonicity).
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Definition 2. For an alternative x = (x1, . . . , xn) ∈ X, the expression of the Choquet integral

w.r.t. a capacity µ is given by,

Cµ

(
u(x)

)
=

n∑
i=1

[
uσ(i)(xσ(i))− uσ(i−1)(xσ(i−1))

]
µ
(
Nσ(i)

)
,

where σ is a permutation on N such that Nσ(i) = {σ(i), . . . , σ(n)}, uσ(0)(xσ(0)) = 0 and

uσ(1)(xσ(1)) ≤ uσ(2)(xσ(2)) ≤ . . . ≤ uσ(n)(xσ(n)).

Remark 1. For all S ⊆ N , we have Cµ(u(aS)) = µ(S).

We suppose that the DM gives preferences by comparing some elements of X. We then obtain the

binary relations P and I defined as follows.

Definition 3. An ordinal preferential information {P, I} on X is given by,

P = {(x, y) ∈ X ×X: DM strictly prefers x to y },

I = {(x, y) ∈ X ×X: DM is indifferent between x and y}.

We frequently write aP b and a I b instead of (a, b) ∈ P and (a, b) ∈ I respectively. We add

to this ordinal preferential information a binary relation M modeling the monotonicity relations

between the general set of binary alternatives, and allowing us to ensure the satisfaction of the

monotonicity condition:
[
S ⊆ T =⇒ µ(S) ≤ µ(T )

]
.

Definition 4. For all aS , aT ∈ Bg, aS M aT if [S ⊇ T and not(aS (P ∪ I) aT )].

Remark 2. aS M aT =⇒ Cµ(u(aS)) ≥ Cµ(u(aT )).

In the sequel, we need the following two classic definitions in graph theory [20].

Definition 5. Let R be a binary relation on X and P its asymmetric part. There exists a strict

cycle in R if there exists elements x0, x1, . . . , xr ∈ X such that x0 Rx1 R . . . Rxr Rx0 and for at

least one i ∈ {0, . . . , r − 1}, xi P xi+1.

Definition 6. Let R be a binary relation on X. We write xTCR y if there exists elements

x0, x1, . . . , xr ∈ X such that x = x0 Rx1R . . . Rxr = y. Hence, TCR is the transitive closure

of the binary relation R.

2.3. The Shapley interaction index

The following interaction index, known as the Shapley interaction index, related to a capacity was

introduced in [9] in order to take into account some synergies between criteria.
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Definition 7. The interaction [9] index w.r.t. a capacity µ is defined for all A ⊆ N by,

IµA =
∑

K⊆N\A

(n− k − a)!k!

(n− a+ 1)!

∑
L⊆A

(−1)a−ℓµ(K ∪ L),where ℓ = |L|, k = |K| and a = |A|.

The index IµA measures interaction for a subset A ⊆ N . In this paper, we are interested in the

interaction between several criteria, so when we talk about the index IµA, it will be for A ⊆≥2 N .

We present below several write results that will be useful in the proof of Proposition 2.

Remark 3. We can rewrite the interaction index of A ⊆≥2 N , w.r.t. a capacity µ as follows:

IµA =
∑

K⊆N\A

(n− k − a)!k!

(n− a+ 1)!
∆Aµ(K),

where ℓ = |L|, k = |K|, a = |A| and ∆Aµ(K) =
∑
L⊆A

(−1)a−ℓµ(K ∪ L).

The next lemma gives a decomposition of ∆Aµ(K) used in the proof of the Proposition 2 (we

assume that 0 is an even number).

Lemma 1. For all A ⊆≥2 N and K ⊆ N \A, we have

∆Aµ(K) =

a∑
p=0,

p even

[ ∑
L⊆A,
ℓ=a−p

µ(K ∪ L) −
∑
L⊆A,

ℓ=a−p−1

µ(K ∪ L)

]
.

Proof. This proof consists of a simple decomposition into positive and negative terms. We give it

in [17].

In the next section, we extend the concept of necessary and possible interaction introduced in

the case of a 2-additive Choquet integral model [21].

3. Necessary and possible interaction

We suppose that the DM compares a number of alternatives in terms of strict preferences (P )

or indifference (I). The following definition tells us when this ordinal preferential information is

representable by a Choquet integral model.

Definition 8. An ordinal preferential information {P, I} on X, is representable by a Choquet

integral model if we can find a capacity µ such that: for all x, y ∈ X, we have

xP y =⇒ Cµ

(
u(x)

)
> Cµ

(
u(y)

)
,

x I y =⇒ Cµ

(
u(x)

)
= Cµ

(
u(y)

)
.
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The set of all capacities that can be used to represent {P, I} at hand will be denoted by

CPref(P, I). When there is no ambiguity on the underlying ordinal preferential information, we

simply write CPref. The following definition will be central in the rest of this text. It is inspired

from [21] where it was given in the special case of 2-additive Choquet integral model.

Definition 9. Let {P, I} be an ordinal preferential information and A ⊆≥2 N .

1. There exists a possible positive (resp. null, negative) interaction for A if there exists µ ∈ CPref

such that IµA > 0 (resp. IµA = 0, IµA < 0),

2. There exists a necessary positive (resp. null, negative) interaction for A if IµA > 0 (resp.

IµA = 0, IµA < 0) for all µ ∈ CPref.

If an interaction is possible but not necessary, then its interpretation seems difficult as its is

strongly related to the capacity chosen in CPref. Indeed, the interpretation of the interaction only

makes sense in the case of the necessary interaction. In the next section we present our results

when there is no indifference in the ordinal preferential information of DM.

4. Results when I is empty

In this section, we start with the particular case I = ∅, and we deal the general case (I ̸= ∅) in the

next section. The condition I = ∅ is likely to be met in most applications: indifference is indeed

much less likely between alternative than strict preference, unless alternatives have been specially

designed to be indifferent.

4.1. Result on the set of alternatives X

When I = ∅, Proposition 1 shows that null interaction is never necessary. In our working paper [17],

we had already obtained this result by assuming that the DM provides a linear order of preferences

on a subset Y of X. Here, we drop this hypothesis.

Proposition 1. Let {P, I} be an ordinal preferential information on X such that {P, I} is rep-

resentable by a Choquet integral model. If the relation I is empty then there is no necessary null

interaction.

Proof. Let us suppose that I = ∅ and {P, I} can be represented by a Choquet integral model using

a capacity µ for which IµA = 0 where A ⊆≥2 N . We show that this null interaction is not necessary.

