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ABSTRACT

Context. An essential facet of turbulence is the space–time intermittency of the cascade of energy that leads to coherent structures of
high dissipation.
Aims. In this work, we aim to systematically investigate the physical nature of the intense dissipation regions in decaying isothermal
magnetohydrodynamical (MHD) turbulence.
Methods. We probed the turbulent dissipation with grid-based simulations of compressible isothermal decaying MHD turbulence.
We took unprecedented care in resolving and controlling dissipation: we designed methods to locally recover the dissipation due to
the numerical scheme. We locally investigated the geometry of the gradients of the fluid state variables. We developed a method to
assess the physical nature of the largest gradients in simulations and to estimate their travelling velocity. Finally, we investigated their
statistics.
Results. We find that intense dissipation regions mainly correspond to sheets; locally, density, velocity, and magnetic fields vary pri-
marily in one direction. We identify these highly dissipative regions as fast and slow shocks or Alfvén discontinuities (Parker sheets or
rotational discontinuities). On these structures, we find the main deviation from a 1D planar steady-state is mass loss in the plane of
the structure. We investigated the effect of initial conditions, which yield different imprints at an early time on the relative distributions
among these four categories. However, these differences fade out after about one turnover time, at which point they become dominated
by weakly compressible Alfvén discontinuities. We show that the magnetic Prandtl number has little influence on the statistics of these
discontinuities, but it controls the ohmic versus viscous heating rates within them. Finally, we find that the entrance characteristics of
the structures (such as entrance velocity and magnetic pressure) are strongly correlated.
Conclusions. These new methods allow us to consider developed compressible turbulence as a statistical collection of intense dissi-
pation structures. This can be used to post-process 3D turbulence with detailed 1D models apt for comparison with observations. It
could also be useful as a framework to formulate new dynamical properties of turbulence.
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1. Introduction

Gravity drives the evolution of the Universe, but the gas dissipa-
tive dynamics is a central, yet unsolved, issue in the theories of
galaxy and star formation (e.g. White & Rees 1978). An emer-
gent scenario is that a large fraction of the gas internal energy
is stored and eventually dissipated in turbulent motions of the
coldest phases instead of being radiated away, and therefore
lost, by the warmest phases (e.g. Guillard et al. 2012; Appleton
et al. 2013; Falgarone et al. 2017). Turbulence, however, adds a
colossal level of complexity to the gas dynamics, because cos-
mic turbulence is supersonic, involves magnetic fields, exhibits
plasma facets, and pervades all the thermal phases. More-
over, its dissipation is known to occur in bursts localised in
time and space, that is the space–time intermittency of turbu-
lence (Landau & Lifshitz 1959; Kolmogorov 1962; Meneveau &
Sreenivasan 1991).

Valuable and unexpected guidance in the investigation of the
intermittent dissipation of interstellar turbulence is provided by a
number of molecular observations, including the existence in the
cold neutral medium (CNM) of specific molecules that require
large inputs of supra-thermal energy to form (Nehmé et al. 2008;
Godard et al. 2012) and of molecules more excited than an

equilibrium at the ambient temperature would predict (Falgarone
et al. 2005; Gry et al. 2002; Ingalls et al. 2011). The mere exis-
tence of large amounts of CO molecules surviving in irradiated
diffuse media requires a formation route that is not controlled
only by photons and cosmic rays (Levrier et al. 2012). This is
in line with the large observed abundances of HCO+ in diffuse
gas (Lucas & Liszt 1996; Liszt & Lucas 1998) now recognised
observationally as a signature of supra-thermal chemistry (Gerin
& Liszt 2021).

Supra-thermal chemistry can be driven by several processes
that do not lead to turbulent dissipation bursts, such as the ion-
neutral drift in Alfvén waves (Federman et al. 1996), conduction
at interfaces between the warm neutral medium (WNM) and
the cold neutral medium (CNM; Lesaffre et al. 2007), transport
between the WNM and CNM (Valdivia et al. 2017). These latter
processes tap the reservoir of thermal energy of the WNM and
are able to drive a warm chemistry in the CNM, but they fall
short of reproducing the observed abundances of molecules with
highly endothermic formation.

The channels linked to dissipation bursts, such as the ion-
neutral drift in C-type shocks (Flower et al. 1985; Flower &
Pineau des Forets 1998; Draine & Katz 1986; Lesaffre et al.
2013) and in magnetised vortices (Godard et al. 2009, 2014),
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dissipative heating in shear layers (Falgarone et al. 1995; Joulain
et al. 1998), shock heating, and compression (Lesaffre et al.
2020) tap the mechanical energy reservoir of the CNM, which is
roughly of the same magnitude as the thermal energy reservoir of
the WNM. However, they are naturally more successful because
they can be much more concentrated in space, thus leading
to potentially very strong effective temperature bursts. Out-of-
equilibrium chemical and excitation signatures have been mod-
elled for all these channels, which are related to specific localised
structures where turbulent dissipation is enhanced. This detailed
modelling is hard to reconcile with a coherent description of the
energy cascade from the large scales of turbulence down to the
dissipation scales, including intermittency. It has been attempted
for the first time by chemical post-processing of state-of-the-art
numerical simulations of MHD turbulence, including ion-neutral
drift (Myers et al. 2015; Moseley et al. 2021). The smallest scales
reached in these simulations are, however, far above the dissi-
pation scales, but the results are promising. The subject of the
present paper is to explore the nature, topology, and statistics of
the dissipation structures that form in magnetised turbulence.

Turbulent dissipation has been extensively studied in incom-
pressible media. In hydrodynamical (HD) turbulence, Moisy &
Jiménez (2004) examined the geometrical properties of sites
of extreme vorticity and shear. Uritsky et al. (2010) exam-
ined the statistical properties of sites of strong dissipation
in incompressible magnetohydrodynamical (MHD) turbulence,
and Momferratos et al. (2014) extended their work to include
ambipolar diffusion (i.e. ion-neutral drifts). Zhdankin et al.
(2013, 2014, 2015, 2016) extensively studied the statistics and
dynamics of current sheets in reduced MHD. For example,
Zhdankin et al. (2013) confirmed the Sweet-Parker view of
reconnection, although they note that not all current sheets are
involved in reconnection.

All the above studies were performed in an incompress-
ible framework, while the interstellar medium is known to be
extremely compressible. Here, we want to examine dissipation in
the extreme case of isothermal turbulence, where thermal effects
cannot help pressure to resist against compression. In the incom-
pressible framework (see Momferratos et al. 2014, for example),
the physical nature of a dissipation structure (current sheet or
shearing sheet) is directly linked to the nature of the dissipa-
tion within this structure (it is either purely ohmic for current
sheets or purely viscous for shearing sheets). The situation, how-
ever, is much more complicated in compressible HD turbulence,
where shocks and shear can both lead to viscous dissipation,
and even worse in compressible MHD, where dissipation struc-
tures can lead to viscous and resistive dissipation at the same
place (as in a fast shock, see Lehmann et al. (2016) or our
Appendix B).

Previous studies have attempted to characterise various indi-
vidual types of structures. Smith et al. (2000a,b) investigated
velocity jumps in the three main directions as a proxy to shocks.
Yang et al. (2015) were able to single out and study the for-
mation of one rotational discontinuity in a simulation of MHD
turbulence. Lehmann et al. (2016) introduced the SHOCKFIND
algorithm, which investigates an MHD snapshot to systemati-
cally extract every fast and slow shock. In the present study,
we attempted to characterise the physical nature of all intense
dissipation structures: we present a new improved method
able to characterise fast and slow shocks as well as Alfvén
discontinuities.

We wanted to examine the statistics of the various physical
structures and their parameters and possibly assess how much
dissipation is due to each category of dissipation structure. To

this effect, we examined grid-based simulations of decaying
isothermal MHD turbulence, which we present in Sects. 2.1
and 2.2. Because grid-based simulations are known to be
more dissipative than pseudo-spectral simulations (which are,
however, ill-suited to compressible fluids due to the Gibbs
phenomenon), we devise and test a new method to retrieve the
local dissipation intrinsic to the scheme (see Appendix B). Stone
et al. (1998) investigated dissipation in driven and decaying
MHD turbulence and concluded that about half of it is due to
shocks. More precisely, they measured that 50% of the total
dissipation is due to their artificial viscosity term. However, they
did not account for implicit numerical dissipation, and they did
not check whether their artificial viscosity was indeed located
in shocks. Similar studies by Smith et al. (2000a,b, see their
Table 1) also used artificial viscosity and suffered from the same
uncertainties. Porter et al. (2015) and Park & Ryu (2019) did a
much better job at detecting shocks and assigning dissipation to
them but, their method still suffers from uncertainty when the
shocks are not aligned with the grid, and it is restricted to shocks
(it would not work for Alfvén discontinuities because they focus
on density jumps). In the present work, thanks to our method of
recovering the local dissipation everywhere (including the losses
implicitly incurred by the numerical scheme), and because we
carefully analyse the nature of intense dissipation structures, we
hope to make more robust claims. For example, Lesaffre et al.
(2020) performed a 2D HD simulation on such small scales that
they were able to fully resolve the dissipation length scale and
characterise almost all dissipation structures.

High dissipation is necessarily associated with strong vari-
ations of some of the variables controlling the physical state of
the gas. We designed a technique to assess the main direction
of the gradients of the physical state of the gas (Sect. 2.3). We
observe that the regions of highest dissipation have their gra-
dients locally and primarily in one direction (in other words,
intense dissipation structures are sheet-like). We show how to
decompose the gradients in this direction using a basis of MHD
waves (Sect. 2.4). In Sect. 2, we examine the connected sets of
pixels above a large threshold of dissipative heating and locally
assess the nature of the physical profiles obtained by scanning
along the main direction of the gradient. We tested whether
the physical nature of these profiles agrees with the celebrated
Rankine–Hugoniot (RH) relations (Macquorn Rankine 1870)
and performed various consistency checks to confirm the phys-
ical nature of these scans. In Sect. 4, we examine the statistical
properties of the scans we find. We discuss our results in Sect. 5
and conclude in Sect. 6.

