
HAL Id: hal-03766322
https://hal.science/hal-03766322

Submitted on 31 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of the magnetic coupling in a
Mn(II)-U(V)-Mn(II) Single Molecule Magnet

Sourav Dey, Gopalan Rajaraman, Hélène Bolvin

To cite this version:
Sourav Dey, Gopalan Rajaraman, Hélène Bolvin. Analysis of the magnetic coupling in a Mn(II)-U(V)-
Mn(II) Single Molecule Magnet. Chemistry - A European Journal, 2022, 28 (68), pp.e202201883.
�10.1002/chem.202201883�. �hal-03766322�

https://hal.science/hal-03766322
https://hal.archives-ouvertes.fr


Analysis of the Magnetic Coupling

in a Mn(II)-U(V)-Mn(II) Single Molecule Magnet

Sourav Deya, Gopalan Rajaramana*, Hélène Bolvin b*

Abstract

[{Mn(TPA)I}{UO2(Mesaldien)}{Mn(TPA)I}]I formula (here TPA = tris(2-pyridylmethyl)amine and
Mesaldien = N,N’-(2-aminomethyl)diethylenebis(salicylidene imine)) reported by Mazzanti and coworkers
(Chatelain et al. Angew. Chem. Int. Ed. 2014, 53, 13434) is so far the best Single Molecule Magnet (SMM)
in the {3d-5f} class of molecules exhibiting barrier height of magnetization reversal as high as 81.0 K. In
this work, we have employed a combination of ab initio CAS and DFT methods to fully characterize this
compound and to extract the relevant spin Hamiltonian parameters. We show that the signs of the magnetic
coupling and of the g-factors of the monomers are interconnected. The central magnetic unit [UVO2]+ is
described by a Kramers Doublet (KD) with negative g-factors, due to a large orbital contribution. The
magnetic coupling for the {Mn(II)-U(V)} pair is modeled by an anisotropic exchange Hamiltonian: all
components are ferromagnetic in terms of spin moments, the parallel component JZ twice larger as the per-
pendicular one J⊥. The spin density distribution suggests that spin polarization on the U(V) center favors
the ferromagnetic coupling. Further, the JZ/J⊥ ratio, which is related to the barrier height, was found
to correlate to the corresponding spin contribution of the g-factors of the U(V) center. This correlation
established for the first time offers a direct way to estimate this important ratio from the corresponding
gS-values, which can be obtained using traditional ab initio packages and hence has a wider application to
other {3d-5f} magnets. It is finally shown that the magnetization barrier height is tuned by the splitting of
the [UVO2]+ 5f orbitals.

Introduction

Single molecule magnets (SMMs) are of particular
interest in the field of molecular magnetism due to
their potential application in information storage
and quantum computing [1]. The blocking barrier
of magnetization reversal (Ueff) and blocking tem-
perature (TB , below which opening of hysteresis is
observed) are considered to be figure of merit for
the performance of a SMM [2, 3]. Recently ground-
breaking results of achieving TB as high as liquid ni-
trogen temperature in [(CpiPr5)Dy(Cp*)]+ (CpiPr5

= pentaisopropylcyclopentadienyl, Cp* = penta-
methylcyclopentadienyl) reveals that the magnetic
anisotropy has reached its axial limit as further fine-
tuning of the Ln-ligand interactions are not realis-
tic [4, 5]. One way to circumvent this problem is to
employ actinides that have diffused 5f orbitals ex-
hibiting greater metal-ligand covalency - thanks to
their extra radial node - compared to the 4f orbitals
of the lanthanides [6, 7]. But the radioactivity of

aDepartment of Chemistry, Indian Institute of Technol-
ogy Bombay Powai, Mumbai, Maharashtra, 400076, India

bLaboratoire de Chimie et Physique Quantiques, CNRS,
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actinides makes them less explored than lanthanide
and transition metal complexes.

Actinide, and in particular uranium complexes have
the ability to be superior candidates for SMM due
to their high anisotropy over the range of oxidation
state and ability to mediate strong magnetic ex-
change with other metals [8]. The SMM behavior
of U(III) complexes is inherent and well established
[9, 10, 11, 12, 13, 14, 6, 7, 15, 16, 17, 18, 19, 20, 21].
On the other hand, U(V) complexes, though they
possess only one unpaired electron, fair better
due to a stronger ligand field arising from mul-
tiple metal-ligand characteristics with the donor
atoms such as U––O [22, 23, 24, 25, 17]. The en-
hanced actinide-ligand covalency is also a disad-
vantage as even weaker ligands interact strongly
yield large transverse anisotropy preventing achiev-
ing the Ising type of g-factors that are seen in
lanthanides. Due to this factor, mononuclear ac-
tinide complexes exhibit stronger QTM, which of-
ten overcompensate the ground gained in magnetic
anisotropy. However, if a strong exchange coupling
is induced, this can substantially quench the tunnel-
ing, and this route leads to the birth of a handful of
{3d-5f} magnets exhibiting very attractive barrier
height/blocking temperatures [22, 26, 27].
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Ab initio calculations based on Complete Active
Space (CAS) principles have played an important
role in modeling the magnetic anisotropy in lan-
thanide and actinide complexes. The modeling of
one center lanthanide complexes is based on the
splitting of the ground J a manifold by the crys-
tal field [28, 29, 30], as the splitting of the ground
manifold is similar to the thermal energy available
at room temperature in most cases. In actinide
complexes, the interaction with the ligands is more
important and the ground J manifold might not be
the good model space [31, 32, 33]. Even more, the
An free ion is not the good starting point for the
modeling of the actinyls, which must be considered
as the basic unit perturbed by the equatorial lig-
ands [34, 24, 35, 33]. In particular, for the 5f1

[NpVIO2]2+ complex, which is isoelectronic to the
[UVO2]+ cation, the nature of the equatorial lig-
ands completely dictates the magnetic properties.