Let us define the capacity βε by, βε(S) =


1

1 + ε
µ(S), if S ⊊ N,

1, if S = N.

where ε is a strictly positive real number to be determined as follows. For all x ∈ X, we have:
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Cβε

(
u(x)

)
=

n∑
i=1

[
uσ(i)(xσ(i))− uσ(i−1)(xσ(i−1))

]
βε(Nσ(i))

= uσ(1)(xσ(1))βε(N) +

n∑
i=2

(
uσ(i)(xσ(i))− uσ(i−1)(xσ(i−1))

)
βε(Nσ(i))

= uσ(1)(xσ(1)) +
1

1 + ε

n∑
i=2

(
uσ(i)(xσ(i))− uσ(i−1)(xσ(i−1))

)
µ(Nσ(i))

=
1

1 + ε

[
uσ(1)(xσ(1)) +

n∑
i=2

(
uσ(i)(xσ(i))− uσ(i−1)(xσ(i−1))

)
µ(Nσ(i))

]
+

ε

1 + ε
uσ(1)(xσ(1))

=
1

1 + ε
Cµ

(
u(x)

)
+

ε

1 + ε
uσ(1)(xσ(1)).

=
1

1 + ε

[
Cµ

(
u(x)

)
+ εuσ(1)(xσ(1))

]
.Therefore, for all (x, y) ∈ P, we then have:

Cβε

(
u(x)

)
− Cβε

(
u(y)

)
=

1

1 + ε

[(
Cµ

(
u(x)

)
− Cµ

(
u(y)

))
+ ε

(
uσ(1)(xσ(1))− uγ(1)(yγ(1))

)]
.

We are looking for ε such that Cβε

(
u(x)

)
− Cβε

(
u(y)

)
> 0 for all (x, y) ∈ P . We have,

Cβε

(
u(x)

)
− Cβε

(
u(y)

)
> 0 ⇐⇒ ε

(
uσ(1)(xσ(1))− uγ(1)(yγ(1))

)
> −

(
Cµ

(
u(x)

)
− Cµ

(
u(y)

))
.

Let us consider the set Ω = {(x, y) ∈ P : uσ(1)(xσ(1))− uγ(1)(yγ(1)) < 0}.

• If Ω = ∅, then for all (x, y) ∈ P , uσ(1)(xσ(1))−uγ(1)(yγ(1)) ≥ 0. Thus for all (x, y) ∈ P, for all

ε > 0, we have Cβε

(
u(x)

)
− Cβε

(
u(y)

)
> 0.

• If Ω ̸= ∅, we choose ε such that 0 < ε < min
(x,y)∈Ω

(
Cµ

(
u(y)

)
− Cµ

(
u(x)

)
uσ(1)(xσ(1))− uγ(1)(yγ(1))

)
in such a way

that Cβε

(
u(x)

)
− Cβε

(
u(y)

)
> 0 for all (x, y) ∈ P .

So in both cases we can choose ε =
1

4
min

(x,y)∈Ω

(
Cµ

(
u(y)

)
− Cµ

(
u(x)

)
uσ(1)(xσ(1))− uγ(1)(yγ(1))

)
such that {P, I} is

representable by the Choquet integral model Cβε
, i.e., βε ∈ CPref. Moreover we have,

Iβε

A =
(n− a)!

(n− a+ 1)!

∑
L⊆A

(−1)a−ℓβε

(
(N \A) ∪ L

)
+

∑
K⊊N\A

(n− k − a)!k!

(n− a+ 1)!

∑
L⊆A

(−1)a−ℓβε(K ∪ L)

=
(n− a)!

(n− a+ 1)!
βε(N) +

(n− a)!

(n− a+ 1)!

∑
L⊊A

(−1)a−ℓβε

(
(N \A) ∪ L

)
+

∑
K⊊N\A

(n− k − a)!k!

(n− a+ 1)!

∑
L⊆A

(−1)a−ℓβε(K ∪ L).
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Iβε

A =
(n− a)!

(n− a+ 1)!
+

1

1 + ε

(n− a)!

(n− a+ 1)!

∑
L⊊A

(−1)a−ℓµ
(
(N \A) ∪ L

)
+

1

1 + ε

∑
K⊊N\A

(n− k − a)!k!

(n− a+ 1)!

∑
L⊆A

(−1)a−ℓµ(K ∪ L)

=
1

1 + ε
IµA +

ε

1 + ε

1

n− a+ 1

=
ε

1 + ε

1

n− a+ 1
> 0, since IµA = 0.

We deduce that there exists a possible positive interaction for A. Hence there is no null interaction

for A. Hence, null interactions are never necessary when I = ∅.

The following example illustrates the result of Proposition 1.

Example 1. N = {1, 2, 3}, X = {a, b, c, d}, a = (6, 11, 9), b = (6, 13, 7), c = (16, 11, 9), d =

(16, 13, 7) and P = {(a, b), (d, c)}.
{P, I} is representable by the capacity µ (such thatIµ13 = 0) given in Table 1 and the corresponding

Choquet integral is given in Table 2. For all i ∈ N , we define the utility function ui by ui(xi) = xi.

We recall that Iµ13 =
1

2
(µ123 − µ12 + µ13 − µ23 − µ1 + µ2 − µ3).

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

µ(S) 0 0 0 1 0.5 0.5 1

Table 1: A capacity µ ∈ CPref such that Iµ13 = 0

x a b c d

Cµ

(
u(x)

)
7.5 6.5 11 13

Table 2: The Choquet integral corresponding at the capacity µ of Table 1

We have uσ(1)(aσ(1)) − uγ(1)(bγ(1)) = 6 − 6 = 0 and uσ(1)(dσ(1)) − uγ(1)(cγ(1)) = 7 − 9 = −2 < 0,

then Ω = {(d, c)} and ε =
1

2
×

Cµ

(
u(c)

)
− Cµ

(
u(d)

)
uσ(1)(dσ(1))− uγ(1)(cγ(1))

=
1

4
× 11− 13

7− 9
= 0.25.

A capacity βµ ∈ CPref such that Iβ
µ

13 > 0 and the corresponding Choquet integral are respectively

given in Table 3 and Table 4.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

βµ(S) 0 0 0 0.8 0.4 0.4 1

Table 3: A capacity βµ ∈ CPref such that Iβ
µ

13 > 0
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x a b c d

Cβµ

(
u(x)

)
7.2 6.4 10.6 11.8

Table 4: The Choquet integral corresponding at the capacity βµ of Table 3

We have Iβ
µ

13 =
1

2
(µ123−µ12+µ13−µ23−µ1+µ2−µ3) =

1

2
(1−0.8+0.4−0.4−0+0−0) = 0.1 > 0.

Or, as in the proof of Proposition 1, we have Iβ
µ

13 =
ε

1 + ε
× 1

n− a+ 1
=

0.25

1.25
× 1

2
= 0.1 > 0.

In the next subsection, we will restrict ourselves on the set Bg.

4.2. Results on the general set of binary alternatives Bg

The two following propositions are taken from [16]. We recall them to facilitate the comparison with

this paper. Proposition 2 provides a necessary and sufficient condition for an ordinal preferential

information on Bg containing no indifference to be representable by a Choquet integral model.

Proposition 2. Let {P, I} be an ordinal preferential information on Bg such that I = ∅. Then,

{P, I} is representable by a Choquet integral model if and only if the binary relation (P∪M) contains

no strict cycle.

Proof. See the proof of Proposition 1 in [16].