2. Numerical method

2.1. Simulation

In the present study, we ran a set of simulations of decaying
magnetohydrodynamics (MHDs) turbulence.

2.1.1. Numerical method

We solved the evolution equations of resistive and viscous
isothermal MHDs, which we write here in conservative forms:

0 = ∂tρ + ∇ · (ρu), (1)
0 = ∂tρu + ∇ · (ρuu − νρS[u]) + ∇p − J × B, (2)
0 = ∂t B − ∇ × (u × B − η∇ × B) , (3)
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where ρ is the mass density, u is the fluid velocity vector, p = ρc2

is the thermal pressure with c as the isothermal sound speed, B
is the magnetic field, and J = 1

4π∇ × B is the current vector. ν
and η are, respectively, the viscous and resistive coefficients. The
components of the viscous stress tensor S are expressed as

S i j[u] = ∂iu j + ∂ jui − 2
3
∂kukδi j, (4)

where ∂i denotes the derivative with respect to the space coordi-
nate i.

To integrate these equations, we used the code CHEM-
SES (Lesaffre et al. 2020), which originates from DUMSES
(Fromang et al. 2006), a version of RAMSES (Teyssier 2002)
without adaptive mesh refinement. The ideal part of the evo-
lution step is evolved thanks to a Godunov scheme with a
Lax-Friedrichs Riemann solver and a minmod slope limiter func-
tion (see Toro 1999 for more details). The magnetic field is
evolved with constrained transport to preserve its zero diver-
gence (Fromang et al. 2006). This ideal MHD step is sandwiched
between two half dissipation steps to preserve the second-order
accuracy of the time integration (see Lesaffre et al. 2020 for
more details). CHEMSES inherits the centring of the RAM-
SES code, with densities and velocity components at the centre
of cells and magnetic field components at the centre of their
respective cell interfaces (Fromang et al. 2006). The resistive and
viscous stresses are centred accordingly, and a diffusion estimate
(for both viscous and resistive dissipation) replaces the reference
Courant time step whenever it is shorter. For example, the vis-
cous diffusion time step constraint is ∆τ = (∆x)2/(6ν), where
∆x is the pixel size. We set the Courant number1 at the value
of 0.7 throughout all the simulations of the present work. For
an isothermal gas, the viscous coefficient ν should be such that
µ = ρν is a constant; indeed, ν scales as the sound speed times the
mean free path, which itself scales as 1/ρ. However, we still used
a constant kinematic viscous coefficient ν as in Federrath (2016)
rather than a constant dynamical viscosity µ = ρν, as this allows
easier numerical convergence for shocks (see Appendix B).

2.1.2. Initial conditions

The quantities computed in the code are dimensionless. They are
normalised by physical scales set such that the average square
velocity is initially 〈u2〉 = 1, the cubic domain size is L = 2π, and
the average density 〈ρ〉 = 1, where the brackets denote averages
over the whole simulated domain. The non-dimensional value of
the isothermal speed c thus controls the r.m.s. initial sonic Mach
number asMs = 1/c. The initial density is uniform, and the ini-
tial magnetic field is scaled to obtain 〈 1

4πB2〉 = 〈ρ〉〈u2〉 = 1 so
that the effective r.m.s. initial Alfvénic Mach number is equal
to 1, as well as the r.m.s. initial Alfvén speed (cA). We note
that the mean magnetic field is zero over the computational
domain. For example, imagine one wants to apply these results
to a physical region of physical dimension ` of r.m.s. velocity
ur.m.s. and average density ρav. Then, dimensionless quantities in
the code can be converted to physical quantities according to
xphys = `/(2π) · x for distances, uphys = ur.m.s. · u for velocities,
and Bphys = ur.m.s.

√
4πρav · B for magnetic fields.

As in Momferratos et al. (2014), we considered a peri-
odic box with initial conditions based either on the Arnol’d–
Beltrami–Childress (ABC; see Bouya & Dormy 2013, e.g.) flows

1 By Courant number we mean here the ratio between the used time
step and the shortest numerically unstable time step.

or on the Orszag–Tang vortex (OT; Orszag & Tang 1979). For the
ABC flow, the velocity field is set by a superposition of sines and
cosines:

uABC = (A sin(kz) + C cos(ky), B sin(kx) + A cos(kz),
C sin(ky) + B cos(kx)), (5)

where A, B, and C are coefficients chosen for the three smallest
wave numbers k (largest scales) from a uniform number genera-
tor in the interval [−1, 1]. For smaller scales, a random field uE
is added, with the following energy spectrum:

E(k) = CEk−3 exp
(
−2(k/kc)2

)
, (6)

where kc = 3, and CE is chosen so that 〈u2
E〉 = 1. This ran-

dom field is set in Fourier space with the amplitude of the
complex coefficients prescribed by the above spectrum, and the
phase of each coefficient is drawn from a uniform distribution
in the interval [0, 2π]. The perturbed initial ABC velocity field
u = α(uABC + uE) is rescaled so that 〈u2〉 = 1 by properly set-
ting α. The initial magnetic field for the ABC runs is set with
a random field drawn in a similar way to uE. The power spec-
trum of the initial random perturbation is a minimal seed to
initiate a cascade and let it develop naturally. Indeed, we want
our results to testify for our large-scale initial conditions rather
than for the added seed. We hence chose its logarithmic slope
to be significantly steeper than the expected Kolmogorov (k−5/3)
or supersonic (k−2, see Federrath 2013; Federrath et al. 2021)
spectra, with an additional exponential cut-off for safety.

The OT vortex velocity is defined by

uOT = (−2 sin(y), 2 sin(x), 0), (7)

to which we also add random perturbations as in the ABC case.
The initial magnetic field for the OT vortex is set as

BOT = (−2 sin(2y) + sin(z), 2 sin(x) + sin(z),
sin(x) + sin(z), (8)

without additional perturbation. The velocity and magnetic fields
are then rescaled so that 〈u2〉 = 〈 1

4πB2〉 = 1.
Our ABC flows have a significant magnetic helicity (Hm =

〈A · B〉, where A is the potential vector, and B = ∇ × A with
Coulomb gauge divA = 0) and an almost zero cross helicity
(Hc = 〈u · B〉). That means the magnetic field is topologically
complex and there is no strong correlation between magnetic
and velocity field. For OT initial conditions, the situation is
reversed, it has an almost null magnetic helicity and a non-zero
cross-helicity (see Table 1 for the values of helicities).

In addition to the initial conditions, we also investigated the
resolution. Our fiducial runs have a number of pixels N = 1024
per side of the cubic computational domain, and we degraded the
resolution by a factor two to control the stability of our results.
We also probed the effect of varying the Prandtl number Pm =
ν/η. Table 1 summarises the parameter space we covered.

2.2. Dissipation recovery and control

The numerical scheme we used (Godunov) implicitly introduces
dissipation to evolve the ideal MHD equations, but, as stated
above, we incorporated additional explicit physical dissipation
terms in our evolution equations. It is important to retain some
amount of physical viscosity as Godunov schemes do not pro-
vide an implicit viscosity in shear layers. Here, we discuss our
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Table 1. Parameters of simulations we analysed.

Init. cond. N ν η Re Pm Hc Hm

ABC 512 7 × 10−4 7 × 10−4 9 × 103 1 −2.5 × 10−2 0.2
ABC 1024 7 × 10−4 7 × 10−4 9 × 103 1 −2.5 × 10−2 0.2
ABC 1024 2.8 × 10−3 7 × 10−4 2 × 103 4 −2.5 × 10−2 0.2
ABC 1024 1.1 × 10−2 7 × 10−4 6 × 102 16 −2.5 × 10−2 0.2
OT 512 7 × 10−4 7 × 10−4 9 × 103 1 0.1 2 × 10−9

OT 1024 7 × 10−4 7 × 10−4 9 × 103 1 0.1 2 × 10−9

OT 1024 2.8 × 10−4 7 × 10−4 2 × 103 4 0.1 2 × 10−9

OT 1024 1.1 × 10−2 7 × 10−4 6 × 102 16 0.1 2 × 10−9

Notes. Columns are: initial flow, resolution, kinematic viscosity ν, resistivity η, Reynolds number, Prandtl number ν/η, and cross and magnetic
helicities. All the simulations start with an r.m.s. sonic Mach numberMs = 4 and an r.m.s. Alfvénic Mach number of 1, with a zero mean magnetic
field.

methods used to estimate the fraction of the dissipation due to
the numerical scheme.

We set values for the viscous and resistive coefficients ν
and η identically to those used by Momferratos et al. (2014)
in pseudo-spectral simulations with 5123 spectral elements:
ν = η = 7 × 10−4 in the same non-dimensional units. This
is motivated by the common belief that spectral codes are
approximately twice as efficient as grid based codes. Our study
for shocks in Appendix B presents a more detailed picture.
Figure B.1 shows the dissipation bump in a fiducial shock front
at various resolutions. For our chosen values for the dissipative
coefficients and a resolution of N = 1024, we see it is effectively
spread up by nearly a factor of three, while one would have to
increase the resolution by a factor of eight to fully resolve it. A
resolution two times smaller would spread the front by a factor of
six, and thus our current choice is a good compromise between
accuracy and CPU efficiency.

In isothermal MHDs, the integrated total isothermal gener-
alised mechanical energy E = 〈 1

2ρu2 + 1
8πB2 + p log ρ〉 decreases

due to all irreversible processes taking place (see Eq. (B.3)).
Because our Godunov time integration scheme features a conser-
vative round-off error, we can use its time derivative to estimate
the global budget of dissipated energy:

−dE
dt

= 〈εtot〉, (9)

where 〈εtot〉 is the total rate of irreversible heating integrated
over the whole computational domain. Appendix B presents and
tests a new method to estimate the total irreversible heating εtot
locally. The chosen method has the additional advantage that
it preserves the round-off error of the validity of Eq. (9) when
integrated over the whole domain.

We can now decompose the local total heating rate as

εtot = εν + εη + εnum, (10)

where

εν = ρνS i j[u]∂iu j (11)

and

εη = 4πηJ2 (12)

are the local viscous and resistive dissipative heating rates, and
εnum is the dissipation due to the numerical scheme.