The coupling between lanthanide centers is often
described as an isotropic coupling using Lines model
[36, 37], where the local properties are determined
using ab initio calculations. Combined with a first
principle description of the monomers, it allows to
determine the value of the magnetic coupling J
[38, 39, 40]. Considering only the couplings between
two KDs, the fit can be performed using an Ising
Hamiltonian [41]. This approach is valuable to cal-
culate thermodynamic properties where the whole
2J + 1 manifold of the free ion term is populated
and estimates J values in good accordance against
accurate High-Field EPR spectroscopy for a range
of {3d-4f} dimers [42, 43]. The exchange coupling
between two local J angular momenta may be ex-
pressed using the irreducible tensor algebra by a
tensor which rank depends on the values of the local
J [37]. In the present case, we limited the interac-
tion to its second-order term since the local states
are a KD doublet and a spin-only manifold. Fur-
thermore, we neglected the antisymmetric contribu-
tion. Consequently, in the following, the exchange
coupling is described by the tensor J [44, 45]

ĤAB = −Ŝ̂ŜSA � J � Ŝ̂ŜSB (1)

= −JX ŜAX ŜBX − JY ŜAY ŜBY − JZ ŜAZ ŜBZ

where SSSA and SSSB are the local pseudo-spin opera-
tors. This simple form of Eq. 1 allows to model the
interaction with a reduced number of parameters,
whose physical interpretation is straighforward. Its
applicability will be checked by comparing the re-
sponse to a magnetic field with the model Hamilto-
nian to ab initio calculations. This coupling can be
determined using EPR [46, 40, 47, 48].

There are few ab initio description of this cou-
pling. CAS based methods are widely used to de-

aNote the typographic difference between J the total an-
gular momentum quantum number and J the magnetic cou-
pling parameter.

scribe the crystal-field levels in mononuclear lan-
thanide/actinide complexes. For polynuclear sys-
tems the calculation of exchange couplings requires
large active spaces which renders CAS based cal-
culations extremely demanding. Furthermore, the
calculation of exchange couplings requires the in-
clusion of dynamical correlation by multi-reference
configuration interaction, perturbative methods be-
ing non reliable in those cases. This has been
described using variational methods (DDCI) [49,
50], the local-density-fitted configuration-averaged
Hartree–Fock (LDF-CAHF) method [51], Density-
Matrix Renormalization Group (DMRG) method
[52], and Density Functional Theory (DFT) [53].
DFT appears as an alternative tool to compute
magnetic exchange coupling and to explore the
electronic structure and magnetic properties of
actinide-containing molecules, especially when the
considered systems are very large [54].

A detailed understanding of the mechanism under-
lying the anisotropic coupling is of first importance
in order to understand the anisotropy of poly-
metallic complexes. The coupling often reduces
the SMM properties by creating desexcitations
channels to the magnetization. It was shown that
an anisotropic antiferromagnetic coupling should
be the source for skyrmions [55]. This work is
devoted to the detailed analysis of the anisotropic
properties in a trinuclear exchange coupled
{3d-5f} SMM [{Mn(TPA)I}{UO2(Mesaldien)}-
{Mn(TPA)I}]I (denoted [Mn–U–Mn], TPA =
tris(2-pyridylmethyl) amine, Mesaldien = N,N-(2-
aminomethyl)diethylenebis(salicylidene imine)),
studied by Mazzanti and coworkers (see Figure
1) [26]. The Mn(II) centers with a high-spin 3d5

configuration have a half-filled shell: this leads
to a simple electronic configuration that makes
their description simpler and mostly spin-only
non degenerate electronic state, with a negligible
zero-field splitting. The central U(V) unit is
highly anisotropic. The electronic and magnetic
properties of actinyls are well described by CAS
based methods including spin-orbit coupling and a
perturbative description of the dynamical correla-
tion [56, 57, 58, 59, 60, 34, 24, 61]. In this work,
the magnetic monomers are first described using
diamagnetic substitution, then the magnetic cou-
pling is computed in the dimers and trimers using
Configuration Interaction (CI) and DFT methods.
This allows to discuss the spin Hamiltonian of the
trimer and the subsequent properties.

Results and discussion

The [Mn–U–Mn] complex was synthesized and
characterized in the group of Mazzanti [26]. It con-
sists of two [Mn(TPA)I]+ cations bound to the two
oxo groups of the [UO2(Mesaldien)] anion (see Fig-
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Figure 1: X-ray structure of [Mn–U–Mn] =
[{Mn(TPA)I} {UO2(Mesaldien)}{Mn(TPA)I}]I com-
plex. Color code U: cyan, Mn: pink; I: aqua, O: red, N:
blue, C: gray. H atoms are omitted for clarity.

ure 1). The U(V) atom is heptacoordinate with
a slightly distorted pentagonal bipyramid geome-
try, with the two uranyl oxygen atoms Oyl and
the five donor atoms of the Mesaldien2– ligand in
the equatorial plane. The transition metal cen-
ters are hexacoordinate, with a slightly distorted
octahedral geometry defined by the four nitrogen
atoms of the TPA ligand, one oxygen atom from the
uranyl(V) group, and a coordinated iodide anion
(see the SHAPE analysis in Table S1). The U––O

bond length of 1.901 Å denotes a slight lengthen-
ing due to charge donation to the Mn(II) atom and

the Mn–Oyl of 2.055 Å is significantly shorter than
in equivalent complexes. The complex is almost lin-
ear, with a M–U–M angle of 173.77°, the deviation
from linearity is due to intramolecular hydrogen
bonds between the protons on the TPA ligand and
the oxygen atoms of the Mesaldien2– ligand. The
magnetic susceptibility was measured and the high
temperature χT curve was fitted by an Heisenberg
Hamiltonian ĤS = −J (SSSMn1 � SSSU + SSSMn2 � SSSU)
with a ferromagnetic coupling J = 15 cm−1 b and
an isotropic g-factor for the U(V) center gU = 1.
The complex exhibits a slow relaxation of magne-
tization in zero field with Ueff = 56.3 cm−1. It is
reported to have the highest Ueff among all {3d-
5f} complexes having a {M-O=U=O-M} (M = 3d
metal ions) moiety.

The monomers

The Mn(II) cations have a 3d5 configuration and
their high-spin ground state is an orbitally non-
degenerate spin sextet. The zero-field splitting
arises by spin-orbit coupling with the excited quar-
tets at more than 20000 cm−1 and is less than 1
cm−1 (see Table S2 and 1). It will be neglected
in the following and the Mn(II) centers described
by a pure spin S = 5/2. The canonical orbitals
are shown on Figure S3. They are similar for the

bNote the difference of convention of the Heisenberg
Hamiltonian with ref. [26].

Table 1: SO-CASSCF energies and zero-field splitting
parameters (cm−1) of the Mn(II) monomers.