When {P, I} is representable by a Choquet integral model, then there exists a representation

for which all the interaction indices are strictly positive. It is the result of Proposition 3. This

result shows that when there is no indifference, negative and null interactions are not necessary.

Proposition 3. Let {P, I} be an ordinal preferential information on Bg such that I = ∅, and

(P ∪M) containing no strict cycle. Then there exists a capacity µ ∈ CPref such that IµA > 0 for all

A ⊆≥2 N .

Proof. See the proof of Proposition 2 in [16].

5. Results when I is not empty

In this section, we relax the condition I = ∅ made in the previous section and we generalize some

of our previous results. We start by the following proposition which extends Proposition 2.

Proposition 4. Let {P, I} be an ordinal preferential information on Bg.

{P, I} is representable by a Choquet integral if and only if the binary relation (P ∪M ∪ I) contains

no strict cycle.
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Proof. Necessity. Suppose that the ordinal preferential information {P, I} on Bg is representable

by a Choquet integral. So there exists a capacity µ such that {P, I} is representable by Cµ.

If (P ∪M ∪ I) contains a strict cycle, then there exists x0, x1, . . . , xr on Bg such that

x0(P ∪M∪I)x1(P ∪M∪I) . . . (P ∪M∪I)xr(P ∪M∪I)x0 and there exists xi, xi+1 ∈ {x0, x1, . . . , xr}
so that xiPxi+1. Since {P, I} is representable by Cµ, therefore Cµ(u(x0)) ≥ . . . ≥ Cµ(u(xi)) >

Cµ(u(xi+1)) ≥ . . . ≥ Cµ(u(x0)), then Cµ(u(x0)) > Cµ(u(x0)), a contradiction. Hence, (P ∪M ∪ I)

contains no strict cycle.

Sufficiency. We assume that the graph
(
Bg, (P ∪M ∪ I)

)
does not contain any strict cycle and

let us define the binary relation RI∪M on Bg by, for all x, y ∈ Bg, we have xRI∪M y if and only if

xTCI∪M y and y TCI∪M x. RI∪M is an equivalence relation. Let B′ = Bg/RI∪M be the quotient

set of Bg by the equivalence relation RI∪M . Let us define on the set B′ the preference relation P ′

by, for all A, B ∈ B′, AP ′ B ⇐⇒ ∃a ∈ A, ∃b ∈ B : aP b or aM b.

The graph
(
B′, P ′) contains no strict cycle because the graph

(
Bg, (P ∪M ∪ I)

)
contains no strict

cycle. But the graph
(
B′, P ′) no indifference, so that there exists {B′

0,B′
1, . . . ,B′

m} a partition of

B′, built by using a suitable topological sorting on graph
(
B′, P ′) [6]. We construct a partition

{B′
0,B′

1, . . . ,B′
m} as follows:

B′
0 = {A ∈ B′: ∀C ∈ B′, not [A(P ∪M)C]}, B′

1 = {A ∈ B′ \ B′
0: ∀C ∈ B′ \ B′

0, not [A(P ∪M)C]},
B′
i = {A ∈ B′\(B′

0∪ . . .∪B′
i−1): ∀C ∈ B′\(B′

0∪ . . .∪B′
i−1), not [A(P ∪M)C]}, for all i = 2, 3, . . . ,m.

Let Bi = {x ∈ A: A ∈ B′
i} for all i = 0, 1, . . . ,m. Therefore {B0,B1, . . . ,Bm} is a suitable topological

sorting on graph
(
Bg, (P ∪M ∪ I)

)
since {B′

0,B′
1, . . . ,B′

m} is a suitable topological sorting on graph(
B′, P ′). Let us define the capacity µ: 2N −→ [0, 1] as follows.

For all S ⊆ N, µ(S) =

{
0, if aS ∈ B0,

(2n)ℓ/(2n)m, if aS ∈ Bℓ, ℓ ∈ {1, 2, . . . ,m}.
Let aS , aT ∈ Bg.

a) Assume that aS I aT , therefore there exists A ∈ B′ such that aS , aT ∈ A. Since A ∈ B′, thus

there exists ℓ ∈ {0, 1, . . . ,m} such that A ∈ B′
ℓ, then we have aS , aT ∈ Bℓ.

– If ℓ = 0, therefore Cµ(u(aS)) = 0 = Cµ(u(aT )).

– If ℓ ∈ {1, . . . ,m}, therefore Cµ(u(aS)) = (2n)ℓ/(2n)m = Cµ(u(aT )).

In both cases, we have Cµ(u(aS)) = Cµ(u(aT )).

b) Assume that aS P aT , then there exists A ∈ B′
r, C ∈ B′

q, such that aS ∈ A, aT ∈ C with

r, q ∈ {0, 1, . . . ,m} and r > q. Thus q ∈ {0, 1, . . . ,m − 1}, r ∈ {1, . . . ,m} and Cµ(u(aS)) =

µ(S) = (2n)r/(2n)m.

– If q = 0, therefore Cµ(u(aT )) = µ(T ) = 0 < (2n)r/(2n)m = µ(S) = Cµ(u(aS)).

– If q ∈ {1, . . . ,m− 1}, therefore Cµ(u(aT )) = µ(T ) = (2n)q/(2n)m. Since r > q, therefore

(2n)r > (2n)q, then (2n)r/(2n)m > (2n)q/(2n)m, i.e., Cµ(u(aS)) > Cµ(u(aT )).
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Hence {P, I} is representable by Cµ, i.e., µ ∈ CPref.

The following proposition shows that, if the DM is not indifferent between the best alternative

aN and another alternative, then a positive interaction is always possible for all subsets of at least

two criteria.

Proposition 5. Let {P, I} be an ordinal preferential information on Bg such that (P ∪ M ∪ I)

contains no strict cycle. If not(aS TCI∪M aN ) for all S ⊊ N , then there exists a capacity µ ∈
CPref(P, I) such that IµA > 0 for all A ⊆≥2 N .

Proof. The partitions {B′
0, . . . ,B′

m} of B′ and {B0, . . . ,Bm} of Bg are built as in the proof of Propo-

sition 4. Let us define the capacity µ: 2N −→ [0, 1] as follows.

For all S ⊆ N , µ(S) =


0, if aS ∈ B0,

(2n)ℓ

(2n)n+m
, if aS ∈ Bℓ, ℓ ∈ {1, 2, . . . ,m− 1},

1, if aS ∈ Bm.

Let aS , aT ∈ Bg.

a) Suppose that aS I aT , then there exists r ∈ {0, 1, . . . ,m} such that aS , aT ∈ Br, thus

Cµ(u(aS)) = µ(S) = µ(T ) = Cµ(u(aT )).

b) Suppose that aS P aT , then there exists r, q ∈ {0, 1, . . . ,m} such that aS ∈ Br, aT ∈ Bq. As

aS P aT , then r > q. We have Cµ(u(aS)) = µ(S) =
(2n)r

(2n)n+m
(if 1 ≤ r ≤ m − 1) or 1 (if

r = m). Hence, we have Cµ(u(aS)) ≥
(2n)r

(2n)n+m
.