We can then estimate the local numerical dissipation rate
simply by computing εnum = εtot − (εν + εη), where we use well-
centred estimates for Eqs. (11) and (12). If our estimate for the
local dissipation were perfect, this quantity would always be pos-
itive, because we are performing our simulations with a time
step small enough for the scheme to be stable (it is set to 70%
of the shortest unstable time step). However, we are subject to
truncation errors in both the εtot term (see Appendix B) and the
εν + εη terms (where a centred difference is used). The differ-
ence between the two terms can hence be negative due to these
truncation errors. We thus define εcorr

tot as a corrected local total
dissipation rate, which ensures the resulting estimate for εnum
is positive. It is equal to the total local dissipation εtot where
the numerical dissipation is positive (i.e. where εtot > (εν + εη)),
while it is equal to the total physical dissipation εν + εη else-
where. This ensures the corrected local numerical dissipation
rate εcorr

num = εcorr
tot − (εν + εη) is always positive. In particular, the

local corrected total dissipation rate εcorr
tot is always greater than

εtot. It is then shared between resistive and viscous natures in the
same proportions as the physical terms we introduced to pro-
vide estimates for viscous and resistive dissipations including
numerical dissipation:

εcorr
ν =

εν
εν + εη

εcorr
tot , (13)

εcorr
η =

εη

εν + εη
εcorr

tot . (14)

Figure 1 displays the temporal evolution of various total dis-
sipation rates. Thanks to the equality in Eq. (9), we can compute
the exact total dissipation rate at each time step (blue curves),
and we can compare it to the integrated local estimate 〈εcorr

tot 〉
(green curves), which by construction is always greater. The dif-
ference between the two gives an estimate of the error we make
on the estimation of the dissipation (of the order of 1% at most).
It corresponds to the integrated estimated εnum in all the pixels
where it is negative. The orange curves show the integrated phys-
ical dissipative terms 〈εν + εη〉. They amount to about two thirds
of the total, while the remainder is numerical dissipation by the
scheme.

2.3. The local frame of physical gradients

We know local intense dissipation events are caused by strong
variations of some of the fluid state variables. Here, we want
to identify regions where the fluid state varies strongly and
characterise its variations in each direction.
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Fig. 1. Time evolution of volume-integrated dissipation rates for the
ABC and OT, Pm = 1 runs. The blue line is the time derivative of the
integrated isothermal generalised mechanical energy E = 〈 1

2ρu2 + B2

8π +
p log ρ〉. The orange curve is the sum of the physical viscous and ohmic
dissipations computed from the velocity and magnetic fields (Eqs. (11)
and (12), respectively). The green line is the volume-integrated cor-
rected dissipation field εcorr

tot determined by our recovery method (see
text and Appendix B). We note that the timescale is in units of initial
turnover timescale; we display t/tturnover where tturnover = L/

√
〈u2〉 = 2π.

We also show the evolution of the r.m.s. sonic Mach number Ms (red
curve); its scale corresponds to the right axis.

The fluid state is characterised by the seven (1 + 3 + 3) com-
ponents of W = (ρ,u,B), which do not have the same physical
dimensions. We want to put the variations of density, velocity
and magnetic fields on equal footing. Hence, we need to rescale
the gradient of each component of W to make them homoge-
neous to the same physical dimension. We now choose to define
the rescaled gradient of W in a given direction r as

∂r̂W ≡
(r̂ · ∇) log ρ,

1
c

(r̂ · ∇)u,
1

c
√

4πρ
(r̂ · ∇)B

 , (15)

where r̂ = r/r is the unit vector in the direction of r. This
rescaled gradient has the dimension of the inverse of a length
scale, which represents the typical length scale over which the
state variables vary in the direction r̂.

The norm of this gradient will be large whenever there is a
rapid change in one or several state variables. Its square can be
expressed as

||∂r̂W||2 = αi j r̂i r̂ j, (16)

where αi j = ∂iW · ∂ jW is a 3 × 3 matrix (and the dot prod-
uct applies to the seven components’ vectors) with coefficients
homogeneous to an inverse squared length. It is real, symmetric,
and therefore diagonal on an orthonormal basis. We can rewrite
Eq. (16) in a more explicit form:

||∂r̂W||2 =
1
`2

scan
(r̂ · r̂scan)2 +

1
`2
⊥1

(r̂ · r̂⊥1)2 +
1
`2
⊥2

(r̂ · r̂⊥2)2, (17)

where `2
scan, `2

⊥1, and `2
⊥2 are the inverse of the eigenvalues asso-

ciated with the eigenvectors r̂scan, r̂⊥1, and r̂⊥2 of the matrix αi j.
Equation (17) shows how the gradient of state variables depends
on directions. A 3D polar plot of the norm of this gradient takes
the form of an ellipsoid whose principal axes are in the three
orthogonal eigenvalue directions of the above matrix:

`scan = ||∂r̂scanW||−1, `⊥1 = ||∂r̂⊥1W||−1, `⊥2 = ||∂r̂⊥2W||−1, (18)

with the three length scales ordered so that `scan ≤ `⊥1 ≤ `⊥2.
These three variation length scales and their associated orthogo-
nal directions characterise the local geometry of the gradients of
the fluid state variables.

Figure 2 shows how the aspect ratios between these typical
variation length scales are distributed in all cells of a simu-
lation (left panel) and only for highly dissipating ones (four
standard deviations over the mean, right panel). It shows that
most fluid state variables vary primarily in one direction for
extreme dissipation events, whereas aspect ratios span all possi-
bilities if we consider the full simulation domain. We also notice
a slight imbalance towards ribbons compared to sheets. When
one variation direction is dominant (`scan � `⊥1 ≤ `⊥2), quan-
tities are essentially constant in the direction orthogonal to it,
and the local situation is hence nearly a 1D plane parallel. We
thus define the planarity as the ratio `⊥1/`scan, which is large
whenever `scan � `⊥1, i.e. when the local geometry is close to
plane-parallel.

This 1D geometry of gradients for intense dissipation regions
is consistent with the typical two-dimensional geometry of
the structures found in MHD turbulence (Uritsky et al. 2010;
Zhdankin et al. 2013; Momferratos et al. 2014). On intense dis-
sipation structures, we should thus be able to capture most fluid
variations by browsing those in the maximum gradient direction.
As described in Sect. 3.2, we used r̂scan as a sampling direc-
tion to probe the variation of physical quantities around strong
dissipation regions.

2.4. Gradient decomposition into MHD waves

In the ideal case where the gradient would be strictly in one
direction, the gas dynamics are governed by 1D plane-parallel
MHD equations, and we show here how local gradients can be
projected onto ideal MHD waves.

We write x the space coordinate along the direction of the
gradient and t the time coordinate. The requirement ∇ · B = 0
implies that ∂xBx = 0. The corresponding component of ∂xW is
thus zero. It turns out that the six non-zero components of ∂xW
are spanned by the six ideal MHD waves, which we now explain.

Wave solutions take the form W(x, t) = F(x − 3t), where 3 is
the travelling speed of the wave. We note that ∂t F = −3∂xF and
plug this form into the ideal MHD part of the equations (without
the dissipation terms). We arrive at a linear eigenvalue problem
for which we can find six eigenvectors ∂xF, with eigenvalues 3
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Fig. 2. 2D joint probability density function of gradients’ aspect ratios (for the OT simulation at Pm = 1 at time t = tturnover/3). On the left,
characteristic lengths are calculated for all the simulation cells. While on the right, the domain is restricted to cells where εcorr

tot ≥
〈
εcorr

tot
〉

+ 4σεcorr
tot

.
The colour scale is logarithmic.

corresponding to the six waves of ideal isothermal MHD2. We
label them by their wave type, s, i, or f , for slow, intermedi-
ate, or fast, and their direction of propagation RorL for right (or
forward, 3 > 0) and left (or backward, 3 < 0). To within a mul-
tiplicative constant, the expressions for intermediate waves for
these eigenvectors are (see Sect. 5.2.3 of Goedbloed et al. 2019
or Sect. 6.5 of Gurnett & Bhattacharjee 2005, for example)

∂x̂FR,L
i ∝ (0, εR,La⊥t ,−sign(ax)a⊥t ), (19)

where εR,L = −1 for left-travelling (backward going) waves and
εR,L = 1 for right-travelling (forward going) waves, a = B/

√
4πρ

is the Alfvén velocity vector, at is the transverse component of
a, ax is its x-component, and a⊥t is at rotated by π/2 in the trans-
verse plane. The first component of this gradient is zero, and
hence the density is uniform. The transverse magnetic field has
its gradient orthogonal to itself, meaning that it rotates along
the scanning direction. The corresponding travelling speed is
cR,L

i = εR,L|ax|.
The expressions for fast and slow magnetosonic waves are

∂x̂FR,L
s, f ∝

−
c

cR,L
s, f

, x̂ − ax

d
at,

cR,L
s, f

d
at

 , (20)

where the propagation speed cR,L
s, f reads

cR,L
s, f = εR,L

√
(c2 + a2) + ε f ,s

√
(c2 + a2)2 − 4a2

xc2, (21)

with d = (cR,L
s, f )2 − a2

x and ε f ,s = 1 for fast waves or −1 for slow
waves. These waves are compressive (the density gradient is non-
zero) and the gradient of transverse magnetic field is aligned with
itself. In other words, the transverse magnetic field remains in the
same direction, which also happens to be the same direction as
the variation of the transverse velocity. Both the velocity and the
magnetic field vectors thus remain in the plane defined by the
scanning direction x̂ and the initial transverse field (a property
sometimes referred to as the coplanarity of these waves).

2 We note that formally, finding the gradient ∂x F is equivalent to solv-
ing the amplitude for the linear wave problem when we identify ∂t ≡ iω,
∂x ≡ ik, and 3 = ω/k matches the phase velocity.