[Mn1 –UVI] [UVI –Mn2]

CAS (5,5) CAS (5,10) CAS (5,5) CAS (5,10)

KD1 0 0.0 0.0 0

KD2 0.4 0.5 0.4 0.5

KD3 1.2 1.3 1.3 1.4

KD4 26701 24685 26278 24228

KD5 26704 24687 26281 24230

D a 0.20 0.21 0.21 0.23

E a 0.02 0.02 0.02 0.02
a: deduced from the three first KDs with spin Hamiltonian
ĤS = D

(
S2
Z −

1
3
S(S + 1)

)
+ E

[
S2
X − S

2
Y

]
and S=5/2.

Table 2: Energies (cm−1) of the U(V) monomers from
spin-orbit calculations.

[Zn–U–Zn] [Zn–U–Zn]mod

CAS(1,6) CAS(1,6) RAS(13,18)

SCF SCF PT2 SCF PT2

KD1 0 0 0 0 0

KD2 1124 1007 774 918 610

KD3 6486 6443 6296 6363 6214

KD4 9034 8973 8928 8844 8751

KD5 11658 11595 12036 11906 11378

KD6 14481 14420 14861 14636 14175

two Mn(II) centers, and characteristic for an octa-
hedral symmetry: the three t2g-like orbitals split
by 500 cm−1, the eg-like orbitals by 2000 cm−1 and
the gap between the two groups is 6000 cm−1.

The uranyl group [UVO2]+ is isoelectronic to the
neptunyl [NpVIO2]2+ with a 5f1 configuration. The
magnetic properties of the latter are very sensitive
to the nature of the equatorial ligands [24, 61]. The
four fδ are non-bonding to the Oyl atoms, while
the fπ and fσ are strongly destabilized, forming
anti-bonding orbitals. In the ground state, the sin-
gle electron lies in the fδ or fϕ orbitals, and mag-
netic properties are determined by the composition
of the ground KD in terms of those orbitals. The
canonical orbitals of the [Zn–U–Zn]mod complex
are shown in Figure 2. The two fδ orbitals are the
lowest ones with a splitting of 400 cm−1, followed by
the two fϕ at 2000 and 4000 cm−1, and finally the
two fπ orbitals, almost degenerate at 6700 cm−1.
This scheme is usual for actinyls with equatorial
ligands: the two former being involved in π inter-
action with the equatorial ligands, the two next in
σ interactions and the two latter in π interaction
with the two oxo groups, all those interactions being
anti-bonding. The fδ and fϕ orbitals have four-fold
and three-fold symmetries along the U–Oyl axis,
respectively, while the equatorial ligand is five-fold,
but irregular. The two oxygen atoms are closer to
the U(V) center than the three nitrogen ones (2.25

vs 2.61 Å). Consequently, fδ2 is slightly more desta-
bilized than fδ1 because it interacts with the oxy-
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fδ1
 (0) 

fδ2 (440) 

fπ2 (6750) 

fπ1 (6650) 

fφ1 (2100) 

fφ2 (4120) 

Figure 2: Canonical orbitals and energies (in parenthe-
ses, cm−1) from SF-CASSCF of [Zn–U–Zn]mod. Two
perspectives are shown for the 4 lowest ones. Isovalue:
0.01 au.

gen atoms of the Mesaldien ligand. The splitting
between fϕ2 and fϕ1 arises for the same reasons.

The energies of the U(V) monomer are given in Ta-
bles S3 and 2. The simplified [Zn–U–Zn]mod com-
plex gives energies close to the [Zn–U–Zn] com-
plex. The magnetic orbitals in the complex are
slightly perturbed as compared to the free [UVO2]+,
and are denoted according to the linear parentage:
|ml| the value of l̂Z for the orbitals and |mj | the

value of ĵZ for the spinors. The main effect of the
equatorial ligands is to lift the degeneracy of the
orbitals, the two fδ by 700 cm-1 and the two fϕ by
more than 2000 cm-1. The states are labeled af-
ter the single occupied orbital (spin-orbit free) or
spinor (spin-orbit). The ground spin-free state is
of 2∆1 parentage, with the single electron in the
lowest fδ1 orbital. The lowest excited state, at 700
cm-1, is of 2∆2 parentage, with the single electron
in the fδ2 orbital. The next excited states are of 2Φ
parentage. In the [UVO2]+ free ion, the spin-orbit
coupling splits the 2∆ state according to Ω = |MJ |
the value of ĴZ in ∆5/2 and ∆3/2. In our com-
plex, the composition of the ground KD is close to
∆3/2, ensued from the coupling between the two 2∆
components, whatever the level of calculation (see

Table S6). The next KDs arise from the mixing be-
tween 2∆ and 2Φ manifolds. KD2 lies between 600
and 1100 cm-1, depending on the level of calcula-
tion. The main effect of correlation is to lower the
energy of 2Φ1 from 2000 to 1300 cm−1. But this
does not affect the ground KD, since of Ω = 3/2
linear parentage, and the spin-orbit free 2Φ free-ion
state spits in Φ5/2 and Φ7/2 by spin-orbit.

As a consequence, the ground KD can be modeled
in the ∆ space, as proposed in Section S2.2 [24].
The key parameter is the splitting by the equatorial
ligands of the spin-orbit free 2∆ state in 2∆1 and
2∆2. The larger this splitting, the more quenched
the orbital contribution. If the two δ orbitals are
degenerate, the g-tensor is axial with a negative gZ
value. On the opposite, with an extremely large
gap, only the 2∆1 state contributes and as a pure
spin doublet, it has an isotopic g tensor equals to
ge = 2. The present case is an intermediate regime,
with a splitting of 700 cm−1 leading to relative
weights of 60% and 30% for 2∆1 and 2∆1 and the
orbital contribution is partially quenched. Ab ini-
tio g-factors are given in Table S5 in ESI. Since the
composition of the ground KD in terms of spin-orbit
free states barely depends on correlation, so do the
g-factors. gA‖ and gA⊥ equal 1.6 and 0.5. gX and
gY are almost equal, as expected from D5h sym-
metry, and will be considered to be equal in the
following. The parallel spin and orbital contribu-
tions are in good accordance with Eqs. S2, with an
orbital contribution about twice the spin one, and
with opposite sign, leading to a negative value for
g‖. But Eqs. S2 predict a vanishing orbital con-
tribution to the equatorial gL⊥, while the ab initio
value is by far non zero, and even larger than the
spin one. This might be due to the small weights
of the ground KD on the 2Φ and 2Π states. The
sign of g⊥ is undetermined, since only the product
gXgY gZ has a physical significance [62, 63]. The
sign of gS⊥ can be assigned by switching off gradu-
ally the spin-orbit coupling: at the spin-free limit,
all values equal to 2, by continuity gS⊥ is positive,
and consequently, g⊥ negative. In the following, we
will keep this choice, keeping in mind its arbitrari-
ness. The magnetic U(V) center will be modeled by
a unique KD, with g-factors gZ = -1.6 and gX = gY
= -0.5.

