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A new deterministic scheme for characterizing the organization of primes is established. At its core are eleven generic tables, coupled with a three-criteria test applied on differences between pairs of consecutive composite odd numbers obtained from the tables. Our scheme trivially yields P (m) , the set of all primes below any preassigned limit m in N : π(m) = |P (m)| . Setting m = 3 (2n + 1) , n ∈ N * , we establish, for the first time, that π(m) = 4 + |A4(m)| + 2 |A6(m)| where |A4(m)| and |A6(m)| are the cardinals of the sets of pairs of consecutive composite odd numbers, below m and having, each, a difference of 4 and 6, respectively. We prove that A6(m) is the set of Twin Primes below m, and that A4(m) is the set of all pairs of primes distant by 2k (k = 0), below m. T (m) is the number of consecutive composite odd numbers below m. We establish that T (m) = 1 + |A2(m)| + |A4(m)| + |A6(m)| where |A2(m)| is the number of pairs of consecutive composite odd numbers, below m, and having a difference of 2. We prove that the latter corresponds to the cardinal of the set of even numbers below m. With m an odd number, combining π(m), T (m), and |A2(m)| = m+1 2 , we establish that

|A6(m)| + 3 = m -2T (m) > 0 ⇔ 0 < 1 -2 T (m) m < 1 
, for any m as above.

The non empty set Sm ≡ 1 -2 T (m) m , m as above ⊂ R is bounded. Hence

Inf (Sm) exists, is unique and finite.

By definition, Inf (Sm) ≥ 0. We introduce

α = Inf (Sm) if Inf (Sm) > 0. ǫ if Inf (Sm) = 0, with 0 < ǫ < 1 -2 T (m) m .
Q Dense in R guarantees the existence of ǫ > 0, in Q, as above. In any case, we have 0 < α ≤ 1 -2 T (m) m , for any m as above.

In others words, 

I. INTRODUCTION

Prime numbers play an important role, both in pure mathematics and its applications. Primes occur in a very irregular way within the sequences of natural numbers. In particular, the distribution of prime numbers exhibits a local irregularity but a global regularity. One of the best existing results illustrating that global regularity is the prime number theorem giving the number of prime number, π(n), not exceeding any upper limit n ∈ N. In an epoch-marking work published in the late nineteenth century, it was shown that π(n) behaves asymptotically as n ln n [1]. Prime numbers derive most of their importance from the fundamental theorem of arithmetic [START_REF] Gauss | Disquisitiones Arithmeticae[END_REF]. Given their importance in the construction of all natural numbers, a problem that presents itself at the very roots of mathematics is therefore the one about the organization of the primes among the integers. In this work, using consecutive composite odd numbers as a gateway, we present a new deterministic scheme allowing an unexpected foray into the organization of prime numbers, including a novel re-investigation of the Twin Primes conjecture. We recall that Twin Primes are pairs of Prime numbers separated by two. Some attribute the Conjecture to the mathematician Euclid of Alexandria. The first formulation of the Twin Primes conjecture, in its modern form, was given in 1846 by French mathematician Alphonse De Polignac [START_REF] De Polignac | Recherches nouvelles sur les nombres premiers Comptes rendus[END_REF]. The conjecture states that there are infinitely many Twin Primes. In April 2013, Zhang published his results, showing that there were infinitely many primes with a gap less than 70 million [START_REF] Zhang | Bounded gaps between primes Ann[END_REF]. Working independently of Zhang and the Polymath Project, Maynard has established a bound of 600 using an entirely different method [START_REF] Maynard | Gaps between primes. rXiv[END_REF]. In April 2014, within the Polymath Project, the bound stood at 246 [START_REF] Polymath | The bounded gaps between primes Polymath project a retrospective[END_REF]. Assuming an additional result on the distribution of primes, known as the Elliott-Halberstam conjecture, the bound can be reduced to 6 [START_REF] Polymath | Variants of the Selberg sieve, and bounded intervals containing many primes[END_REF]. The present paper unveils some novel aspects of the organization of Primes. It is a first in a series. In section II, we comprehensively present the foundations of our new Deterministic scheme. In section III, we present a few consequences of the scheme, including a new light on the Twin Primes Conjecture. We conclude in section IV.