These six gradients form an orthogonal basis that can be
easily normalised to make it an orthonormal basis êR,L

s,i, f =

∂x̂FR,L
s,i, f /||∂x̂FR,L

s,i, f || . Any gradient ∂x̂W can now easily be decom-
posed into the six waves by computing the scalar product αR,L

s,i, f =

êR,L
s,i, f .∂x̂W. Thanks to orthonormality, we have

∑
R,L,s,i, f (α

R,L
s,i, f )

2 =

||∂x̂W||2, and each coefficient (αR,L
s,i, f )

2/||∂x̂W||2 can be interpreted
as a 0-to-1 coefficient that characterises how similar the gradi-
ent ∂x̂W is to the corresponding ideal MHD wave. We define
the ‘most representative wave’ as the wave with the largest
coefficient in this decomposition. The most representative wave
characterises the local gradient as slow, intermediate, or fast,
each one in a left- (backward) or right- (forward) travelling ver-
sion depending on the sign of its speed relative to the fluid cR,L

s,i, f .
We also note that this decomposition does not change if we add
a constant vector to the velocity; it is independent of the choice
of Galilean frame.

Until now, we have only considered wave solutions of the
ideal part of the MHD equations (without dissipation), while the
gradients in our simulation result from the evolution of fully
dissipative MHD. We now consider a non-linear wave solu-
tion of the 1D, fully dissipative MHD Ffull(x − 3fullt), such as
the isothermal shocks of Appendix A. The profile of this wave
continuously joins two uniform states related by the Rankine–
Hugoniot relations (see Sect. 3.3). These two states are separated
by a region where dissipation occurs. We consider the gas state
at the local maximum of dissipation; this is where the gradients
of the state variables are the largest, and where the gradient of
viscous and resistive stresses are likely to be small (because we
are close to their maximum). At this position, the 1D dissipa-
tive physics behaves as the 1D ideal physics, and we can expect
that the measured gradients fall along one of the ideal wave
gradients we described above. As a result, the fully dissipative
wave speed should be well approximated by its ideal estimate:
3full ' ux + cR,L

s,i, f where ux is the fluid velocity and cR,L
s,i, f applies

to the most representative wave at the dissipation maximum. We
make use of this fact in the following to estimate the steady-state
velocity of the structures we detected (see Sect. 3.3.2). Further-
more, we investigated the gradients of semi-analytic isothermal
shock profiles (computed in Appendix A) and we noticed that
gradients in slow shocks are dominated by slow magnetosonic
waves all along their profiles. Similarly, fast shocks gradients are
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Fig. 3. Intense dissipation structures extracted from an OT initial con-
ditions simulation with Pm = 1. The time step of this output is t '
1/3tturnover. Structures are shown through dissipation isocontours. The
first one, in blue, is set at εcorr

tot =
〈
εcorr

tot
〉

+ 4×σεcorr
tot

. The second, in beige,
is at 8 times the standard deviation above the mean value, and the last
one, in red, is at 13.5 times the standard deviation above the mean value.

dominated by fast magnetosonic waves. This result seems natu-
ral, but we find it nevertheless surprising that dissipative physics
does not affect the nature of gradients more, and we have not yet
found a satisfactory explanation for this behaviour.

Finally, we note that we can always decompose a gradient
in a given direction, but it makes less sense if the 3D gradient is
not strongly dominated by a single direction. By selecting intense
dissipative cells, however, we are more likely to be in a situation
where the gradient is well directed (see Fig. 2 and previous sub-
section).

3. Dissipation structures

3.1. Definition and visualisation

In turbulent MHD flows, the bulk dissipation of kinetic and mag-
netic energy occurs in a small volume compared to the global
scale of the flow. Dissipation has been analysed and observed
in several studies (e.g. Uritsky et al. 2010; Zhdankin et al. 2013;
Momferratos et al. 2014) to be organised in ribbon-shaped or
sheet-like coherent structures.

Figure 3 shows isocontours of the total dissipation rate
εcorr

tot . The dissipation rate in each cell is computed using the
method described in Appendices A and B. We followed previous
work (Uritsky et al. 2010) and defined a connected dissipation
structure as a connected set of cells, where

εcorr
tot ≥

〈
εcorr

tot
〉

+ λ × σεcorr
tot
, (22)

with λ being a parameter we used to tune the detection threshold,
εcorr

tot the dissipation rate determined by our method, and σεcorr
tot

the
standard deviation of the dissipation rate distribution. We chose
λ = 4 because we find that energy transfers are mainly due to
events above 4σ; we checked that the bulk of the third-order
structure function (responsible for energy transfers) was obtained
from increments above 3–4 sigma. We also wanted the struc-
ture to be identifiable as clearly as possible, and we expect such
high dissipation structures to be associated with more intense
gradients and a more clear-cut physical nature.

Fig. 4. Dissipation cut at time t = 1/3tturnover for OT initial conditions
with Pm = 1. Lower and upper thresholds have been applied to the 3%
pixels with smallest and largest dissipation, the intensity scaling of the
pixels is logarithmic, while the colour-code is as follows. Red: ohmic
dissipation εη = 4πηJ2; blue: compressive viscous heating εcomp =

4/3ρν (∇ · u)2; green: solenoidal viscous heating εsol = ρν (∇ × u)2. We
warn the reader that εcorr

tot , εcomp + εsol + εη, both locally and globally
(because we used a uniform ν and not a uniform ρν; see Lesaffre et al.
2020). We note that there is very little compressive heating (blue).

As already hinted by local gradients (Fig. 2), we see in Fig. 3
that extracted dissipation structures are mainly sheets. Another
way to see this is to look at a thin slice of the dissipation field in
our OT simulation with Pm = 1 (Fig. 4), where the trace of the
sheets appears as thin ridges. Compared to the same figure for
the incompressible runs of Momferratos et al. (2014), the viscous
and ohmic natures of dissipation are now much more entangled
and sometimes even overlap. A close eye inspection of this fig-
ure (and of similar cuts at other time steps and initial conditions)
reveals various sub-layering of ohmic dissipation sheets (red stri-
ations or ohmic dissipation wrapped by shear) or isolated viscous
and ohmic heating sheets (purple in colour, which hints at a mix
of compressive viscous heating and ohmic heating). These are
not the only situations to occur, but it reveals that the intense dis-
sipation sheets are not always randomly positioned with respect
to one another.

A careful inspection of Fig. 3 allows us to witness a few
small, filament-like structures. Some of them may be traced on
Fig. 2 by the low-probability tail in the bottom right hand corner
of the right panel, where the aspect ratios of the gradients are
such that `scan ' `⊥1, while `⊥1 � `⊥2. These tube-like structures
will unfortunately be missed by our systematic investigation,
which focuses on locally planar structures, but we checked, a
posteriori, that these structures only account for a very small
fraction of the dissipation (less than 1%).

Figure 5 shows how the dissipation is distributed in vol-
ume. It gives the volume filling factor of the regions of large
dissipation as a function of their dissipation fraction. This fig-
ure compiles several time steps up to t = 1.33tturnover, where
tturnover = L/

√
〈u2〉 = 2π is the initial eddy turnover time. It
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Fig. 5. Dissipation filling factor for a simulation with OT initial condi-
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dissipation corresponding to the fraction of the volume occupied by the
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mark the volume occupied by the selected threshold for the structure
detection (εcorr
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global dissipation fraction that it represents at each time step.

shows that the intermittency of the dissipation decreases over
time as the r.m.s. sonic Mach number decreases, because we con-
sidered decaying turbulence simulations (Fig. 1 shows the rapid
decline of the sonic Mach number). We see here that structures
shown in Fig. 3 (yellow lines for dissipation greater than four
standard deviations above the mean) occupy '0.8% of the vol-
ume, while they are at the origin of '25% of the total dissipation
rate.

As we used decaying simulations, the Mach number and
dissipation decrease rapidly. We considered snapshots at two
characteristic times. The first snapshot is at 1/3 of the turnover
time, when the first large dissipative structures form, and shortly
after the dissipation peak. It is customary to think of the dis-
sipation peak as a point similar to a steady state, because the
time derivative of the dissipation is zero. However, as we show,
this epoch still bears a strong imprint from the initial conditions.
We therefore also considered a second snapshot at one turnover
time. We did not consider much later times, as turbulence quickly
decays and r.m.s. Mach numbers become much lower than at the
beginning (see Fig. 1).

3.2. Identification of structures

We develop on the details of our procedure to identify scans
along the connected structures.

3.2.1. Scanned profiles

We considered each connected dissipation structure one at a
time. In a selection of cells (see our selection strategy in
Sect. 3.2.5), we took r̂scan as a scanning direction on which
we sampled the magnetic field, fluid velocity, density, and total
pressure P = ρc2 + 1

8π ||B⊥||2, where B⊥ is the magnetic field
transverse to the scanning direction. We note that we do not
include the contribution to the total pressure of the magnetic field
component in the scanning direction, because it should remain
uniform in this direction. We linearly interpolated their values

every 0.2 cell side lengths (this is to avoid accuracy asymme-
tries resulting from the staggered position of the magnetic field
components). As in SHOCK_FIND (Lehmann et al. 2016), each
value was then averaged over a three-cell radius disc, orthogo-
nally to the scanning direction. This smooths profiles and makes
our identification less sensitive to the orientation of the scanning
direction with respect to the cell edges. Four representative scans
are displayed in Fig. 6.

3.2.2. Pre- and post-positions

To identify each side of the discontinuity causing the dissipation
peak, we define reference positions pre- and post-discontinuity.
To do so, we examined the total dissipation profile in the scan
direction (Fig. 6, second row), and we estimated the local scale
of variation of dissipation `ε by fitting a parabola on log εcorr

tot over
two cell lengths. The resulting scale `ε is usually between two
and four cells in length. We adopted ±3`ε as a good compromise:
not too close to the dissipative layer so that the dissipative terms
are negligible and not too far away so that the dynamics is still
dominated by the discontinuity.

To improve the reliability of our identification criteria, we
allowed ourselves to change the sign of the director vector rscan.
We adopted the direction in which the total pressure and den-
sity increases from pre- to post-discontinuity. The sign of r⊥1
was modified to keep a right-handed coordinates system. If den-
sity and total pressure variations are opposite, we then chose
the direction of propagation of the dominant ideal wave in the
gradient decomposition in ideal waves presented in Sect. 2.4.