The Natural Spin Orbitals (NSOs) correspond to
the natural orbitals issued from the spin magneti-
zation for a given direction of the external magnetic
field as defined in references [24, 64, 65]. They al-
low to vizualize the orbitals contributing to the spin
density, for a given quantification axis. NSOs with
a positive (negative) population participate to the
spin density with an α (β) spin for this quantifi-
cation axis. The NSOs of the ground KD issued
from the CASSCF and RASSCF calculations are
represented in Figures S4 and S5, respectively and
the corresponding spin magnetization densities are
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X Y Z

Figure 3: Spin density of the ground KD of the
[Zn–U–Zn]mod complex, for the principal directions
of the g tensor, from SO-CASSCF (above) and SO-
RASSCF (below). Isovalue = 0.0002 e/bohr−3.

shown in Figure 3. As shown in Section S2.2 of the
SI, the decomposition of the two Kramers partners
in their α and β components depends on the direc-
tion of the quantification axis, and consequently,
of the applied magnetic field. Along both X and
Z directions, fδ1 and fδ2 are NSOs with respective
populations 0.6 and 0.3 (see Eqs. S4 and S7). But
along Z, fδ1 and fδ2 orbitals appear both with a
positive spin density, those contributions are addi-
tive and integrate to a large value, leading to an
important longitudinal g-factor. Along X, fδ1 and
fδ2 orbitals appear with opposite spins, and the spin
density alternates with lobes of opposite signs: this
integrates to a smaller value than in the Z direc-
tion. With both SO-CASSCF and SO-RASSCF,
the NSOs correspond well to this model. The in-
crease of the active space with orbitals of the oxo
groups in RASSCF allows a better description of
the correlation in these bonds, the main effect be-
ing the spin polarization [66, 67, 68, 69]. In the
ground spin-orbit free 2∆1 state, the Mulliken spin
densities on the U and Oyl atoms are 0.9967 and
0.0005 with CASSCF, the spin density is positive
on the oxo groups, since only spin delocalization is
introduced. They become 1.0276 and -0.0154 with
RASSCF, due to spin polarization. With spin-orbit
coupling, there is a small amount of negative spin
density, due to the coupling of the ∆ states with
the Π ones with opposite spin.

The trimer

The trimer consists of the [UO2]+ unit (denoted
A) in the center, coupled to two Mn(II) centers
(denoted B and C). Monomer A is the [UO2]+

unit, restricted to its ground KD, is described by a
pseudo-spin SA = 1/2, the tensor gA and its prin-
cipal values gAX = gAY = gA⊥ and gAZ .

ĤA = µBBBB � gA � Ŝ̂ŜSA

= µB

(
gAXBX ŜX + gAYBY ŜY + gAZBZ ŜZ

)
(2)

Monomers B and C are described by a pure spin
SB = 5/2 with a negligible zero-field splitting due

to the half-shell structure. The spin Hamiltonian
reduces to the isotropic Zeeman term

ĤB/C = µBgeBBB � Ŝ̂ŜSB/C (3)

The coupling between the two magnetic centers is
described by the anisotropic coupling Hamiltonian
of Eq. 1. By symmetry, JX = JY = J⊥ and

ĤAB = −J⊥
(
ŜAX Ŝ

B
X + ŜAY Ŝ

B
Y

)
− JZ ŜAZ ŜBZ

= −J Ŝ̂ŜSA � Ŝ̂ŜSB +D
(
ŜAZ Ŝ

B
Z (4)

−1

2
ŜAX Ŝ

B
X −

1

2
ŜAY Ŝ

B
Y

)
with J = (2J⊥+JZ)/3 and D = 2/3(J⊥−JZ). We
suppose the principal axes frame (PAF) of JAB and
gA to be identical.

We started by studying the dimers, and as a first
example, the coupling between two KDs, SA = 1/2
and SB = 1/2 as developped in Section S3.1.1. It
appears that the zero-field energies of the dimer are
not affected by the reversal of sign of two compo-
nents, Jα and Jβ . The response to an external
magnetic field is unaffected by this change of sign,
if one flips the sign of the corresponding g-factors
on one of the site: either gAα and gAβ , or gBα and gBβ .

By changing both gAα , gAβ , gBα and gBβ , one retrieves
the original sign for Jα and Jβ . This rule applies
whatever the values of SA and SB are. As depicted
in Table S7, a ferromagnetic interaction (J > 0)
favors the states with parallel pseudo-spins, ++ or
−−. With positive g factors, it corresponds to par-
allel magnetic moments. If one of the g is negative,
+ corresponds to a negative magnetic moment, and
the favored state has opposite magnetic moments;
this is equivalent to an antiferromagnetic coupling
(J < 0) with positive g factors. It comes out that
the fitting of the ab initio spectra is not sufficient
to provide the sign of the coupling parameters, and
is related to the sign of the corresponding g factors.

We then considered the dimers, built by replacing
one Mn(II) by a diamagnetic Zn(II). A chemical
model [Mn–U–Zn]mod was considered, where the
cycles of the ligands are removed, and the coordi-
nation sphere of the Zn(II) center simplified (see
Figure S2). The dimers were first described by
SO-CASSCF, with the 3d and 5f active orbitals.
The dynamical correlation is further described, per-
forming a RASSCF calculation which includes the
bonding and antibonding σ and π orbitals of the
yle bond. Finally, CI calulations were performed
using the DDCI method. All results are given and
discussed in details in Section S3.2.1 of the Supple-
mentary Material. At the spin-free level, each of
the six doublets of the [UVO2]+ unit couples with
the spin sextet of the Mn(II) center to form a septet
and a quintet. For the ∆ and Φ states, the septet
lies below the corresponding quintet, which is the
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Table 3: Spin Hamiltonian parameters (cm−1) from the
ab initio energies of the [Mn–U–Zn]mod dimer and from
the experimental χT = f(T ) curve.