II. A NOVEL DETERMINISTIC SCHEME YIELDING THE SET OF PRIMES UP TO ANY n ∈ N

Towards clarifying our approach and some terminology, let us start with some definitions. Definition 1. Any p > 1, in N, is a composite odd number if and only if (1) p is an odd number;

(2) p is not a prime number.

We note that 1 is neither prime or composite. Definition 2. For any n and p elements of N, n and p are consecutive composite odd numbers if and only if there exists no other composite odd number k such that n < k < p.

By construction, any (composite) odd number has to end with 1 or 3 or 5 or 7 or 9. Hence, Lemma 1. For some n ∈ N * P N 1 ≡ 10n + 1 , for all composite odd numbers ending with 1; P N 3 ≡ 10n + 3 , for all composite odd numbers ending with 3; P N 5 ≡ 10n + 5 , for all composite odd numbers ending with 5; P N 7 ≡ 10n + 7 , for all composite odd numbers ending with 7; P N 9 ≡ 10n + 9 , for all composite odd numbers ending with 9.

The fundamental theorem of arithmetic establishes that any composite odd number can only be written as a product of odd numbers: Lemma 2. For any a composite odd number, p , there exists l and m each an odd number such that p = l * m.

Based on lemma 1, one can express all possible products p = l * m for p any odd number. This consists in writing down all possible products P N i * P N j for i, j ∈ {1, 3, 5, 7, 9} . The latter yields fifteen (15) equalities. Five redundant equalities associated to the all composite odd numbers ending with 5 are collapsed into a single relation leave us with a set of eleven (11) equations defining all possible composite odd numbers. The eleven equations consist in three (for any p ending with 1), two (3), one [START_REF] Maynard | Gaps between primes. rXiv[END_REF], two [START_REF] Polymath | Variants of the Selberg sieve, and bounded intervals containing many primes[END_REF] and three (9). These eleven relations can be formulated into eleven (11) tables: any composite odd number, p, is given by p = (10k + m) (10l + q) , k, m, l, q ∈ N. For illustration purposes, the two tables yielding all composite odd numbers ending with 7 are given in Tables I andII. From these eleven relations, when computing the complete list of composite odd number below any integer n ≥ 9, the only constrain is that each product p from each of the eleven tables has to be smaller or equal to n. Once ordered, one gets the set of consecutive composite odd numbers below n. All odd numbers not in that final set have to be non composite i.e. primes. Adding {2, 3, 5, 7} completes P(n), the set of primes of below n ≥ 9: π(n) ≡ |P(n)| . Theorem II.1, our first main result, underlies our new Deterministic scheme. Theorem II.1 (Main Theorem). For any pair • We are interested in the separation between the two elements of any pair of consecutive composite odd numbers within Ω (n);

{N 1 , N 2 } of consecutive 1 composite odd numbers, (1) N 2 -N 1 = 2 or N 2 -N 1 = 4 or N 2 -N 1 = 6, (2) If N 2 -N 1 = 2 then there is no prime number between N 1 and N 2 , (3) If N 2 -N 1 =
• As illustrated in Figure 1 and expressed in Lemma 3 below, any number in Ω (n) i.e. any composite odd number will appear within one integers interval, Ω k . The trivial proof follows. It can be refined.

Let us consider any composite odd number p: p ≥ 9 and odd means thatp = 3 * 3 + 2k, for some k ∈ N.