3.2.3. Heuristic criteria

We first designed three categories according to the classical
MHD shock type classification derived from Rankine–Hugoniot
(RH) jump conditions: fast shocks, slow shocks, and Alfvén dis-
continuities (see Sect. 3.3). We defined three heuristic criteria to
sort the resulting profiles into these categories.

The category of fast shocks (H1) is characterised by a total
pressure increase and a transverse magnetic field increase. The
category of slow shocks (H2) is characterised by the increase
in density and the decrease of the transverse magnetic field.
The category of Alfvén discontinuity (H2) is characterised by
a density bump and a trough in transverse magnetic field.

To determine the variation of the profiles, we compared
the values of the pre-discontinuity, peak dissipation, and post-
discontinuity positions, and each of these values was averaged
over a one-cell side window to avoid spurious variations. By
‘increase’ and ‘decrease’, we mean that the variation is mono-
tonic across these three positions, while by ‘bump’ (resp.
‘trough’) we mean the central value is above (resp. below) the
other two positions.

For shock identifications, the total densities and pressures
must increase. However, for fast shocks, the jump in density is
small compared to the jump in total pressure. In some cases,
the uncertainty on the position of the post-shock could lead to
a non-identification if the relaxation of the post-shock pressure
to that of the ambient medium is fast enough. This is why we do
not consider a density rise as a reliable criterion for fast shock
identification. Slow shocks are the opposite case; the total pres-
sure jump is small compared to the density jump. We thus did
not include the total pressure increase criterion to identify them.
Profiles that do not fall into any of the categories are flagged as
unidentified.
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Fig. 6. Representative scan profiles used to identify the different kinds of dissipation structures in our simulations (here, for the ABC simulation at
Pm = 1 at time t = tturnover/3). The first four rows of plots show, respectively, velocities (in the local velocity frame of the scan, and normalised by
the initial r.m.s Alfvén speed), dissipation rates, density and total pressure, and magnetic field components’ profiles. The last row shows gradient
decomposition into ideal waves. The coloured surfaces in between the curves is proportional to the weight of each corresponding ideal wave (in
the decomposition presented in Sect. 2.4). Vertical dashed lines on each plot mark the positions of pre- and post-discontinuity that we define in
Sect. 3.2.2.

3.2.4. Gradient decomposition criteria

We now supplement these heuristic criteria by using the gradient
decomposition method described in Sect. 2.4. Gradient decom-
position is another method used to locally characterise the nature
of the variations of gas-state variables across discontinuities. The
use of this technique on the analytical profiles of 1D isother-
mal fast and slow shocks (as computed in Appendix A) shows
us that they decompose into almost pure fast and slow magne-
tosonic waves, respectively. We have no prior information on
the wave decomposition of Alfvén discontinuities, but we find
that profiles corresponding to our heuristic criteria for Alfvén
discontinuities yield two exclusive cases; they either decompose
mostly into intermediate waves, or they decompose mostly into
slow magnetosonic waves.

For the specific case of a transverse magnetic field inversion
(i.e. the transverse magnetic fields are opposite each other on the
pre- and post-sides of the profile), we find there are two possible
ways for it to go from one side to the other side. It can either
rotate continuously until reaching the angle π, or it can use a
co-planar path by shrinking until it vanishes and then expand in
the other direction. These two situations cannot be distinguished
via pre- and post-discontinuity values alone, as in the classical
view of Rankine–Hugoniot relations. The difference resides in
the internal structure of the discontinuity itself, with a rotation
in one case (which has a gradient decomposition dominated by
intermediate waves) and in the other case a co-planar variation
of the transverse magnetic field (for which we find a gradient
decomposition dominated by slow magnetosonic waves).

For each scan, we thus estimate the relative weight of each
type of ideal wave decomposition averaged over the scan as

Fs,i, f =

∫ xpost

xpre
dx

[
(êR

s,i, f .∂x̂W)2 + (êL
s,i, f .∂x̂W)2

]

∫ xpost

xpre
dx||∂x̂W||2 , (23)

where subscripts s, i, and f stand for slow, intermediate, or fast.
x is the position along the scanning axis. xpre and xpost are the
pre- and post-discontinuity positions, respectively. We note that
Fs + Fi + F f = 1.

Our identification criteria take into account the agreement
between the heuristic and the ideal wave gradient decomposition
methods. We therefore only define structures that show an agree-
ment between the two methods as identified. According to these
criteria, H1 heuristic (see Sect. 3.2.3) and fast wave-dominated
gradients (F f > Fs and F f > Fi) are the fast shocks. While slow
shocks are identified with H2 heuristic and slow wave-dominated
gradients (Fs > F f and Fs > Fi). The Rotational discontinuities
are characterised by heuristic H2 and slow wave-dominated gra-
dients (Fs > F f and Fs > Fi). The Parker sheets, on the other
hand, exhibit H3 heuristic and slow wave dominated gradients
(Fs > F f and Fs > Fi).

Representative example profiles of the four kinds of dissipa-
tive events we encounter are shown in Fig. 6. For some profiles,
the dominant wave weight does not correspond to the heuristic
type. We flag these as misidentified. Finally, we note that our
divide between rotational discontinuities and Parker sheets may
be arbitrary. We found no metric in which the statistics for these
two classes clearly separate (i.e. with a gap between them), and
there are, on the contrary, many indications that they just form
the two sides of a continuum of Alfvén discontinuities.

3.2.5. Scanning strategy

We examined each connected dissipation structure one at a time.
We sorted the cells of a given structure by decreasing planarity
(`⊥1/`scan) to obtain the most reliable identification (the most
planar cells are scanned first). To prevent overlap of integration
domains and to save computation time, once a scan was not iden-
tified, we removed cells around it from the remaining cells to
be identified. We remove all the cells that belong to a rectangle
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parallelepiped, whose square faces are orthogonal to the scan
axis and have a side length of 20 cells. We then examined the
next most planar cell in the remainder of the structure until we
exhausted all cells for that structure. Once we had considered
all available structures in the computational domain, we were
left with a list of scans and their identifications, the statistics of
which we discuss in Sect. 4.

3.3. Rankine–Hugoniot validations

Rankine–Hugoniot (RH) relations express jump conditions
across discontinuities in their stationary frame (Macquorn
Rankine 1870; Gurnett & Bhattacharjee 2005). RH relations hold
in a very specific situation where the fluid is stationary, with a
plane-parallel symmetry and homogeneous conditions on either
side of a discontinuity. Nothing seems further away than our
fully turbulent decaying turbulence simulations. Nevertheless,
we wanted to check if our structure identification would allow us
to recover some of the properties expected from the RH relations.
If they held, it would bring more weight to the selection criteria
we devised, and it would generalise the results of Lesaffre et al.
(2020) to 3D MHD. They found that in 2D, decaying, unmagne-
tised turbulence, 1D steady-state shocks could be used to model
the strongest dissipation structures. In 1D, steady-state, isother-
mal MHD, conservation of mass, momentum, and magnetic field
read
[
ρu · n]post

pre = 0, (24)

[
ρu (u · n) +

(
p +

B2

8π

)
n− (B · n) B

4π

]post

pre
= 0, (25)

[B · n]post
pre = 0, (26)

[n× (u × B)]post
pre = 0, (27)

where []post
pre denotes the difference between the states at pre- and

post- discontinuity. n is the normal to the discontinuity. In our
study, we took n = r̂scan, which contains most of the gradient for
highly dissipative cells (see Fig. 2). In other words, the planar
region hypothesis, which subtends RH relations, is well verified
for the most intense dissipative regions.

Across the discontinuity, the velocity of the fluid transi-
tions from above to under a characteristic speed set by the
three MHD linear wave speeds (cR

s,i, f , see Sect. 2.4). This
leads to the traditional MHD velocity regime classifications
(Delmont & Keppens 2011), where numbers designate upstream
and downstream states, and un = u · n: (1) super-fast un ≥ cR

f ; (2)
sub-fast/super-Alfvénic cR

i ≤ un ≤ cR
f ; (3) sub-Alfvénic/super-

slow cR
s ≤ un ≤ cR

i ; (4) sub-slow un ≤ cR
s .

The discontinuity type is labelled as i → j, where i ≥ j.
These discontinuity types show different behaviours for the
transverse magnetic fields.

– 1 → 2 are fast shocks. Magnetic field is refracted away
from the shock normal, which yields a transverse magnetic field
increase. Fast shocks efficiently convert kinetic to transverse
magnetic energy.

– 3→ 4 are slow shocks. Magnetic field is refracted towards
the shock normal, which yields a transverse magnetic field
decrease. Slow shocks are efficient at compressing the gas.

– 1→ 3, 1→ 4, 2→ 3, and 2→ 4 are intermediate shocks.
The transverse magnetic field flips across the shock normal.

– 2 = 3 → 2 = 3 are called Alfvén discontinuities or rota-
tional discontinuities. The norm of the transverse magnetic
field is unchanged between pre- and post-discontinuity regions,
and only its direction changes in the plane parallel to the dis-
continuity. Alfvén discontinuities are believed to be efficient
at reconnecting the field lines (Zweibel & Brandenburg 1997;
Zhdankin et al. 2013).

Density and total pressure profiles also show different sig-
natures. In the first three cases, these profiles are jumps whose
amplitude depends on the parameters of the shock. In the case of
Alfvén discontinuities, these quantities must be identical on both
sides of the discontinuity.