fit energies [Mn–U–Zn]mod
a fit χT exp

CASSCF RASSCF CAS+S DDCI2 b c

J⊥ 4.7 6.0 9.6 10.0 30.9 22.5

JZ 13.7 20.2 25.9 26.2 56.4 60.0

J 7.7 10.7 15.0 15.4 39.4 35.0

D -6.0 -9.5 -10.8 -10.8 -17.0 -25.
a: fit of energies for the [Mn–U–Zn]mod dimer of Table
S10 by spin Hamiltonian of Eq. 4. b: fit of the
experimental χT = f(T ) curve using gA⊥ = -0.6 and gAZ =
-1.57 and spin Hamiltonian of Eq. 5. c: fit with only Jiso
using Eq. 9 with gSA

X = 0.6; gSA
Z = 1.6.

fingerprint of a ferromagnetic coupling. This cou-
pling increases with correlation. With spin-orbit
coupling, the 12 low lying states are fitted by the
spin Hamiltonian, leading to parameters given in
Table S11: JZ is positive, while the sign of J⊥ is
undetermined. The values increase with the level
of correlation, and J⊥ is 2-3 times smaller than JZ .
It appears that the exchange coupling is largely re-
duced by the spin-orbit coupling as compared to the
spin-free spectrum, by roughly a factor of 2. A sim-
ilar effect was observed in the cerocene triple decker
[49].

The comparison between the M = f(B) and χT =
f(T ) curves calculated from first-principles and de-
duced from the spin Hamiltonian with the param-
eters deduced at the same level of calculation, al-
lows to assess that the spin Hamiltonian is able to
reproduce the physics, and to assign the sign of the
g factors of the central [UVO2]+ unit, relatively to
the J values. As developped in the Supporting In-
formations, it comes out that the J and g for the
direction have opposite signs. In order to be co-
herent with the spin-free limit, the J components
should be positive, leading to a ferromagnetic cou-
pling in terms of spin densities, and the gZ negative,
due to the large orbital contribution, as shown in
Section S2.2.

The trimer [Mn–U–Mn] was described at SO-
CASSCF level, DFT using a broken-symmetry
scheme and by a spin Hamiltonian. The CASSCF
energies are given in Tables S12 and S13 of the ESI.
At spin-orbit free level, each of the six spin dou-
blets of the [UVO2]+ unit couples with the two spin
sextets to form one doducaplet, two docaplets, two
octets, two sextets, two quartets and two doublets.
Except for the Π states, the energy decreases with
total spin, which denotes a ferromagnetic coupling.
The simplified complex [Mn–U–Mn]mod, where the
cycles have been removed from the ligands (cf Fig-
ure S2), leads to energies similar to the whole one
[Mn–U–Mn], except for the splitting between the
two ∆ manifolds which increases by more than 100
cm−1, as for the dimer (cf Table S8), but not in the
monomer (cf Table S3). The SO-CASSCF calcula-

tion provides the 36 KDs issued from the coupling
between the two spin sextets of the Mn(II) centers
and the ground KD of the [UVO2]– unit (cf Ta-
ble S13). The overall splitting is 72 cm−1, about
twice the whole splitting in the dimer. There is a
gap between KD21 and KD22. The g tensors go
from axial to more or less equatorial from KD1 to
KD21, and then from KD22 to KD36, from more or
less equatorial to axial. KD36 has a larger gZ than
KD1.

The spin Hamiltonian for the trimer is the following

Ĥ = ĤA + ĤB + ĤC + ĤAB + ĤAC + ĤBC (5)

where ĤA is given in Eq. 2, ĤB and ĤC in Eq.
3 and ĤAC , ĤAB in Eq. 4. The coupling is
considered to be equal with the two Mn(II) cen-
ters. ĤBC represents the Mn(II)-Mn(II) coupling
and is described by a Heisenberg spin Hamiltonian
ĤBC = −jŜ̂ŜSB �Ŝ̂ŜSC . The spectra for different classes
of parameters are shown on Figure S8. The SO-
CASSCF spectrum of the trimer was fitted by this
Hamiltonian (cf Table S14), leading to parameters
very close to the dimer, with a positive value for JZ ,
and undetermined sign for JX = JY . The fit is im-
proved with a small dissymmetry between JX and
JY which does not affect their average value and
by adding a tiny positive magnetic direct coupling
between the two Mn(II) centers, j = 0.06 cm−1.
As for the dimer, the response to the magnetic field
with the spin Hamiltonian using the g-values of the
monomer with different signs was compared to the
ab initio curves (cf Figure S12). Again, negative g⊥
and gZ match better. This corresponds to positive
spin contributions (see Section S2.2). Furthermore,
the g-factors deduced from spin Hamiltonian com-
pare well with the ab initio values which confirms
that the spin Hamiltonian of Eq. 5 is an adequate
model to describe the magnetic properties of the
[Mn–U–Mn] complex.

The experimental χT curve is represented in Fig-
ure 4. The SO-CASSCF curve does not match the
experimental one, the peak appears at too low tem-
peratures. This is improved using the DDCI2 pa-
rameters, with a larger coupling. The fit proposed
by Chatelain et al. [26] works only at high temper-
ature and provides a too high and too narrow peak
at low temperatures. We fitted the experimental
χT = f(T ) curve with the two J‖ and J⊥ parame-
ters, the g-factors fixed to their ab initio values, gA⊥
= -0.6 and gAZ = -1.57. One gets JZ = 56.4 cm-1

and J⊥ = 30.9 cm-1, two-three times larger than the
DDCI2 values. The experimental M = f(B) curves
are shown on Figure S12 and compared to those de-
duced from the spin Hamiltonian with the different
sets of parameters. The set of parameters fitting
the χT = f(T ) does not fit the M = f(B) curves,
leading to too small values of the magnetization. It
is actually the SO-CASSCF curves which is in best
accordance. We tried to fit jointly χT = f(T ) and
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the M = f(B) curves at different temperatures,
but unsuccessfully. The axial of χT denotes a max-
imum, while the transverse component is smaller
and increases smoothly with temperature; the two
components converge to a plateau, where the con-
tributions of the three centers are additive. The
contribution for the U(V) center corresponds to a

g-value of
√

2g2
⊥ + g2

‖/3 = 1.03, a value very close

to the gU from Chatelain et al. The ab initio g-
factors are consequently in good accordance with
the experimental data.

20 40 60 80 100
T(K)
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Figure 4: χT = f(T ) experimental, and deduced from
Spin Hamiltonian with parameters from CASSCF (red),
DDCI2 (green), from ref. [26] (blue) and fit of the χT
curve (black; Z component dashed, ⊥ component dot-
dashed).