• If q = 0, then aT ∈ B0 and aS ∈ Br with r ≥ 1. As Cµ(u(aT )) = Cµ(u(a0)) = µ(∅) = 0,

then Cµ(u(aS)) > Cµ(u(aT )).

• If q ≥ 1, Cµ(u(aT )) = µ(T ) =
(2n)q

(2n)n+m
, since 1 ≤ q ≤ m − 1. But r > q therefore

Cµ(u(aS)) ≥
(2n)r

(2n)n+m
>

(2n)q

(2n)n+m
= Cµ(u(aT )), then Cµ(u(aS)) > Cµ(u(aT )).

Hence, in both cases we have Cµ(u(aS)) > Cµ(u(aT )).

We deduce that {P, I} is representable by Cµ i.e., µ ∈ CPref(P, I).

Let A ⊆≥2 N , according to the Lemma 1 we have:
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(n− a+ 1)!× IµA =
∑

K⊆N\A

(n− k − a)!k!
∑
L⊆A

(−1)a−ℓµ(K ∪ L)

=
∑

K⊆N\A

(n− k − a)!k!

a∑
p=0,
p even

[ ∑
L⊆A,
ℓ=a−p

µ(K ∪ L) −
∑
L⊆A,

ℓ=a−p−1

µ(K ∪ L)

]

≥
∑

K⊆N\A

a∑
p=0,
p even

[ ∑
L⊆A,
ℓ=a−p

µ(K ∪ L) −
∑
L⊆A,

ℓ=a−p−1

µ(K ∪ L)

]
, since (n− k − a)!k! ≥ 1.

Moreover,
∑

K⊆N\A

a∑
p=0,
p even

[ ∑
L⊆A,
ℓ=a−p

µ(K ∪ L) −
∑
L⊆A,

ℓ=a−p−1

µ(K ∪ L)

]

=
∑

K⊆N\A

a∑
p=0,
p even

∑
L⊆A,
ℓ=a−p

µ(K ∪ L) −
∑

K⊆N\A

a∑
p=0,
p even

∑
L⊆A,

ℓ=a−p−1

µ(K ∪ L)

= µ(N) +

a∑
p=2,
p even

∑
L⊆A,
ℓ=a−p

µ((N \A)∪L) +
∑

K⊊N\A

a∑
p=0,
p even

∑
L⊆A,
ℓ=a−p

µ(K ∪L) -
∑

K⊆N\A

a∑
p=0,
p even

∑
L⊆A,

ℓ=a−p−1

µ(K ∪L)

≥ µ(N)−
∑

K⊆N\A

a∑
p=0,
p even

∑
L⊆A,

ℓ=a−p−1

µ(K ∪ L).

Therefore, (n − a + 1)!k! × IµA ≥ µ(N) −
∑

K⊆N\A

a∑
p=0,
p even

∑
L⊆A,

ℓ=a−p−1

µ(K ∪ L). We still have to prove

that µ(N)−
∑

K⊆N\A

a∑
p=0,
p even

∑
L⊆A,

ℓ=a−p−1

µ(K ∪ L) > 0.

Let K ⊆ N \ A, p ∈ {0, . . . , a} even number and L ⊆ A with ℓ = a − p − 1. We have L ⊊ A,

therefore K ∪ L ⊊ N , then by hypothesis not(aK∪LTCI∪MaN ). Thus aN ∈ Bm and there exists

ℓK∪L ∈ {0, 1, . . . ,m − 1} such that aK∪L ∈ BℓK∪L
. Then µ(K ∪ L) =

(2n)ℓK∪L

(2n)n+m
or µ(K ∪ L) = 0,

hence in both cases we have µ(K ∪ L) ≤ (2n)ℓK∪L

(2n)n+m
. Therefore,

∑
K⊆N\A

a∑
p=0,
p even

∑
L⊆A,

ℓ=a−p−1

µ(K ∪ L) ≤
∑

K⊆N\A

a∑
p=0,
p even

∑
L⊆A,

ℓ=a−p−1

(2n)ℓK∪L

(2n)n+m

≤
∑

K⊆N\A

a∑
p=0,
p even

∑
L⊆A,

ℓ=a−p−1

(2n)m−1

(2n)n+m
=

(2)n−1(2n)m−1

(2n)n+m
. Moreover,
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(2)n−1(2n)m−1

(2n)n+m
=

2n−1(2n)m−1

(2n)n(2n)m
=

2n−1(2n)m−1

2(2)n−1(n)n(2n)(2n)m−1
=

1

4nn+1
< 1 = µ(N). Hence we

have µ(N) >

[ ∑
K⊆N\A

a∑
p=0,
p even

∑
L⊆A,

ℓ=a−p−1

µ(K ∪ L)

]
, i.e., µ(N)−

[ ∑
K⊆N\A

a∑
p=0,

p even

∑
L⊆A,

ℓ=a−p−1

µ(K ∪ L)

]
> 0.

We can therefore conclude that (n− a+ 1)!× IµA > 0, i.e., IµA > 0.

Our Lemma 2 shows that the condition not(aN\{i} TCI∪M aN ) for all i ∈ N is equivalent to the

condition not(aS TCI∪M aN ) for all S ⊊ N used above. This new condition forbids to be indifferent

between the best alternative aN and another alternative aN\{i}, obtained from aN by degrading

the satisfaction of the DM from the reference level 1i, to the reference level 0i on criterion i, while

remaining unchanged for the other criteria.

Lemma 2. Let {P, I} be an ordinal preferential information on Bg such that (P ∪M ∪ I) contains

no strict cycle. The condition [not(aS TCI∪M aN ) for all S ⊊ N ] is equivalent to[
not(aN\{i} TCI∪M aN ) for all i ∈ N

]
.

Proof. Necessity. Suppose that not(aS TCI∪M aN ) for all S ⊊ N , then not(aN\{i} TCI∪M aN )

for all i ∈ N since N \ {i} ⊊ N for all i ∈ N.

Sufficiency. Assume that not(aN\{i} TCI∪M aN ) for all i ∈ N.

We suppose that there exists S ⊊ N such that aS TCI∪M aN . Since S ⊊ N , then there exists

i0 ∈ N \ S such that S ⊆ N \ {i0}. We have aN (P ∪M ∪ I) aN\{i0} (P ∪M ∪ I) aS TCI∪M aN .

• If aN P aN\{i0} or aN\{i0}P aS , then (P ∪ I ∪M) contains a strict cycle. A contradiction.

• Else, we have aN (I ∪M) aN\{i0} (I ∪M) aS TCI∪M aN , then aN\{i0} TCI∪M aN . A contra-

diction.

We deduce that not(aS TCI∪M aN ) for all S ⊊ N.

We conjecture that the condition not(aN\{i} TCI∪M aN ) is necessary and sufficient to obtain

a possible positive interaction for all A ⊆≥2 N . Proposition 6 shows that the conjecture is true

for a small number of criteria (n ≤ 5). This proposition is useful in practice since most of decision

problems have less than 6 criteria. At this stage, we do not have neither a proof for the general

case (n ≥ 6), nor a counter-example indicating that this condition is not necessary.