3.3.1. Transverse magnetic field

Each type of RH discontinuity exhibits a different signature
in the transverse magnetic field evolution from pre- to post-
discontinuity. Our heuristic criteria to identify structures with 1D
profiles use only the norm of the transverse magnetic field. We
now examine the behaviour of the direction of the field to check
its consistency with the RH relations, and we plot each structure
in the form of a hodogram. We normalised the pre-discontinuity
magnetic field and rotated our frame so that every scan has the
same starting point. Applying the same rotation and normalisa-
tion to post-discontinuity magnetic field allows us to see relative
variations in norm and angle of the transverse magnetic field
across the discontinuity:
(
B̃⊥1
B̃⊥2

)
=

1
|B⊥,pre|2

(
B⊥1,pre B⊥2,pre
−B⊥2,pre B⊥1,pre

) (
B⊥1,post
B⊥2,post

)
, (28)

where B⊥ = (B⊥1, B⊥2) is the transverse magnetic field in the
frame defined by the local gradient method (Sect. 2.3). The
rotation matrix and the normalisation coefficient applied to
the magnetic field depend only on the pre-discontinuity mag-
netic field components in this frame. B̃⊥ =

(
B̃⊥1, B̃⊥2

)
is the

post-discontinuity magnetic field that has been rotated and nor-
malised. In the following, the subscript n refers to the component
orthogonal to the discontinuity plane: Bn = B · n for the magnetic
field and un = u · n for the velocity field.

Alfvén discontinuities are characterised by un , 0 and[
ρ
]post
pre = 0, so Eq. (24) leads to [un]post

pre = 0. The conservation of
momentum flux from Eq. (25) in the normal direction then yields[
B2
⊥
]post

pre
= 0. The transverse magnetic field norm is conserved,

which, with our normalisation, results in Alfvén discontinuities

remaining on the circle: B̃⊥ =

√
B̃2
⊥1 + B̃2

⊥2 = 1.
Shocks are characterised by a fluid flow across the disconti-

nuity, un , 0, and a non-zero density jump,
[
ρ
]post
pre , 0. Mass flux

conservation in Eq. (24) gives
[
ρun

]post
pre = 0, and with [Bn]post

pre = 0
(Eq. (26)) it allows us to rewrite the transverse momentum flux
conservation as

ρun [u⊥]post
pre −

Bn

4π
[B⊥]post

pre = 0, (29)

and the jump condition (27) becomes

ρun

[
B⊥
ρ

]post

pre
− Bn [u⊥]post

pre = 0. (30)

We first notice that
[

B⊥
ρ

]post

pre
, [B⊥]post

pre and [u⊥]post
pre are all co-

linear. Solving the second equation for [u⊥]post
pre and substituting
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Fig. 7. OT Pm = 1 run near dissipation peak (at time t = 1/3tturnover).
Hodogram in which the pre-shock magnetic field is normalised and
rotated such that B̃⊥1 = 1 and B̃⊥2 = 0. The post-shock magnetic field is
plotted according to this rotation and normalisation. Red dots denote
fast shocks, blue ones slow shocks, green is for rotational disconti-
nuities, and cyan is for Parker sheets. On the right, the top plot is
the probability density function of the number of blue dots from the
left plot. The bottom right one is for red dots. The dashed line is the
unity radius circle that separates discontinuities where the transverse
magnetic field increases (outside the circle) decreases (inside the circle).

Fig. 8. ABC Pm = 1 run near dissipation peak (at time t = 1/3tturnover).
The left plot is identical to the one presented in Fig. 7. Top right plot
shows the number of dots histogram for Parker sheets. Bottom right is
for rotational discontinuities.

it into the first equation then gives

(ρun)2
[
B⊥
ρ

]post

pre
− B2

n [B⊥]post
pre = 0, (31)

which can be rewritten in the form

B⊥,pre

(
(ρun)2

ρpre
− B2

n

4π

)
= B⊥,post

(
(ρun)2

ρpost
− B2

n

4π

)
. (32)

It is clear from these equations that pre- and post-shock
magnetic fields must be co-linear. On a hodogram, with the
normalisation and rotation we apply to our post-discontinuity
magnetic field (see Eq. (28)), all the shocks must remain at
B̃⊥2 = 0, while B̃⊥1 > 1 for fast shocks, 0 < B̃⊥1 < 1 for the
slow ones and B̃⊥1 < 0 for intermediate shocks.

In Figs. 7 and 8, hodograms are shown for, respectively, OT
and ABC initial conditions. The two PDFs of Fig. 7 show that
the vast majority of the points indeed cluster around the hori-
zontal axis, where RH relations predict that fast and slow shocks

should lie. Individual fast shocks that seem very far from copla-
narity correspond to switch-on shocks, a limiting case of fast
shocks, where the pre-shock transverse magnetic field is null.
The normalisation we introduced with respect to the pre-shock
field sends the finite post-shock magnetic fields to infinity. Nev-
ertheless, the finite spread along the B̃⊥2 axis for slow and fast
shocks is an indication that there are deviations from the 1D RH
relations. We conjecture that the origin of this discrepancy is
due to violation of the 1D mass flux conservation for a large
number of scans. This can originate from a leak of material in
the plane of the shock (small deviations from the pure plane-
parallel case) and/or through the difficulty to accurately probe
mass flux conservation compared to other quantities, as noted in
Appendix B.

The second hodogram in the ABC case (Fig. 8) highlights
Parker sheets (cyan dots) and rotational discontinuities (green
dots). As for Fig. 7, their 2D PDFs behave as expected from RH
relations: the transverse magnetic field norm remains unchanged
from pre- to post-shock, only the direction of the field changes.
Because Parker sheets are dominated by slow wave gradients,
which are co-planar, they are hence constrained to perform a
full π rotation of the transverse field, which is indeed where the
PDFs cluster. A surprising result highlighted by the PDFs is that
rotational discontinuities have a lack of occurrences for such full
π rotations: inversions of the transverse magnetic field mostly
occur through co-planar structures (which we call Parker sheets)
rather than rotational discontinuities. The rotational discontinu-
ities also show no rotation angle below π/2. This is an effect
of the threshold we apply in our method of detection of high
dissipation structures. Structures with lower rotation of the trans-
verse magnetic field dissipate less, and we do not detect them (we
checked that we see smaller angles when lowering that threshold
to two standard deviations above the mean instead of four).

There are also significant differences between the initial
conditions ABC and OT concerning the distribution of the
identifications of the different scans in the early times. These
differences are be discussed in Sect. 4.1.

3.3.2. Velocity estimates

The velocity regimes pre- and post-discontinuity completely
characterise discontinuity types. However, to estimate them, we
must first determine the rest frame of the discontinuity with
appropriate accuracy. We compare three independent methods
to derive it. The first is mass flux conservation; here, to establish
the stationary frame in the SHOCK_FIND algorithm, Lehmann
et al. (2016) derived the following from Eq. (24):

uref =
uscan,post − ρpre

ρpost
uscan,pre

1 − ρpre

ρpost

, (33)

where uref is the travelling velocity of the discontinuity in the
frame of the computing domain. We note that when the den-
sity contrast is weak, the denominator goes to zero, making this
estimate prone to large errors.

The second is the most conservative frame. We used all the
other conservation relations. We first introduced the travelling
velocity uref with the frame change ũn = uscan − uref . We then
considered the sum of the squared norms of the left hand sides
of Eqs. (25), (26), and (27). When uref is indeed the velocity of
the discontinuity relative to the gas, this sum should be zero,
because all the conservation relations will be verified. We there-
fore estimate uref as the velocity that minimises the sum. We note
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Fig. 9. Comparison between different methods to access velocity of
gas entering in the discontinuity in its co-moving frame (for the OT
simulation at Pm = 1 at time t = tturnover/3). ũscan,in [Wave] is the
gas velocity derived from the stationary wave frame (see Sect. 3.3.2).
ũscan,in [Most conservative frame] is determined in the frame that min-
imises the violation of all fluxes conservation relations, mass flux
excepted. ũscan,in [Mass conservation] is the mass flux conserving frame.

that we drop mass conservation (24) from the sum, because of a
mass leak through the working surface of the discontinuities that
makes it less accurate. This method is inspired by a more gen-
eral technique described in Lesaffre et al. (2004) to compute the
local stationary frame in multi-fluid 1D simulations.

The last is the stationary wave frame. We used the prop-
agation speed of the most representative wave given by the
gradient decomposition at the dissipation peak (see Sect. 2.4).
Decomposition in slow and fast waves are always pure right- or
left-travelling waves. We then simply chose the velocity at the
dissipation peak corresponding to this wave. On the other hand,
for intermediate waves, they are often right going on one side and
left going for the other. In this case, we take the average velocity
weighted by the strength of the corresponding right- and left-
going wave (the two averaged velocities usually turn out to both
be small).

In Fig. 9, we compare the fluid velocity entering in the dis-
continuity by the pre-shock side (ũscan,in = uscan,pre − uref) in the

frame established with these three methods. In the top plot, we
notice that the mass flux conservation method is inconsistent
with the stationary wave frame method for rotational disconti-
nuities and Parker sheets, and to a lesser extent for fast shocks.
For Alfvén discontinuities, this is expected because of the weak
density contrast, which blows up the denominator in the mass
flux conservation estimate. For shocks, the inaccuracy incurred
by the mass flux conservation could be due to the difficulty in
assessing accurate mass conservation compared to other quanti-
ties, as noted in Appendix B. However, it is more likely due to a
genuine mass flow that occurs in the dissipating layer of the dis-
continuity, transversely to the propagation direction. Figure 10
illustrates this phenomenon clearly; stream lines are converging
or diverging in the (r⊥1, r⊥2) plane in the last rows. This was a
known phenomenon for Parker sheets, where converging flows
orthogonal to the reconnection zones are balanced by diverging
flows in the plane of the current sheet. However, that this phe-
nomenon is also present for shocks and rotational discontinuities
is a discovery. In the case of shocks, we believe this provides
the mechanism that allows the relaxation of the post-shock pres-
sure towards that of the ambient medium. Furthermore, the fact
that the SHOCKFIND estimate for shocks is biased towards
higher values hints at mass loss in the direction transverse to the
working surface (or diverging streamlines, opposite the example
case shown in Fig. 10, where it should, however, be noted that
the velocities are really small, so that this mass loss is almost
insignificant).

The bottom plot of Fig. 9 shows a relatively good agreement
between the other two independent methods. However, the sta-
tionary wave frame tends to give slightly higher velocities for fast
shocks and slightly lower ones for slow shocks. For Alfvén dis-
continuities, the agreement is optimal, and no bias is observed.
We chose to use the stationary wave frame in the following
because it gives pre- and post-velocity regimes that are more
consistent with the RH nature of the discontinuities, which we
now check.