Broken-symmetry DFT provides magnetic cou-
plings in good agreement with experimental data in
{3d-4f} systems [70, 71]. The same approach was
performed on the [Mn–U–Mn] complex using the
B3LYP/TZVP set up. The calculations are per-
formed without spin-orbit coupling and are mod-
eled according to the broken-symmetry scheme for
isotropic magnetic couplings. The high-spin and
three broken-symmetry configurations were consid-
ered to estimate the three isotropic exchange cou-
pling constants JAB , JAC and j. This leads to
JAB = JAC = 49.7 cm−1 and j = 0.5 cm−1. We re-
mind here that those values are issued from calcula-
tions where the spin-orbit coupling is not included.
As mentionned previously, the coupling reduces by
roughly a factor of 2 with the spin-orbit coupling.

Spin densities of the four configurations are shown
in Figure S13 and are compared to SF-RASSCF
values for the dimer in Table S15 and Figure S6.
In any case, there is a negative spin density on the
bridging Oyl in the high-spin state. The magnetic
orbital of the U(V) center is the same fδ1 as in
the ground state of CAS-based calculations. In all
configurations, the spin density of the bridging Oyl

atoms is opposite to the U(V) one; this shows the
importance of the spin polarization of those atoms
and that the magnetic unit is the [UVO2]+ cation.
Mulliken charges on the oxo oxygens are larger with
DFT, which may explain the larger coupling with

Mn MnU O
yl

O
yl= =

Figure 5: Magnetic scheme in the [Mn–U–Mn] trimer.
Blue: spin, red: orbital.

this method, but the comparison should be per-
formed with care, since the basis sets are different
with the two methods.

The coupling in the dimer is finally described as a
ferromagnetic coupling between a center with posi-
tive g-factors and an other with negative g-factors.
The sign of the J-parameters denotes which state is
favored in terms of pseudo-spins, while the sign of
the g-factors denotes the relationship of the mag-
netic moment to the pseudo-spin. The coupling
is found to be ferromagnetic because it was ana-
lyzed in terms of spin moments, with positive spin
g-factors on the central unit. But, since the or-
bital contribution on the [UVO2]+ unit is opposite
to the spin one and dominant, this ferromagnetic
coupling leads to opposite moments on the [UVO2]+

and Mn(II) units. In the trimer, the moments of
the two Mn(II) units are parallel, as a ferrimag-
netic coupling scheme. We can summarize the cou-
pling scheme by Figure 5: i) the coupling between
the spin densities of the [UVO2]+ and Mn(II) mag-
netic centers is ferromagnetic, in all directions, due
to the spin polarization of the oxo bridging groups.
ii) the anisotropy of the coupling is related to the
anisotropy of the spin contribution of the g of the
central magnetic [UVO2]+ unit iii) the orbital con-
tribution of the [UVO2]+ unit being dominant and
opposite to the spin one, the total magnetic mo-
ment of [UVO2]+ is opposite to the ones of the two
Mn(II) units. This is modeled by positive J⊥ and
JZ and negative gA⊥ and gAZ parameters. iv) the
overall magnetic scheme is ferrimagnetic.

The [Mn–U–Mn] complex exhibits a SMM behav-
ior with a relaxation barrier Ueff of 81 K and ex-
hibits an open magnetic hysteresis loop at temper-
atures below 3 K, with a significant coercive field
of 1.9 T at 1.8 K. In lanthanide complexes, correla-
tions can be found between the barrier Ueff and the
energy of the first excited state, which is the sign
of an Orbach relaxation process. In actinide com-
plexes, the energy gaps are much larger, and this
correlation is not as clear, which suggests that other
relaxation pathways occur [72]. Anyhow, a ground
state with an anisotropic magnetic moment, and
excited states with anisotropic moments and large
excitation energies are necessary to the SMM be-
havior. In Figure 6, the energy of the states is rep-
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Figure 6: Energy (cm-1) of the KDs of the trimer as a
function of the g-factors; red: gZ , blue g⊥. gA⊥ = -0.5,
gAZ = -1.6, J⊥ = 30.9 cm-1, JZ = 56.4 cm-1.

resented as a function of the axial (red) and trans-
verse (blue) g-factors, deduced from the spin Hamil-
tonian with the coupling parameters fitting the ex-
perimental χT . One notices that the perpendicular
magnetic component is zero up to 80 cm-1 while
the parallel component decreases, leading to an en-
ergy barrier close to the experimental Ueff value.
In Section S4.3 of the Supplementary Material, this
scheme is depicted for different sets of parameters.
It comes out that the barrier appears when the cou-
pling is close to an Ising Hamiltonian, with J⊥ as
small as possible. The sign of JZ does not influe
much and the anisotropy of the gA tensor does not
impact this scheme ; the magnetization barrier is-
sued from electronic states arises essentially from
the anisotropy of the magnetic coupling.

In the Mn(III)–M(III)–Mn(III)(M=Ru,Os) SMM
complexes [73, 74], the ground KD is issued from
an orbitally degenerate spin-free state; the coupling
is orbitally-dependent and consequently anisotropic
[75]. In the present case, the ground KD is issued
from two spin-free states 2∆1 and 2∆2. These two
states have the same coupling with the Mn(II) cen-
ters. When degenerate, the KD is the ∆3/2 of the

[UVO2]+ cation, with a pure axial g tensor with
both orbital and spin contributions (see Eqs. S2
with B = 0). The spin density of the [UVO2]+ unit
is represented in Figure 3 (see as well Eqs. S5 and
S5 and NSOs in Figure S5); along Z, the contribu-
tions of the two δ orbitals are additive, which leads
to a non-zero gSAZ , while along X or Y , they have
opposite signs and this leads to a zero value for gSA⊥ .
With a splitting of the two δ orbitals, the cancel-
lation is only partial, gSA⊥ is non-zero, and with a
very large gap, the gSA-factors are isotropic. The
magnetic interaction between two magnetic centers
is based on local spin densities. The spin g-factors
are directly related to the spin densities along the
corresponding direction ρSα(rrr) as

gSAα = 4

∫
ρSα(rrr)drrr (6)