On the other hand, p ≤ p + 4k k ∈ Ngiven above means that p ≤ 3 (3 + 2k) . This means that p ∈ 9 .. 3 (3 + 2k) for some given k ∈ N : It is an integers interval of length 6k. Such interval has k sub-intervals, each of length 6 with p in one them. Each of these k sub-intervals of length 6 have boundaries

N k+1 = 3 (3 + 2k) and N k = N k+1 -6 ⇔ N k = 3 (1 + 2k) , k ∈ N * since the smallest Composite odd number is 9. N k = N k+1 -6 = 3 (1 + 2k) = 3 (3 + 2l) for l ∈ N * since (1 + 2k) is odd. The repeat for N k-1 = N k -6 and so on.
Since each boundary is an odd number multiple of 3, and 9 .. 3 (3 + 2k) is finite, repeating the reasoning above establishes that p ∈ 3 (1 + 2m) .. 3 (3 + 2m) for m ∈ N * . We then conclude that any composite odd number p is within an integers interval Ω k = N k .. N k+1 of length 6 and whose boundaries are each a multiple of 3. The eleven relations (tables), previously mentioned, yield the set of consecutive composite odd numbers below any integer n ≥ 9. The three-criteria test in Theorem II.1 applied to differences of consecutive pairs of the previous set yields P(n), the set of primes below n, with the trivial ones {2, 3, 5, 7} are added. In a nutshell, that is our novel deterministic scheme.

III. A FEW CONSEQUENCES

In all subsequent sections, our preassigned threshold m = 3 (2n + 1) for some n ∈ N * . In other words, m is a composite odd number multiple of 3. This has the merit to lead to versatile relations exploiting the fact that the integers interval Ω k = 3 (1 + 2k) .. 3 (3 + 2k) , k ∈ N * provide a sort of "unit" interval for Ω cocoon (m), as illustrated in Figure 1. 

where A 4 (m) and A 6 (m) are the sets of pairs of consecutive composites odd numbers distant by 4 and 6, respectively. The intuition of the relatively trivial proof for relation 1 is given by two facts. First, we trivially have N ⊆ 0 .. 8 ∞ k=1, k∈N Ω k , with Ω k as above. Adding 0 .. 8 to it, Figure 1 provides a robust visualization of the latter.

Secondly, based on Theorem II.1, one realizes that P(m), the set of all Primes below m is given by P(m) = {2, 3, 5, 7}

{ Primes within all pairs in A 6 (m) } {Primes within all pairs NOT in A 6 (m)} where {Primes within all pairs NOT in A 6 (m) } = {Primes within all pairs in A 2 (m) } {Primes within all pairs in A 4 (m) } , for any m = 3 (2n + 1) , n ∈ N * . All disjoint. With the latter, the Cardinal of P(m) (i.e π(m)) is straightforward by counting the Primes in each subset. Adding the latter yields relation 1. The Reader will excuse the illustrative nature of the justification above. This trivial proof can be rewritten with a more rigorous machinery.

Corollary III.2. Theorem II.1 implies that for m as above,

• A 6 (m) corresponds to the set of Twin Primes below m i.e pairs of Primes, below m and distant by 2k (k = 1);

• A 4 (m) corresponds to the set made of all pairs of primes, below m, and distant by 2k (k = 0): for convenience let us name them "Isolated Primes";

• A 2 (m) corresponds to the set of even numbers below m.

Based on Euclid's Theorem, Equation 1establishes that there are infinitely many " Isolated primes" or infinitely many Twin primes. The last claim is a major conjecture that we explore further in section 3.3.

B. Number of Consecutive Composite Odd Numbers Below Any m ∈ N: T (m)

For any m = 3 (2n + 1) with n ∈ N * , T (n), designates the number of consecutive composite odd numbers (CO-COON) below any preassigned limit m :

T (m) = |Ω COCOON (m)| . By construction Ω COCOON (m) is a finite set made of {u i } i=1,2,3,...,l+1 . Let us introduce ΩCOCOON = {(u 1 , u 2 ) , (u 2 , u 3 ) , (u 3 , u 4 ) , ..., (u l-1 , u l ) , (u l , u l+1 )} . Clearly, ΩCOCOON = l and |Ω COCOON (m)| = 1 + l. In other words: |Ω COCOON (n)| = 1 + ΩCOCOON . We now introduce Ω(2) COCOON = {(u i , u j ) , such that u j -u i = 2} , Ω(4) COCOON = {(u i , u j ) , such that u j -u i = 4} , Ω(6) COCOON = {(u i , u j ) , such that u j -u i = 6} . Embedded in Theorem II.1 is the fact that ΩCOCOON = Ω(2) COCOON Ω(4) COCOON Ω(4) COCOON , with Ω(2) COCOON Ω(4) COCOON Ω(4) COCOON = ø. Therefore ΩCOCOON = Ω(2) COCOON + Ω(4) COCOON + Ω(6) COCOON , hence Theorem III.3. |Ω COCOON (m)| = 1 + ΩCOCOON , = 1 + Ω(2) COCOON + Ω(4) COCOON + Ω(6) COCOON , T (n) = 1 + |A 2 (n)| + |A 4 (n)| + |A 6 (n)| ∀ m = 3 * (2n + 1) , n in N * .
From Theorem II.1, we get that |A 2 (n)| is the number of even numbers below n. Each term in Theorem III.3 is trivially computed via our deterministic scheme.