Proposition 6. Let N be a set of n criteria, with 2 ≤ n ≤ 5. Let {P, I} be an ordinal preferential

information on Bg such that (P ∪M∪I) contains no strict cycle. If there exists a capacity µ ∈ CPref

such that IµA > 0 for all A ⊆≥2 N , then we have not(aN\{i} TCI∪M aN ) for all i ∈ N .

Proof. We assume that IµA > 0, for all A ⊆≥2 N and there exists i ∈ N such that aN\{i} TCI∪M aN .

For all A ⊆≥2 N , let us consider Jµ
A = (n− a+ 1)!IµA. So we have Jµ

A > 0 since IµA > 0.
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• Case n = 2.

Following the hypothesis, we have a1 TCI∪M a12 or a2 TCI∪M a12. Hence we obtain µ12 = µ1

or µ12 = µ2 implying Jµ
12 = −µ2 ≤ 0 or Jµ

12 = −µ1 ≤ 0. A contradiction since Jµ
12 > 0.

• Case n = 3.

Without loss of generality, we assume that i = 3, i.e., µ123 = µ12. Hence we have,

Jµ
23 = µ123 −µ12 −µ13 +µ23 +µ1 −µ2 −µ3 and Jµ

123 = µ123 −µ12 −µ13 −µ23 +µ1 +µ2 +µ3.

This leads to Jµ
23 + Jµ

123 = −2(µ13 − µ1) ≤ 0. Which is impossible because Jµ
23, J

µ
123 > 0.

• Case n = 4.

Without loss of generality, we assume that i = 4, i.e., µ1234 = µ123. Hence we have:

Jµ
34 = 2µ1234−2µ123−2µ124+µ134+µ234+2µ12−µ13−µ14−µ23−µ24+2µ34+µ1+µ2−2µ3−2µ4

Jµ
134 = µ1234−µ123−µ124+µ134−µ234+µ12−µ13−µ14+µ23+µ24−µ34+µ1−µ2+µ3+µ4

Jµ
234 = µ1234−µ123−µ124−µ134+µ234+µ12+µ13+µ14−µ23−µ24−µ34−µ1+µ2+µ3+µ4

Jµ
1234 = µ1234−µ123−µ124−µ134−µ234+µ12+µ13+µ14+µ23+µ24+µ34−µ1−µ2−µ3−µ4.

This leads to 2Jµ
34 + 3(Jµ

134 + Jµ
234) + 2Jµ

1234 = −12(µ124 − µ12) ≤ 0. A contradiction since

Jµ
34, J

µ
134, J

µ
234, J

µ
1234 > 0.

• Case n = 5.

Like in the previous cases, without loss of generality, we assume that i = 5, i.e., µ12345 = µ1234.

We then have:

Jµ
1245 = µ12345−µ1234−µ1235+µ1245−µ1345−µ2345+µ123−µ124−µ125+µ134+µ135−µ145+µ234

+µ235−µ245+µ345+µ12−µ13+µ14+µ15−µ23+µ24+µ25−µ34−µ35+µ45−µ1−µ2+µ3−µ4−µ5.

Jµ
1345 = µ12345−µ1234−µ1235−µ1245+µ1345−µ2345+µ123+µ124+µ125−µ134−µ135−µ145+µ234

+µ235+µ245−µ345−µ12+µ13+µ14+µ15−µ23−µ24−µ25+µ34+µ35+µ45−µ1+µ2−µ3−µ4−µ5.

Jµ
2345 = µ12345−µ1234−µ1235−µ1245−µ1345+µ2345+µ123+µ124+µ125+µ134+µ135+µ145−µ234

−µ235−µ245−µ345−µ12−µ13−µ14−µ15+µ23+µ24+µ25+µ34+µ35+µ45+µ1−µ2−µ3−µ4−µ5.

Jµ
145 = 2µ12345 − 2µ1234 − 2µ1235 + µ1245 + µ1345 − µ2345 + 2µ123 − µ124 − µ125 − µ134 −

µ135 + 2µ145 + 2µ234 +2µ235 − µ245 − µ345 + u12 + µ13 − 2µ14 − 2µ15 − 2µ23 + µ24 + µ25 +

µ34 + µ35 − 2µ45 + 2µ1 − µ2 − µ3 + 2µ4 + 2µ5.

Jµ
245 = 2µ12345 − 2µ1234 − 2µ1235 + µ1245 − 2µ1345 + µ2345 + 2µ123 − µ124 − µ125 + 2µ134 +

2µ135 −µ145 −µ234 −µ235 +2µ245 −µ345 +µ12 − 2µ13 +µ14 +µ15 +µ23 − 2µ24 − 2µ25 +µ34 +

µ35 − 2µ45 − µ1 + 2µ2 − µ3 + 2µ4 + 2µ5.

14

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Jµ
345 = 2µ12345 − 2µ1234 − 2µ1235 − 2µ1245 + µ1345 + µ2345 + 2µ123 + 2µ124 + 2µ125 − µ134 −

µ135 − µ145 − µ234 −µ235 − µ245 + 2µ345 − 2µ12 + µ13 + µ14 + µ15 + µ23 + µ24 + µ25 − 2µ34 −
2µ35 − 2µ45 − µ1 − µ2 + 2µ3 + 2µ4 + 2µ5.

Jµ
45 = 6µ12345 − 6µ1234 − 6µ1235 + 2µ1245 + 2µ1345 + 2µ2345 + 6µ123 − 2µ124 − 2µ125 − 2µ134 −

2µ135 + 2µ145 − 2µ234 − 2µ235 + 2µ245 + 2µ345 + 2µ12 + 2µ13 − 2µ14 − 2µ15 + 2µ23 − 2µ24 −
2µ25 − 2µ34 − 2µ35 + 6µ45 + 2µ1 + 2µ2 + 2µ3 − 6µ4 − 6µ5.

Therefore we have Jµ
45+2(Jµ

145+Jµ
245+Jµ

345)+2(Jµ
1245+Jµ

1345+Jµ
2345) = −24(µ1235−µ123) ≤ 0.

A contradiction since Jµ
45, J

µ
145, J

µ
245, J

µ
345, J

µ
1245, J

µ
1345, J

µ
2345 > 0.

The following example illustrates the result of Proposition 2.

Example 2. N = {1, 2, 3, 4}, P = {(a23, a1), (a234, a123), (a2, a13)} and I = {(a14, a23)}.
(P∪M∪I) contains no strict cycle, and hence {P, I} is representable by a Choquet integral model. A

suitable topological sorting of (P ∪M ∪ I) is given by B0 = {a0}, B1 = {a1, a3, a4}, B2 = {a13, a34},
B3 = {a2}, B4 = {a12, a14, a23, a24}, B5 = {a123, a124, a134}, B6 = {a234} and B7 = {aN}. Table 5

gives a capacity µ ∈ CPref and the corresponding interaction indices IµS .