3.3.3. Velocity regimes

With the proper frame set, we can now study the velocity
regime transitions. In order to represent upstream and down-
stream states for all identified scans, we used a scatter plot with
a normalisation conditioned by the following regime: super-fast
(1), sub-fast/super-Alfvénic (2), sub-Alfvénic/super-slow (3), or
sub-slow(4).

1→ ûscan = 3 + |ũscan| − cR
f , (34)

2→ ûscan = 2 +
|ũscan| − cR

i

cR
f − cR

i

, (35)

3→ ûscan = 1 +
|ũscan| − cR

s

cR
i − cR

s
, (36)

4→ ûscan =
|ũscan|

cR
s

, (37)

where ũscan is the velocity plotted on the diagram and cR
s,i,f

is the local positively signed slow, Alfvén/intermediate or fast
speed. We note that the usual integers characterising the velocity
regimes are in reverse order compared to our renormalised num-
ber ûscan. Figure 11 shows the resulting diagrams. The coloured
dashed lines delimit regions specific to the gas velocity regime of
a particular discontinuity type (see Sect. 3.3). The columns give
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Fig. 10. Observation of the local geometry of the velocity and magnetic fields for different types of dissipation structures. First two rows: cuts
across the plane rscan-r⊥1 for four examples of structures we identify (for the same four scans as in Fig. 6). Last row: cuts across the plane r⊥1-r⊥2
for the velocity stream lines. Top plots show magnetic field lines, while bottom ones show velocity stream lines. The frame of reference is set to be
the stationary wave frame at the centre of these images. The background is a two-channel colour map with red assigned to ohmic dissipation and
blue to viscous dissipation.

Fig. 11. The scatter plot on the left is for ABC, and the one on the right is for OT (Pm = 1), both near the dissipation peak. For each scan, we
computed pre- and post-shock slow, intermediate, and fast velocities. We compared fluid velocities to these characteristic speeds in the stationary
wave frame. We normalised velocities according to the pre- and post-regime following Eqs. (34) to (37). X-axis is the pre-shock regime and Y-axis
the post-shock regime. Thus, each kind of discontinuity, in the classical MHD discontinuity classification, belongs to one box. Isocontours in solid
and dashed lines were computed for the two most represented kinds of profile. The zones inside the contours delineate the densest area comprising,
respectively, 70% (black) and 50% (orange) of the dots.
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pre-discontinuity regimes; from left to right, these are sub-slow,
sub-Alfvénic/super-slow, sub-fast/super-Alfvénic, and super-fast.
Whereas rows give access to the post-discontinuity velocity
regime, with the same sorting from bottom to top.

The diagram in the right of Fig. 11 shows the results for the
simulation with OT initial conditions. Because the point density
makes distributions difficult to appreciate at the densest regions,
we also computed 2D PDFs for shocks, which we used to high-
light contours at the value of the median pixel (orange lines) and
the third decile one. Scans that are identified as fast shocks are
located in the expected region for the most part (identified as
1 → 2 discontinuities). The distribution of scans identified as
slow shocks are indeed 3→ 4 discontinuities. However, we note
that the slow shocks often have negative velocities out of the
shock (not shown). We believe this reflects the fact that the post-
shock state is affected by the mass loss in the plane of the shock.
The determination of the stationary reference frame by the ‘most
conservative’ method gives more positive post-shock velocities
(consistently with lower pre-shock velocities as seen in Fig. 9,
bottom panel).

The ABC initial conditions case is shown in the left of
Fig. 11, where PDF’s contours are now used for Parker sheets and
rotational discontinuities. Those two are very peaked at 2 = 3→
2 = 3, where we expect Alfvén discontinuities in the traditional
MHD shock classification (Delmont & Keppens 2011).

For both OT and ABC initial conditions, the distributions
of Alfvén discontinuities are stretched in the horizontal and
vertical directions. We find in these trailing populations an over-
representation of scans in which Bscan ' 0 on one side of the
discontinuity and not the other. These structures are hence not
perfectly plane-parallel, because the magnetic field normal to the
discontinuity should be conserved. A nearly zero magnetic field
on one side implies that cR

i ' cR
s ' 0, and as a result distances

between green dashed lines and zeros are artificially expanded
by the graph’s normalisation relations (34) to (37). A small error
in the determination of the frame velocity and/or the position
of the pre- or post-discontinuity positions leads to exaggerated
distances between the expected and the actual position of the
dots.

The match between our identification criteria and the pre-
and post-discontinuity velocity regimes is strongly dependent on
the determination of the frame in which the structure is station-
ary. We checked our three methods, and we found that steady
frame velocities obtained from the wave decomposition yield
the best consistency between the types and the expected state
transition for each type of structure.

4. Results

In this section, we use our identification algorithm to extract
statistical results from our simulation set. We study the impact
of some of our input parameters on dissipation structures. Our
set is composed of simulations with different magnetic Prandtl
numbers (Pm) and two different velocity field and magnetic field
configurations (see Table 1).

4.1. Impact of initial conditions

We consider here the effect of the initial conditions of the sim-
ulations on the nature of the structures formed. Figure 12 shows
distributions of the identification scans as a function of the mean
dissipation rate in the volume probed by each scan, and Table 2
summarises these results averaged over all scans. The time step

Table 2. Identification fractions within our scans in number (top)
and weighted by dissipation (bottom) for several snapshots and initial
conditions in Pm = 1 simulations.

1
3 tturnover tturnover

Number fraction ABC OT ABC OT

UnID 19% 29% 24% 29%
MisID 7% 12% 8% 11%
Fast shocks 3% 32% 4% 9%
Slow shocks 6% 15% 12% 14%
Rotational disc. 36% 6% 27% 21%
Parker sheet 30% 7% 25% 16%

Dissip. fraction

UnID+MisID 22% 42% 30% 38%
Fast shocks 3% 34% 4% 9%
Slow shocks 4% 11% 10% 11%
Rotational disc. 36% 5% 28% 24%
Parker sheet 34% 8% 29% 18%

chosen for the two graphs on the left side of this figure (as well
as for the left side of Table 2) is 1/3 of the initial turnover time,
shortly after the dissipation peak, when the first and most intense
dissipation structures form. The time step chosen for the right
hand sides of Fig. 12 and Table 2 is after one turnover.

As described in Sect. 2.1, we used two types of initial flows:
ABC and OT. The main difference between these two flows
resides in their magnetic and cross helicities (see Sect. 2.1.2).
This initially yields very different types of structures. Early time
OT is dominated by shocks (mainly fast shocks), while ABC
is dominated by Alfvén discontinuities (rotational discontinu-
ities and Parker sheets). After one turnover time, the impact of
the initial conditions on the formation of the dissipation struc-
tures seems to be erased. The main dissipation mechanism is
then through rotational discontinuities and Parker sheets for both
ABC and OT.

Interestingly, for both types of initial conditions, at early and
late times, the distribution of physical natures of scans does not
seem to depend on their level of dissipation. Intense dissipative
scans and weak scans have about the same proportions of each
nature.

Table 2 also shows the amount of unidentified and misiden-
tified scans. Between 58% and 78% of intense dissipation is
identified by our technique, with a greater success rate for ABC
than OT. Early time structures are also better identified than later
times.

4.2. Impact of the Prandtl number

One critical parameter of dissipation is the magnetic Prandtl
number, Pm = ν/η, which is the ratio of kinematic viscosity ν to
magnetic diffusivity η (see e.g. Brandenburg & Rempel 2019).
We performed our dissipation structure analysis on simulations
with a range of magnetic Prandtl numbers, from Pm = 1 to Pm =
16 (see Table 1). As dicussed in Appendix B, the intrinsic numer-
ical dissipation from the scheme causes the effective Prandtl
number to be slightly different from the input one. Thanks
to semi-analytical solutions (computed in Appendix A), we
probed the effective Prandtl number of our scheme in 1D MHD
shocks. Figure B.4 shows that for moderate velocity shocks (or
u0 ≤ 1) our scheme is already converged, while the highest shock
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Fig. 12. Distribution of different types of structure in terms of the mean scanned dissipation across the discontinuity. The black curve is the total
distribution of scans, whereas coloured curves are identified structures’ contributions. The white area corresponds to unknown dissipation scans.
Top plots are for ABC initial conditions, while bottom ones are for the OT flow. Distributions on the left are at an early time ('1/3tturnover). The
right panel shows the same distribution at t = tturnover.

velocities we find in simulations are at u0 ' 5. We thus remain
confident that the effective Prandtl number in our simulations is
overall close to the input one, at least as regards shocks.

Figure 13 shows OT and ABC identification distributions for
input Pm = 1, 4, 16. The magnetic Prandtl does not seem to have
any impact on the distribution of structures. The only notice-
able difference is a slight increase in the number of rotational
discontinuities at the expense of Parker sheets for ABC initial
conditions.

It was shown by Brandenburg & Rempel (2019) that an
increase in Pm causes an increase in 〈εv〉/〈εη〉, a result that we
confirm and detail here. If there is no statistical difference in
high dissipation structure distributions, it must be differences in
the internal structure of the dissipation layers that lead to differ-
ences in dissipation rates. In Fig. 14, we show scatter plots of
viscous versus ohmic dissipation rates, where each dot marker
expresses the mean of the corresponding dissipation rate within
each scan. At Pm = 1, it is clear that rotational discontinuities
and Parker sheets are dominated by magnetic energy dissipation.
Fast shocks are an intermediate case, with a more balanced share
between ohmic and viscous dissipation rates. Slow shocks are
dominated by viscous dissipation. Each type of structure is more
or less characterised by a given slope in these graphs (i.e. the
ratio 〈εv〉scan/〈εη〉scan is within a more or less well-defined sector
for each type of structure, regardless of initial conditions OT or
ABC). In particular for shocks (both slow and fast), when Pm
varies, this ratio simply scales as Pm. The behaviour of dissipa-
tion within fast shock scans follows the rule 〈εv〉scan/〈εη〉scan ∝

Pm. This scaling is less clear for the other types of structures:
Alfvén discontinuities experience a wider range of ratios at fixed
Pm which makes it less easy to assess if such a scaling is present
(in fact, the envelope of green and cyan points suggests a dif-
ferent scaling, closer to P1/2

m ). Provided the global dissipation
is reflected by intense events, this could explain why the global
average ratio 〈εν〉/〈εη〉 is also found to scale approximately as
Pm in our simulations. We therefore conclude that in our simu-
lations the increase in the viscous over ohmic fraction when Pm
rises comes not from a difference in the nature of the dissipation
structures that form, but from a modification in the way each of
these types of structure dissipates internally.