Some Intermediate Relations

For any n ∈ N, we now introduce the following sets:

(i) Ω n = {0, 1, 2, 3, ..., k, ..., n with n > 0} , the set of integers smaller than n;

(ii) Ω even (n) = {2k ≤ n, k ∈ N} the set of even integers smaller than n;

(iii) Ω odd (n) = {2k + 1 ≤ n, k ∈ N} the set of odd integers smaller than n.

(iv) Ω c (n) = {p, a composite odd number withp ≤ n, } the composite odd numbers smaller than n;

(v) Ω primes (n) = {p, a prime number withp ≤ n} the set of prime numbers smaller than n;

We have

|Ω n | = |Ω even (n)| + |Ω odd (n)| = n + 1.
If n is odd then

|Ω even (n)| = n + 1 2 .
If n is even then

|Ω even (n)| = n 2 + 1.
Within N,

|Ω odd (n)| = 1 + |Ω coon (n)| + |Ω primes (n)| , therefore
Corollary III.4.

|Ω n | = |Ω even (n)| + |Ω odd (n)| n + 1 = n 2 + 1 + |Ω coon (n)| + |Ω primes (n)| + 1 If n is even, n = n 2 + 1 + T (n) + π(n)
and

|Ω n | = |Ω even (n)| + |Ω odd (n)| n + 1 = n + 1 2 + |Ω coon (n)| + |Ω primes (n)| + 1 If n is odd. n = n + 1 2 + T (n) + π(n) Therefore, Corollary III.5. For any n ∈ N (1) π(n) = n-2 2 -T (n) If n is even, (2) π(n) = n-1 2 -T (n) If n is odd.
C. Revisiting The Twin Primes Conjecture

Twin primes are pairs of primes which differ by two. It has been conjectured that there are infinitely many twin primes [START_REF] De Polignac | Recherches nouvelles sur les nombres premiers Comptes rendus[END_REF]. Here we revisit this conjecture under a new light provided by our novel Deterministic scheme. Using the fact in Corollary III.2 that A 6 (n) corresponds to the set of Twin Primes below m, our aim is to establish a lower bound for |A 6 (n)| , of polynomial type in m and conclude. Here again, as in all the next sections, m = 3 (2n + 1) for some n ∈ N * : m is a composite odd number multiple of 3. For such m (odd integer), Corollary III.5 establishes that

π(m) = m -1 2 -T (m). (2) 
On the other hand, combining Equation 1 and Theorem III.3 to eliminate |A 4 (m)| yields

|A 6 (m)| = -3 + |A 2 (m)| + π(m) -T (m). ( 3 
)
Corollary III.2 states that A 2 (m) corresponds to the set of even numbers below m, odd. Hence

|A 2 (n)| = m + 1 2 . ( 4 
)
Combining Equations 2, 3 and 4 leads to

|A 6 (n)| + 3 = m -2T (m) m as above. (5) 
In other words

|A 6 (n)| + 3 = m -2T (m) ⇔ T (m) = 1 2 (m -|A 6 (n)| -3) , with m as above. ( 6 
)
Equations 2 and 6 point to a relative centrality of |A 6 (n)| in the characterization of the organization of primes, as well as to the pivotal role played by composite odd numbers (and their cardinal, T (m)). At this stage, the reader might be tempted to interject that the same can be said about |A 4 (n)| . Our choice, here, is somehow arbitrary as we picked A 6 (n) almost for philosophical reasons: pairs (of Primes) may be better than "single/Isolated" (Primes) at achieving breakthroughs. A problem investigated in the next sections is to know if there are infinitely many "Isolated Primes". Equation 6 establishes that 0

< |A6(n)|+3 m = 1 -2 T (m)
m , for any m as above. Hence 0 < 1 -2 T (m) m < 1 as (T (m) > 0), for any m as above.