The two δ orbitals are of the same symmetry as
the corresponding dδ, and consequently have the
same interaction with the Mn centers, in accor-
dance with the X ≡ Y symmetry. But the spin
density is axially anisotropic. One can expect the
coupling interaction in a given direction to depend
on the amount of spin density in this direction: if
the latter vanishes, the interaction should vanish.
In Table 3, the J⊥/JZ ratio is worth between 0.3
and 0.38, and 0.55 with the fitted parameters, while
in Table S5, gSAX /gSAZ is worth 0.38. It suggests to
express the anisotropy of the coupling in terms of
the anisotropy of the local g-tensors, as it is usu-
ally performed, but in terms of the anisotropy of
the spin g-tensors. In Eq. 1, the exchange coupling
is described as an anisotropic interaction between
pseudo-spins. The pseudo-spins are mathematical
operators which allow to describe the anisotropy
of the local magnetic moments through the g ten-
sor. Those magnetic moments break down in or-
bital and spin contributions, as specified by the
gL and gS tensors, respectively. Consequently, the
spin magnetic moment of a magnetic unit is gS � Ŝ̂ŜS .
Since the anisotropy of the coupling arises from
the anisotropy of the spin densities, we propose to
model the coupling between two magnetic centers A
and B with respective spin g tensors gSA and gSB

by an isotropic interaction between the anisotropic
spin moments

ĤAB = −1

4
Jiso

(
gSA � Ŝ̂ŜSA

)†
�
(
gSB � Ŝ̂ŜSB

)
(7)

The factor 1/4 is introduced in order to obtain the
usual Heisenberg Hamiltonian in the case of two
isotropic spin-only magnetic centers. In the case
where the two local g-tensors have the same PAF,
Eq. 7 becomes

ĤAB = −1

4
Jiso

(
gSAX gSBX ŜAX Ŝ

B
X + gSAY gSBY ŜAY Ŝ

B
Y

+gSAZ gSBZ ŜAZ Ŝ
B
Z

)
(8)

and in the present case

ĤAB = −1

2
Jiso

(
gSA⊥ ŜAX Ŝ

B
X + gSA⊥ ŜAY Ŝ

B
Y

+gSAZ ŜAZ Ŝ
B
Z

)
(9)

which is equivalent to Eq. S18 with J⊥ = 1
2Jisog

SA
⊥ ;

JZ = 1
2Jisog

SA
Z and J = 1

2Jiso

(
2gSA⊥ + gSAZ

)
. We

applied this approach by fitting the experimental
χT curve; as shown in the last column of Table 3,
this leads to parameters rather close from the two-
parameters fit. This approach allows to reduce the
fitting of the experimental curve to one parameter,
once the one-center anisotropic magnetic properties
are known.

The barrier is related to the anisotropy of the cou-
pling, which depends on the anisotropy of the spin
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g-tensor. The composition of the ground KD is
tuned by the fδ splitting. While this splitting
smoothly impacts the axial spin density, it deter-
mines the transverse one: the transverse spin den-
sity sums up to 0 in the case of no gap and to 2
when the gap becomes important. It shows that
this energy gap between the two fδ orbitals plays
a key role in the anisotropic properties, not only
by introducing a large orbital contribution in the
case of no gap, but by quenching the transverse
spin contribution, and consequently by quenching
the transverse magnetic coupling. The fδ splitting
is related to the symmetry of the equatorial lig-
ands of the [UVO2]+ unit. The splitting will be the
largest with ligand with a four-fold symmetry, one
of the fδ being in this case largely anti-bonding.

Conclusions

The large metal-ligand covalency and stronger
anisotropy of actinides make it very attractive for
SMMs over lanthanides. Furthermore, the strong
magnetic exchange substantially quenches the tun-
nelling, as shown in several cases. Despite these ad-
vantages, actinide chemistry is less explored. This
is essentially due to a lack of solid theoretical un-
derstanding of the design principles and various
factors that contribute to a reduction in barrier
heights/blocking temperature. This work proposes
a detailed analysis of the anisotropic magnetic prop-
erties in a {3d-5f-3d} trimer. This analysis is based
on CAS based and scalar DFT methods, and spin
Hamiltonian. The two Mn(II) centers are half-filled
3d5 shell with spin-only isotropic magnetic proper-
ties. The unpaired electron of the central [UVO2]+

unit is mostly borne by the two 5fδ orbitals; the
ground KD has an axial g-tensor, with negative
values, due to a large orbital contribution, oppo-
site to the spin one. The coupling between the
[UVO2]+ unit and the two Mn(II) centers is ferro-
magnetic, due to a large spin polarization of the oxo
groups. It is anisotropic, larger in the parallel direc-
tion than in the transverse one, and increases with
correlation. The sign of the transverse coupling can
only be determined relative to the sign of the trans-
verse g-factors. The spin Hamiltonian fits well the
72 magnetic states calculated with SO-CASSCF,
which validates the ability of the spin Hamiltonian
to describe this system. The two coupling parame-
ters were finally fitted on the χT curves, using the
ab initio g-factors of the [UVO2]+ unit, leading to
values larger than those determined by CAS-based
and DFT methods. But, the main contribution to
the magnetic moment of the [UVO2]+ unit is or-
bital, which is opposite to the spin one, leading to
negative g-factors. It follows that the magnetic mo-
ments are opposite on Mn(II) and U(V) centers: the
ferromagnetic interaction between the spin mag-

netic moments becomes a ferrimagnetic interaction
for the total moments, due to the local Hund’s rule
on the central cation.

The magnetization barrier is deduced from the spin
Hamiltonian. Supposing that the relaxation follow
an Orbach relaxation scheme, it corresponds to the
experimental value [76, 77, 78, 79]. It is related to
the anisotropy of the coupling, but is not affected by
the anisotropy of the central g-tensor. The ratio of
the transverse and axial components of the coupling
and of the spin g-factors of the central unit are close.
One can expect the anisotropy of the coupling to
arise from the anisotropy of the spin density. The
transverse spin density sums up to zero when the
two fδ orbitals are degenerate. As a result, in or-
der to increase the barrier, one should quench the
transverse spin contribution of the [UVO2]+ unit,
which is tuned by the splitting between the fδ or-
bitals. Due to the four-fold symmetry of the lat-
ter, the splitting is favored by equatorial ligands
denoting the same symmetry. As a consequence,
one should avoid four-fold equatorial ligands in or-
der to increase the barrier.

The fitting of the magnetic response for complexes
with anisotropic properties is difficult, even im-
practical, due to the large number of parameters.
Thanks to the use of the local g-tensors determined
from ab initio calculations, only the coupling is fit-
ted. In lanthanide complexes, the coupling is re-
duced to only one parameter, when the ground J
manifold is populated [38, 39, 40]. This was per-
formed in this work by expressing the coupling
Hamiltonian as an isotropic interaction between the
spin magnetic moments, which are anisotropic. The
new fit, with only one parameter, is in good accor-
dance with the two-parameters fit.