S 87 × µ(S) IµS

∅ 0 −
{1}, {3}, {4} 8 −

{2} 83 −
{1, 2} 84 0.29

{1, 3} 82 0.29

{1, 4} 84 0.29

{2, 3}, {2, 4} 84 0.34

{3, 4} 82 1.04

{1, 2, 3}, {1, 2, 4} 85 0.42

{1, 3, 4} 85 0.43

{2, 3, 4} 86 0.53

N 87 0.83

Table 5: A capacity µ ∈ CPref and the corresponding interaction indices IµS

We can see that for all S ⊆≥2 N , we have IµS > 0.

15

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6. A LP model testing for necessary interaction

This section builds on [21]. We drop the hypothesis that we only ask an ordinal preferential

information on Bg. We show how to test the existence of some necessary positive and negative

interactions. We assume that the DM provides a strict preference P and an indifference I relations

on a set X (that is not necessarily Bg). Let A be a subset of at least two criteria. Our approach

consists in testing first, in two steps, the compatibility of {P, I} with a Choquet integral model,

and then, in the third step, the existence of necessary positive or negative interaction for A.

We start this section with a remark giving a simplified version of the monotonicity condition.

We use it in our linear programs, to reduce the number of constraints.

Remark 4. The monotonicity condition is equivalent to the following condition: for all S ⊊ N,

∀i ∈ N \ S, µ(S) ≤ µ(S ∪ {i}).

6.1. The process

Step 1. The following linear program LP1 models each relation in {P, I} by introducing two

nonnegative slack variables α+
xy and α−

xy in the corresponding constraint (Equation (1a) or (1b)).

Equation (1c) (resp. (1d)) ensures the normalization (resp. monotonicity) of capacity µ. The

objective function Z1 minimizes all the nonnegative variables introduced in (1a) and (1b).

Minimize Z1 =
∑

(x,y)∈P∪I

(α+
xy + α−

xy) LP1

Subject to

Cµ(u(x))− Cµ(u(y)) + α+
xy − α−

xy ≥ ε ∀x, y ∈ X such that x P y (1a)

Cµ(u(x))− Cµ(u(y)) + α+
xy − α−

xy = 0 ∀x, y ∈ X such that x I y (1b)

α+
xy ≥ 0, α−

xy ≥ 0 ∀x, y ∈ X such that x(P ∪ I)y

µ(N) = 1 (1c)

µ(S ∪ {i}) ≥ µ(S) ∀S ⊊ N, ∀i ∈ N \ S. (1d)

ε ≥ 0.

Cµ(u(x)) depends linearly on the decision variables µ(S). The linear program LP1 is always feasible

due to the introduction of the nonnegative variables α+
xy and α−

xy. There are two possible cases:

1. If the optimal solution of LP1 is Z∗
1 = 0, then we can conclude that, depending on the sign of

the variable ε (ε = 0 or ε > 0), {P, I} may be represented by a Choquet integral. The next

step of the procedure, Step 2 hereafter, will confirm or not this possibility.

2. If the optimal solution of LP1 is Z∗
1 > 0, then there is no Choquet integral model compatible

with {P, I}.

Step 2. Here, the linear program LP2 ensures the existence of a Choquet integral model compatible

with {P, I}, when the optimal solution of LP1 is Z∗
1 = 0. Compared to the previous linear program,
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in this formulation, we only removed the nonnegative variables α+
xy and α−

xy (or put them equal

to zero) and change the objective function by maximizing the value of the variable ε, in order to

satisfy the strict preference relation.

Maximize Z2 = ε LP2

Subject to

Cµ(u(x))− Cµ(u(y)) ≥ ε ∀x, y ∈ X such that xP y (2a)

Cµ(u(x))− Cµ(u(y)) = 0 ∀x, y ∈ X such that x I y (2b)

µ(N) = 1 (2c)

µ(S ∪ {i}) ≥ µ(S) ∀S ⊊ N, ∀i ∈ N \ S (2d)

ε ≥ 0.

Notice that LP2 is solved only if Z∗
1 = 0. Hence, the linear program LP2 is always feasible and it does

not have an unbounded solution (it is not restrictive to suppose that Cµ(u(x)) ∈ [0, 1], ∀x ∈ X).

Hence, we have one of the following two cases.

1. If the linear program LP2 is feasible with optimal solution Z∗
2 = 0, then there is no Choquet

integral model compatible with {P, I}.

2. If the optimal solution of is LP2 is Z∗
2 > 0, then {P, I} is representable by a Choquet integral

model.

Step 3. At this step, we assume that {P, I} is representable by a Choquet integral model, i.e.,

Z∗
2 > 0. To test the necessary negative (resp. positive) interaction for the subset A ⊆≥2 N , we add

to the previous linear program LP2 the constraint (2e) and we obtain the following linear program

denoted by LPA
NN (resp. LPA

NP ).

Maximize Z3 = ε LPA
NN (resp. LPA

NP )

Subject to

Cµ(u(x))− Cµ(u(y)) ≥ ε ∀x, y ∈ X such that xP y (2a)

Cµ(u(x))− Cµ(u(y)) = 0 ∀x, y ∈ X such that x I y (2b)

µ(N) = 1 (2c)

µ(S ∪ {i}) ≥ µ(S) ∀S ⊊ N, ∀i ∈ N \ S (2d)

IµA ≥ 0 (resp. IµA ≤ 0) (2e)

ε ≥ 0.

IµA depends linearly on the decision variables µ(S). After solving the linear program, we have one

of the following three possible conclusions:

1. If LPA
NN (resp. LPA

NP ) is not feasible, then the interaction for A is necessarily negative

(resp. positive). Indeed, as the program LP2 is feasible with an optimal solution Z∗
2 > 0,

the contradiction about the representation of {P, I} only comes from the introduction of the

constraint IµA ≥ 0 (resp. IµA ≤ 0).
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2. If LPA
NN (resp. LPA

NP ) is feasible and the optimal solution Z∗
3 = 0, then the constraint

Cµ(u(x)) − Cµ(u(y)) ≥ ε ∀x, y ∈ X such that xP y is satisfied with ε = 0, i.e., it is not

possible to model strict preference by adding the constraint IµA ≥ 0 (resp. IµA ≤ 0) in LPA
NN

(resp. LPA
NP ). Therefore, we can conclude that the interaction for A is necessarily negative

(resp. positive).

3. If LPA
NN (resp. LPA

NP ) is feasible and the optimal solution Z∗
3 > 0, then the interaction for

A is not necessarily negative (resp. positive).

For each of the previous linear programs, we have n(2n−1 − 1) constraints of monotonicity. Fur-

thermore, the Table 6 give the list of the decision variables and Table 7 give an idea of number of

variables and number of constraints of monotonicity.