Let us introduce then

S m = 1 -2 T (m) m , m = 3 (2n + 1) , n ∈ N * .
Due to the relation in 7, the non empty set S m is bounded, hence Inf (S m ) exists, is unique and finite. We observe that for any α > 0 such that We set

0 < α ≤ 2 -4 T ( 
α = Inf (S m ) if Inf (S m ) > 0. ǫ if Inf (S m ) = 0, with 0 < ǫ < 1 -2 T (m) m .
Q Dense in R guarantees the existence of ǫ > 0, in Q, as above. In any case, we have

0 < α ≤ 1 -2 T (m) m
, for any m as above.

For the chosen α > 0, Through π(m), in Equation 1, the latter provides a new proof for Euclid's Theorem. Through T (m), Equation in Theorem III.3 establishes that there is an infinite number of composite odd numbers. More importantly the first of the two relations above unambiguously proves, for the first time, that there is an infinite number of Twin Primes. Coupling last two relations above, there are infinitely many pairs of primes distant by 2k when k ∈ {0, 1}. Significant results, collateral to the ones above will be the object of follow up publications.

0 < α < 1 -2 T (m) m ⇔ |A 6 (n)| + 3 = m -2T ( 

IV. CONCLUSION & FUTURE WORKS

A new deterministic scheme for characterizing the organization of primes has been established. It yields the set of consecutive and composite odd numbers below any preassigned limit n ∈ N. P(n), the set of all primes below n is trivially deduced from the latter. At the core of the scheme are eleven generic tables, coupled with a threecriteria test applied on differences between pairs of consecutive composite odd numbers obtained from the tables. This also serves as a new proof of Euclid's Theorem. Through T (m), Equation in Theorem III.3 establishes that there is an infinite number of composite odd numbers. More importantly the first of the two relations above unambiguously proves, for the first time, that there is an infinite number of Twin Primes. Coupling the last two relations above, there are infinitely many pairs of primes distant by 2k when k ∈ {0, 1}. Significant results, collateral to the ones above will be the object of follow up publications.

|A6(m)| + 3 =

 3 m -2T (m) ≥ αm, with α > 0 and m as above. The last relation establishes, for the first time, that lim m-→∞ 2 |A6(m)| = +∞. Similarly, lim m-→∞ |A4(m)| = +∞ Thanks to π(m), we have a new proof of Euclid's Theorem. Through T (m), there is an infinite number of composite odd numbers. Coupling the last two relations above, there are infinitely many pairs of primes distant by 2k when k ∈ {0, 1}.
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 4 then there is one prime numbers between N 1 and N 2 , (4) If N 2 -N 1 = 6 then there are two prime numbers between N 1 and N 2 . Proof of Theorem II.1. (A) We prove item (1) in Theorem II.1. Let us introduce the ordered set Ω (n) of all composite odd numbers smaller or equal to n ∈ N. By construction, 9 is the first element of Ω (n) . Ω (n) ⊆ m k=1, k∈N Ω k with Ω k = {p composite odd number such that 3 (2k + 1) ≤ p ≤ 3 (2k + 3) , k ∈ N * } ⊆ N. Ω (n) can be visualized as a line of integers partially illustrated in Figure 1.

FIG. 1 :Lemma 3 .Lemma 4 .Lemma 5 . 2 .Lemma 6 . 2 - 1 and p 1 = N1+N2 2 + 1 .

 13452621121 FIG.1: Partially illustrated here is an ordered set of all composite odd numbers each multiple of 3 that are smaller or equal to some n ∈ N. By construction, 9 is the first composite odd number. Ωcocoon (n) is the set of all consecutive composite odd numbers smaller or equal to n. Ωcocoon (n) ⊆

A.