To summarize (i) The g factors of the ground KD
of the central anisotropic unit [UVO2]+ are nega-
tive, due to a large orbital contribution opposite
to the spin one. Further, due to strong U-ligand
covalency, we show that this anisotropy originates
due to splitting within the 5f orbitals, particularly
between two 5f orbitals. This allows to offer a de-
sign principle to enhance the anisotropy via ligand
tuning. (ii) Due to the large orbital contribution
opposite to the spin one, even if the coupling is fer-
romagnetic in terms of spin densities, the interac-
tion in terms of magnetic moments is ferrimagnetic.
(iii) The anisotropy of this interaction is related to
the anisotropy of the spin density of the U(V) unit.
Therefore, the use of local spin contribution to the
g-tensor extracted from ab initio calculations allows
reducing the number of parameters to be fitted in
this anisotropic case to only one parameter. Con-
sequently, the method can be used to analyze the
magnetic properties of any other 3d-5f SMM, what
we will do in a close future. (iv) The magnetization
barrier is related to the anisotropy of the coupling,
not from the anisotropy in the g factors as seen in
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the lanthanide SMMs. Thus for the design of ac-
tinide SMMs, one has to focus on enhancing this
exchange coupling via suitable ligand and not the
individual single-ion anisotropy.

Computational details

WFT calculations

Calculations were performed on the X-ray structures
[26] or simplified structures: (see Section S1 for more
details) i) the trimers, with three paramagnetic centers,
either complete [Mn–U–Mn] (cf Figure 1) or truncated
[Mn–U–Mn]mod in which the TPA and Mesaldien lig-
ands are simplified (cf Figure S2). ii) the dimers ob-
tained by diamagnetic substitution: one of the Mn(II)
centers is replaced by a diamagnetic Zn(II) cation with
a simplified coordination sphere. The Mn(II) and U(V)
center are either with the original coordination sphere
[Mn–U–Zn] or with simplified ligands [Mn–U–Zn]mod

(cf Figure S2). iii) the monomers, with only one
paramagnetic center. In the Zn–U–Zn complex, the
two Mn(II) centers are replaced by diamagnetic Zn(II)
cations with a simplified coordination sphere, and in
[Mn–UVI] complexes, U(V) is replaced by the diamag-
netic U(VI) and the other Mn(II) center is removed (cf
Figure S1). Our earlier work suggests that such ap-
proach has negligible effect on anisotropic properties
[50].

WFT calculations were performed using MOLCAS 7.8
program package [80]. Spin-free wave functions were
generated by the state average complete active space
self-consistent field (SF-CASSCF) method [81]. The
DKH (Douglas Kroll Hess) Hamiltonian was used to
account of relativistic effects [82] and Cholesky decom-
position to reduce the computational cost of calculat-
ing two-electron integrals [83]. Dynamical correlation
in the U(V) monomer was calculated with the CASPT2
method [84]: the 5p(U) and 5d(U) are included in the
correlation space, since it was shown that they may im-
pact the results [61]. In the dimers, dynamical corre-
lation was calculated by Configuration Interaction (CI)
calculations performed with the CASDI program [85]:
CAS+S and DDCI2 [86]. If S1 (S3) is the space of
the orbitals which are doubly occupied (unoccupied)
in the CASCI (Complete Active Space Configuration
Interaction) calculation and nh (np) the number of al-
lowed holes (particles) in S1 (S3), the CAS+S CI cor-
responds to nh ≤ 1 and np ≤ 1 and DDCI2 space con-
tains all the configurations satisfying nh + np ≤ 2. CI
calculations for the [Mn–U–Zn]mod complex involved
118 electrons in 429 orbitals, with a CAS(6,9) using
the orbitals of the septet. CAS+S CI corresponds to
nh ≤ 1 and np ≤ 1. The spin-orbit interaction was
calculated as a state interaction by RASSI-SO mod-
ule [87]. Spin-Orbit (SO) integrals are calculated using
the AMFI (Atomic Mean-Field Integrals) approxima-
tion [88]. SO-CAS+S and SO-DDCI2 results were ob-
tained by dressing the spin-orbit matrix obtained with
CASSCF with the corresponding Spin-orbit Free (SF)
energies. Both for the state average CASSCF and the
spin-orbit state interaction, all magnetic states were
considered. Parameters for the zero-field splitting spin
Hamiltonian of the Mn(II) centers were computed with

the SINGLE ANISO code [89]. g-factors and their spin
and orbital contributions were calculated according to
ref. [90] and magnetic susceptibility to ref. [91]. Basis
sets, active spaces and spin-orbit state interaction are
detailed in Section S1.

DFT calculations

DFT calculations were carried out using the G09 suite
[92] using the hybrid B3LYP exchange-correlation func-
tional [93]. Quadratic convergence was used to get
the most stable wave function. A quasi relativistic
ECP with 60 core electrons (ECP60MWB) along with
ECP60MWB ANO basis set was employed for Uranium
as this ECP is well established to give a numerical accu-
racy [94]. Basis sets of Ahlrichs TZVP quality were used
for Mn, O and C atoms and SVP for H [95]. Since these
calculations do not include the spin-orbit coupling, the
exchange coupling is isotropic and the following Heisen-
berg Hamiltonian was considered

Ĥ = −JŜ̂ŜSA � Ŝ̂ŜSB − JŜ̂ŜSA � Ŝ̂ŜSC − jŜ̂ŜSB � Ŝ̂ŜSC (10)

where Ŝ̂ŜSA, Ŝ̂ŜSA and Ŝ̂ŜSA are the local spin operators
with SA = 1/2 and SB = SC = 5/2. We under-

line that Ŝ̂ŜSA acts as a real spin in Eq. 10 while it
acts as a pseudo-spin in Eq. 1. For our calculations,
four configurations were considered: one high-spin HS
= Mn1↑-U↑-Mn2↑ and three broken-symmetry, BS1 =
Mn1↓-U↑-Mn2↑, BS2 = Mn1↑-U↑-M2↓, BS3 = Mn1↑-
U↓-Mn2↑. Using the broken symmetry approach devel-
oped by Noodleman [96], the two coupling parameters
J and j were estimated using the non-spin projected
formula [97]: EBS1 − EHS = EBS1 − EHS = 3J + 15j
and EBS3 − EHS = 6J .

Data availability

The data that support the findings of this
study are openly available in ZENODO at
https://doi.org/10.5281/zenodo.6659929.
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