Decision variables

LP1 ε, α+
xy, α

−
xy, µ(S) (∅ ⊊ S ⊊ N)

LP2 ε, µ(S) (∅ ⊊ S ⊊ N)

LPA
NN ε, µ(S) (∅ ⊊ S ⊊ N)

LPA
NP ε, µ(S) (∅ ⊊ S ⊊ N)

Table 6: Decision variables

Number of variables µ(S) Number of constraints of monotonicity

n = 3 6 9

n = 4 14 28

n = 5 30 75

n = 6 62 186

n = 7 126 441

n = 8 254 1 016

n = 9 510 2 295

n = 10 1 022 5 110

n = 11 2 046 11 253

n = 12 4 094 24 564

Table 7: Number of variables µ(S) and number of constraints of monotonicity with 3 ≤ n ≤ 12

In practice, the number of criteria generally does not exceed 12. Thus, with a common solver, we

are able to solve these linear programs.
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6.2. Example

In this section, we illustrate our decision procedure with an example, inspired from [1]. Let us

consider a recruitment problem, where the executive manager of a company looks for engaging a

new young employee. The manager takes into account the following four criteria.

1. Educational degree (abbreviated: Ed);

2. Professional experience (abbreviated: Ex);

3. Age (abbreviated: Ag);

4. Job interview (abbreviated: In).

In this example, X = {Arthur, Bernard, Charles, Daniel, Esther, Felix, Germaine, Henry, Irene}
and N = {1, 2, 3 , 4}.
The candidates, evaluated by the executive manager and their scores for every criterion on a [0, 10]

scale are presented in Table 8. We suppose that the criteria have to be maximized.

Now, suppose that the executive manager (the DM) on the basis of her preference structure is

able to give only the following partial information on the reference actions X ′ = {Arthur, Bernard,

Charles, Germaine, Irene}.

(a) The candidate Charles (C) is preferred to candidate Bernard (B),

(b) The candidate Germaine (G) is preferred to candidate Arthur (A),

(c) The candidates Charles (C) and Irene(I) are indifferent.

A B C D E F G H I

Ed 8 3 10 5 8 5 8 5 0

Ex 6 1 9 9 0 9 10 7 10

Ag 7 10 0 2 8 4 5 9 2

In 5 10 5 9 6 7 7 4 8

Table 8: Evaluation matrix

Step 1. Linear program LP1 with nonnegative slack variables α+
CB , α

−
CB , α

+
GA, α

−
GA, α

+
CI and α−

CI .

Minimize Z1 = α+
CB + α−

CB + α+
GA + α−

GA + α+
CI + α−

CI

Subject to

Cµ(C)− Cµ(B) + α+
CB − α−

CB ≥ ε

Cµ(G)− Cµ(A) + α+
GA − α−

GA ≥ ε

Cµ(C)− Cµ(I) + α+
CI − α−

CI = 0
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Cµ(A) = 5 + µ123 + µ13 + µ1

Cµ(B) = 1 + 2µ134 + 7µ34

Cµ(C) = 5µ124 + 4µ12 + µ1

Cµ(D) = 2 + 3µ124 + 4µ24

Cµ(E) = 6µ134 + 2µ13

Cµ(F ) = 4 + µ124 + 2µ24 + 2µ2

Cµ(G) = 5 + 2µ124 + µ12 + 2µ2

Cµ(H) = 4 + µ123 + 2µ23 + 2µ3

Cµ(I) = 2µ234 + 6µ24 + 2µ2

µ12 ≥ µ1; µ12 ≥ µ2

µ13 ≥ µ1; µ13 ≥ µ3

µ14 ≥ µ1; µ14 ≥ µ4

µ23 ≥ µ2; µ23 ≥ µ3

µ24 ≥ µ2; µ24 ≥ µ4

µ34 ≥ µ3; µ34 ≥ µ4

µ123 ≥ µ12; µ123 ≥ µ13; µ123 ≥ µ23

µ124 ≥ µ12; µ124 ≥ µ14; µ124 ≥ µ24

µ134 ≥ µ13; µ134 ≥ µ14; µ134 ≥ µ34

µ234 ≥ µ23; µ234 ≥ µ24; µ234 ≥ µ34

µ1234 ≥ µ123; µ1234 ≥ µ124; µ1234 ≥ µ134; µ1234 ≥ µ234

µ1234 = 1

ε ≥ 0

α+
CB , α

−
CB , α

+
GA, α

−
GA, α

+
CI and α−

CI ≥ 0.

The linear program LP1 is feasible and optimal solution of LP1 is Z∗
1 = 0, then we can conclude

that, depending on the sign of the variable ε, {P, I} may be represented by a Choquet integral.

The next step of the procedure, Step 2 hereafter, will confirm or not this possibility.

Step 2. The linear program corresponding to the test of the existence of a capacity µ compatible

with {P, I} is the following:

Maximize Z2 = ε

Subject to

Cµ(C)− Cµ(B) ≥ ε

Cµ(G)− Cµ(A) ≥ ε

Cµ(C)− Cµ(I) = 0
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Cµ(A) = 5 + µ123 + µ13 + µ1

Cµ(B) = 1 + 2µ134 + 7µ34

Cµ(C) = 5µ124 + 4µ12 + µ1

Cµ(D) = 2 + 3µ124 + 4µ24

Cµ(E) = 6µ134 + 2µ13

Cµ(F ) = 4 + µ124 + 2µ24 + 2µ2

Cµ(G) = 5 + 2µ124 + µ12 + 2µ2

Cµ(H) = 4 + µ123 + 2µ23 + 2µ3

Cµ(I) = 2µ234 + 6µ24 + 2µ2

µ12 ≥ µ1; µ12 ≥ µ2

µ13 ≥ µ1; µ13 ≥ µ3

µ14 ≥ µ1; µ14 ≥ µ4

µ23 ≥ µ2; µ23 ≥ µ3

µ24 ≥ µ2; µ24 ≥ µ4

µ34 ≥ µ3; µ34 ≥ µ4

µ123 ≥ µ12; µ123 ≥ µ13; µ123 ≥ µ23

µ124 ≥ µ12; µ124 ≥ µ14; µ124 ≥ µ24

µ134 ≥ µ13; µ134 ≥ µ14; µ134 ≥ µ34

µ234 ≥ µ23; µ234 ≥ µ24; µ234 ≥ µ34

µ1234 ≥ µ123; µ1234 ≥ µ124; µ1234 ≥ µ134; µ1234 ≥ µ234

µ1234 = 1

ε ≥ 0.

The linear program LP2 is feasible and optimal solution of LP2 is Z∗
2 = 3.8 > 0, then we can

conclude that {P, I} is representable by a Choquet integral model. Moreover, the results obtained

by solving LP2 are given in Tables 9 and 10.