  Number of Primes Below Any m ∈ N Corollary III.1. Theorem II.1 establishes, for the first time, that π(m) = 4 + |A 4 (m)| + 2 |A 6 (m)| for any m = 3 (2n + 1) where n ∈ N * ,

-

  4T (m) > αm ⇔ |A 6 (m)| + 3 = m -2T (m) > αm, with α > 0 and m as above. (10) Finding a suitable α > 0 satisfying the condition in the relation 9 would therefore provide us with a lower bound of polynomial type, in m, for |A 6 (n)|, as in 10. Recalling that |A 6 (n)| is the number of Twin Primes below m, would then help to conclude when m -→ +∞. Let us therefore find such real number α > 0. By definition, Inf (S m ) ≥ 0.

2

 2 m) > αm, for any m = 3 (2n + 1) with n ∈ N * , and α > 0.In other words, we have established that |A 6 (n)| > αm -3, for any m = 3 (2n + 1) with n ∈ N * , and α > 0. |A 6 (m)| = +∞. Following a similar reasoning one can establish that lim m-→∞ |A 4 (m)| = +∞.

  |P(n)| ≡ π(n). We establish that π(m) = 4 + |A 4 (m)| + 2 |A 6 (m)| ∀m = 3 (3l + 1) , with lin N * . |A 4 (m)| and |A 6 (m)| are the cardinals of the sets of pairs of consecutive composite odd numbers, below m and having, each, a difference of 4 and 6, respectively. |A 6 (n)| and |A 4 (n)| correspond to the number of Twin primes and " Isolated" primes, below any m respectively. The relation for π(m establishes that there is an infinite number of Twin primes or an infinite number of Isolated primes. T (m) is the number of consecutive composite odd numbers below m.We establish that T (m) = 1 + |A 2 (m)| + |A 4 (m)| + |A 6 (m)| where |A 2 (m)| is the number of pairs of consecutive composite odd numbers, below m, and having a difference of 2. We prove that the latter corresponds to the cardinal of the set of even numbers below m. With m an odd number, combining π(m), T (m), and |A 2 (m)| = m+12 , we establish that|A 6 (m)| + 3 = m -2T (m) > 0 ⇔ 0 < 1 -2 T (m) m <1, for any m as above.The non empty set S m ≡ 1 -2 T (m) m , m as above ⊂ R is bounded. HenceInf (S m ) exists and is finite.By definition, Inf (S m ) ≥ 0. We introduceα = Inf (S m ) if Inf (S m ) > 0. ǫ if Inf (S m ) = 0, with 0 < ǫ < 1 -2 T (m) m . 0 < α ≤ 1 -2 T (m) m, for any m as above.In others words, |A 6 (m)| + 3 = m -2T (m) ≥ αm, with α > 0 and m as above. Through π(m), this provides a new proof for Euclid Theorem, and more importantly establishes that there is an infinite number of Twin primes. More importantly, the last relation above establishes, for the first time, that lim m-→∞ 2 |A 6 (m)| = +∞. There are infinitely many Twin Primes. A 4 (m) is the set made of all the last pairs of primes distant by 2k (k = 0), below m. Similarly, lim m-→∞ |A 4 (m)| = +∞

TABLE I :

 I First table representation for {(10k1 + 1) (10k2 + 7) , k1 ∈ N * and k2 ∈ N} : composite odd numbers ending with 7

	k1 k2 (10k1 + 1) (10k2 + 7)
	1 0	11	7
	2 1	21	17
	.. ...	...	...
	∞ ∞	∞	∞

TABLE II :

 II Second table representation for {(10k3 + 3) (10k4 + 9) , k3, k4 ∈ N}: composite odd numbers ending with 7. Together with TableIthey yield all composite odd numbers ending with 7.

	k3, k4 (10k3 + 3) (10k4 + 9)
	0	3	9
	1	13	19
	2	23	29
	...	...	...
	∞	∞	∞

consecutivity as in Definition

is crucial.
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