S µ(S)

∅, {1}, {3}, {4}, {1, 3}, {1, 4}, {3, 4} 0

{2}, {2, 3}, {2, 4}, {2, 3, 4} 0.9

{1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, N 1

Table 9: A capacity µ ∈ CPref

x A B C D E F G H I

Cµ(x) 6 3 9 8.6 6 8.6 9.8 6.8 9

Table 10: The corresponding Choquet integral at the capacity µ of Table 9
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Step 3. In order to know if the interaction is necessarily negative for {1, 2, 3}, we obtain the

LP 123
NN by adding at the previous linear program LP2 the constraints Iµ123 ≥ 0 with Iµ123 =

µ1234 + µ123 − µ124 − µ134 − µ234 − µ12 − µ13 + µ14 − µ23 + µ24 + µ34 + µ1 + µ2 + µ3 − µ4.

The linear program LP 123
NN is feasible and the optimal solution is Z∗

3 = 3.8 > 0. Then interaction

is not necessarily negative for {Educational degree, Professional experience, Age}. Moreover, the

results obtained by solving LP 123
NN are given in Tables 11 and 12 (with Iµ123 = 1 > 0).

S µ(S)

∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4},{2, 3}, {3, 4}, {1, 3, 4} 0

{2, 4}, {2, 3, 4} 0.125

{1, 2, 3}, {1, 2, 4} 0.2

N 1

Table 11: A capacity µ ∈ CPref such that Iµ123 > 0.

x A B C D E F G H I

Cµ(x) 5.2 1 1 3.1 0 4.45 5.4 4.2 1

Table 12: The corresponding Choquet integral at capacity µ of Table 11

7. Conclusion

When a capacity is elicited on the basis of preferences obtained from a decision maker, it is unlikely

to be unique (this contrasts with the “continuous case” studied in Timonin [24, 25]). In partic-

ular, this non-uniqueness complicates the interpretation of the interaction index. Indeed, we give

examples in which the sign of the interaction index depends upon the arbitrary choice of a capacity

within the set of all capacities compatible with the preferences that were obtained. We generalize

the concept of necessary and possible interaction introduced in [21] outside the case of 2-additive

capacities. Necessary interactions are the only interactions that can safely be interpreted since

their sign does not vary within the set of all compatible capacities. We have given conditions under

which preferences on the general set of binary alternatives can be represented using a capacity in a

Choquet integral model. We do the same adding the extra condition that the representing capacity

has strictly positive interaction indices for all groups of criteria. These results seem to call for much

care in the interpretation of the interaction index.

Our results leave some important questions open. The first one would be to derive results similar

to ours but for the case of strictly negative interaction indices. Our proof technique does not seem

easy to adapt to cover this case. Results of this type using the non-additivity index introduced
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in Wu and Beliakov [26], instead of the interaction index have been proposed in Kaldjob Kaldjob

et al. [18]. The second would be to develop tools allowing to analyze “necessary interactions” for

a large class of aggregation models, including the Choquet integral model. Finally, the study of

aggregation models using bipolar scales [10] seems to be promising.
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Response to the comments of reviewer 2

We would first like to thank you for your new valuable comments about our paper. We have

taken into account all your minor comments. In particular, we have modified our notation for

subsets of N containing more than 2 elements, as you suggested (comment made on page 2). We

have also changed the type of the paper to “Full Length Article” (FLA), because “research article”

does not appear among the article types.

For the two major comments, we propose the following responses.

C.1 P.13: sufficiency part of the proof of Lemma 2: you write “therefore aN\i M aS”. But it could

be that aN\i P aS , so that aN\i M aS is not true (if I understand well the definition of M).

Thank you for your comment, you are right. The idea was to complete the graph with the

monotonicity relation for the pairs (aS , aT ), with S ⊇ T , on which the decision maker gave

no preference. We have modified our proof of Lemma 2 (see page 13).

C.2 Prop 6: I appreciate the effort although the result is limited, but I think the proof is not

correct: in n = 3, I cannot see how you can find J23 + J123 = −2(µ13 − µ1). Clearly the

coefficient of µ123 is not zero. Same with n = 4 : the coefficient of µ1234 cannot be zero in

2J34 + 3(J134 + J234) + 2J1234. Also, there is a mistake in J34 : the coeff. of µ1 is 1, not 2.

Thank you for your comment. You are right, in Jµ
34, the coefficient of µ1 is 1, not 2. But, our

results remain valid. Indeed, we have:

• for n = 3, the coefficient of µ123 is not zero in J23, neither in J123, since we have:


Jµ
23 = µ123 − µ12 − µ13 + µ23 + µ1 − µ2 − µ3

and

Jµ
123 = µ123 − µ12 − µ13 − µ23 + µ1 + µ2 + µ3

But we assume that µ123 = µ12, therefore we have:
Jµ
23 = −µ13 + µ23 + µ1 − µ2 − µ3

and

Jµ
123 = −µ13 − µ23 + µ1 + µ2 + µ3
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Adding members to members, we obtain Jµ
23 + Jµ

123 = −2(µ13 − µ1) ≤ 0.

• For n = 4, the coefficient of µ1234 is not zero in J34, neither in J134, neither in J234,

neither in J1234, since we have:

Jµ
34 = 2µ1234 − 2µ123 − 2µ124 + µ134 + µ234 + 2µ12 − µ13 − µ14 − µ23 − µ24 + 2µ34 +

µ1 + µ2 − 2µ3 − 2µ4

Jµ
134 = µ1234−µ123−µ124+µ134−µ234+µ12−µ13−µ14+µ23+µ24−µ34+µ1−µ2+µ3+µ4

Jµ
234 = µ1234−µ123−µ124−µ134+µ234+µ12+µ13+µ14−µ23−µ24−µ34−µ1+µ2+µ3+µ4

Jµ
1234 = µ1234−µ123−µ124−µ134−µ234+µ12+µ13+µ14+µ23+µ24+µ34−µ1−µ2−µ3−µ4.

But we assume that µ1234 = µ123, therefore we have:

Jµ
34 = −2µ124+µ134+µ234 +2µ12 −µ13 −µ14 −µ23 −µ24 +2µ34+ µ1 +µ2−2µ3 −2µ4

Jµ
134 = −µ124 + µ134 − µ234 + µ12 − µ13 − µ14 + µ23 + µ24 − µ34 + µ1 − µ2 + µ3 + µ4

Jµ
234 = −µ124 − µ134 + µ234 + µ12 + µ13 + µ14 − µ23 − µ24 − µ34 − µ1 + µ2 + µ3 + µ4

Jµ
1234 = −µ124 −µ134 −µ234 +µ12 +µ13 +µ14 +µ23 +µ24 +µ34 −µ1 −µ2 −µ3 −µ4.

This leads to 2Jµ
34 + 3(Jµ

134 + Jµ
234) + 2Jµ

1234 = −12(µ124 − µ12) ≤ 0.

2



  

LaTeX Source Files

Click here to access/download
LaTeX Source Files

Choquet.tex

https://www.editorialmanager.com/fss/download.aspx?id=415851&guid=21c3eaa3-4848-4277-a7ad-99cd53f84222&scheme=1


  

LaTeX Source Files

Click here to access/download
LaTeX Source Files

biblio.bib

https://www.editorialmanager.com/fss/download.aspx?id=415852&guid=657cbe9a-b71a-4a9d-b408-0f61991c1be0&scheme=1