4.3. Statistics of entrance parameters

In this section, we consider values of the state variables at the
pre- and post-positions on either side of the discontinuities, and
we look for statistical differences between the various natures
of discontinuities. The distributions of entrance sonic Mach
numbers (see Fig. 15) unsurprisingly show that the entrance
velocities are very small for Alfvén discontinuities, moderate for
slow shocks, and of the order of the r.m.s. Mach number for fast
shocks (but with a widespread distribution). Previous work by
Lehmann et al. (2016) showed the distributions of fast and slow
shocks display exponential tails at large velocities. We have less
statistics, but our data is also consistent with this picture. The
bottom row of Fig. 15 displays the distributions for the entrance
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Fig. 13. Dissipation structures distributions for our two initial conditions with varying magnetic Prandtl number from Pm = 1 on the left to Pm = 16
on the right. The time step shown here is at an early time, near the dissipation peak.

Fig. 14. Distributions of ohmic and viscous dissipations averaged within each scan, for the ABC simulation above and OT below, according to the
different identifications and for the values of the magnetic Prandtl ranging from Pm = 1 on the left to Pm = 16 on the right.
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Fig. 15. PDFs of entrance sonic (top row) and Alfvénic (bottom row) Mach numbers in the Pm = 1 ABC (left) and OT (right) simulations at time
t = tturnover/3.

orthogonal Alfvénic Mach numberMa = ũscan/(Bscan/
√

4πρ) =

ũscan/cR
i . Naturally, it is above 1 for fast shocks, and below 1 for

slow shocks. Its distribution for Alfvén discontinuities is more
surprising, though, with widespread values ranging up to values
above 1, while one would expect it to be close to zero. This comes
from the fact that the entrance velocities in these discontinuities
are of the order or below the sound speed, but the magnetic field
happens to be almost transverse, thus yielding very small values
for the intermediate speed cR

i . Finally, we also looked at the sta-
tistical distributions of the density on the pre-discontinuity side
and found these distributions were independent of the nature of
the discontinuity considered.

The environment of each discontinuity is defined by seven
state variables on either side (pre- and post-) of the discontinuity,
giving a total of 14 independent state variables. We can reduce
this number by using the seven conservation relations (mass,
momentum and magnetic field, and 7 independent variables),
a normalisation by the pre-discontinuity density (1 variable), a
rotation of the transverse axes to cancel one component of the
pre-discontinuity magnetic field (1 variable), as well as a trans-
verse boost of the frame to cancel the transverse velocity com-
ponents’ pre-discontinuity (2 variables). The environment can
thus be fully characterised by a remainder of three independent
variables, which can all be considered on the pre-discontinuity
side.

For these three independent ‘entrance parameters’, we chose
the normal p1 and transverse p2 magnetic pressures as well as the
difference p3 between the ram pressure and the normal magnetic
pressure (all are normalised by the thermal pressure p = ρc2).
This choice makes it easy to predict where each discontinuity
should lie in the 3D parameter space, according to the sign of
p3. Negative is for slow shocks, zero for Alfvén discontinuities,

and positive for fast shocks, while p1 and p2 could be arbitrary
positive numbers.

Figure 16 displays two projections of this 3D space onto the
planes (p3, p1) and (p3, p2). In this parameter space, the only
forbidden region is set by the positivity of the ram pressure
B2

scan
4π ≥ −(ρu2

scan − B2
scan
4π ), which translates as p1 ≥ −p3. How-

ever, we find it is not the only region that is devoid of points:
the entrance parameters of our structures do not fully explore
the available parameter space. In fact, tight correlations for fast
shocks are visible in the right hand panel of Fig. 16 (where
ρu2

scan ' B2
scan
4π +0.5 B2

⊥
4π ) and similarly for the slow shocks in the left

hand panel (where ρu2
scan � B2

4π ). It also appears that rotational
discontinuities and Parker sheets are preferably parallel to the
magnetic field (Bscan � B⊥). The latter two discontinuity types
are not distinguishable in this parameter’s space, as we only con-
sidered the pre- and post-discontinuity states here without taking
into account the internal structure.

These statistical constraints on the three entrance parameters
of the dissipation structures reduce the number of independent
parameters to two. Understanding the origin of these correlations
in MHD turbulence will be the subject of future work.

4.4. Transverse velocity differences

Molecular line observations probe the radial velocities across the
plane of sky, while we have access to the full 3D geometry of
the intense dissipation regions in our simulations. When pro-
jected on the plane of sky, an intense dissipation sheet yields
a salient, filament-like feature on observable maps where the
plane of the sheet is orthogonal to the plane of sky, id est where
column-density is greatly enhanced through a caustic-like effect.
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Fig. 16. Entrance (pre-discontinuity) parameters for each scan we identify at time t = tturnover/3. The position of the pre-discontinuity is defined
in Sect. 3.3 (as three times the dissipation length `ε before the dissipation peak). Top plots are for ABC initial conditions and bottom plots are for
OT ones. The x-axis is the difference between ram and magnetic normal pressures. In left plots, the y-axis represents the magnetic pressure in the
scan direction, and in the right ones it represents the transverse magnetic pressure. All quantities are normalised by the thermal pressure (p = ρc2).
Integrated PDFs are given on each side of the panels.
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Fig. 17. Transverse velocity differences in the two directions r̂⊥1 (left
column) and r̂⊥2 (right column) between pre- and post-discontinuity
positions. Top panels are for ABC initial conditions and bottom ones for
OT initial conditions. The time step of these outputs is t ' 1/3tturnover.

In Fig. 17, we hence display the velocity difference statistics
projected on the two transverse directions, r̂⊥1 and r̂⊥2, as a
proxy to what an observer would measure for the velocity differ-
ence across the projected ridge of an intense dissipation sheet,

in the two cases where the line of sight is along r̂⊥1 or r̂⊥2.
As expected due to rotation symmetry, rotational discontinu-
ities have no noticeable difference depending on the direction,
while fast and slow shocks are co-planar; hence, the difference is
greater in the direction of r̂⊥1 than in the direction of r̂⊥2. What
is more surprising, though, is the fact that Parker sheets follow
the same trend as rotational discontinuities; this is an indication
that there is more continuity between the rotational discontinu-
ity and Parker sheet classes than our arbitrary division between
the two would suggest. An interesting feature we also observe is
the bimodality of the slow shocks compared to the fast shocks,
which is linked to the fact that Bscan/

√
4πρ needs to be greater

than the typical velocity to yield a slow shock.
We retained the sign of the velocity differences, although

they technically cannot be probed by observations, due to the
unknown projection angle. In the OT case, the positive and neg-
ative velocity differences for slow and fast shocks along r̂⊥1 have
markedly different statistics. This is due to the relative orienta-
tion between the fluid velocity and the magnetic field direction
along the scanning vector. When they have the same orienta-
tion (i.e. Bscan = Bn > 0), transverse velocity differences have the
same sign as transverse magnetic field differences (see Eq. (29)):
in this case, fast and slow shocks have, respectively, positive
and negative velocity differences. For the OT initial conditions,
the positive cross-helicity results from a mean positive align-
ment between velocity and magnetic fields, hence a more likely
positive velocity difference for fast shocks, or negative for slow
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Fig. 18. Nature-by-nature distributions of dissipation flux per scan in
our Pm = 1, 10243 simulations (left panels) and in our 5123 simulations
(right) at t = 1/3tturnover.

shocks. For the ABC initial conditions, the mean cross-helicity
is zero, which yields symmetric statistics.

5. Discussion

5.1. Resolution study

We performed simulations at half the resolution (5123 pixels)
in order to check the stability of our results. we note that the
dimensions of our scanning cylinders are defined with respect to
the pixel size, with three pixels in lateral radius and a 6 `ε scan-
ning length centred on the detected local maxima of dissipation.
The appropriate quantity to consider is hence the average energy
dissipation rate per unit surface or the energy flux through the
surface of the discontinuity.

In Fig. 18, we consider the statistics of these dissipation
fluxes nature by nature for two corresponding runs at 5123 and
10243. They are seen to match perfectly, except for statistical
noise, which disrupts the lower resolution results. Indeed, we
identify approximately four times fewer scans at low resolution,
which is another indication that our dissipation structures are
mainly sheets.

We also find that for both N = 512 and N = 1024, `ε is of
the order of 1.5 pixels. This is consistent with our findings on 1D
shocks in Appendix B that a two times lower resolution would
yield an energy deposit twice as wide spread in the scanning
direction, while keeping its integrated value constant (thanks to
our method to recover numerical dissipation). It is also a hint that
the same behaviour holds for Alfvénic discontinuities, which was
not obvious.

Finally, this is another indication that large-scale dynam-
ics set the environmental characteristics of the discontinuities
(the values of the state variables of the gas on either side of
them), while the microphysics (physical and numerical dissipa-
tion) control the internal profiles of these discontinuities. The
first evidence of this was uncovered with our Prandtl number
study in Sect. 4.2.

5.2. Towards global dissipation fractions

In this paper (Sect. 2.1.2, for example), we discuss the relative
distributions within our scans. However, it is unfortunately dif-
ficult to relate it to the global dissipation in the computational
domain, because the scans focus on the most intense events.

Nevertheless, in Sect. 3.1 we show that strong dissipative pixels
considered in this study (>4σ) represent a large fraction ('25%
for ABC near the dissipation peak and '30% for OT) of the
global dissipation rate of the simulation time step. However,
the dissipation rate only exceeds this threshold near the peak
of each scan, so the dissipation in a given scan also accounts
for some dissipation below that threshold. Hence, the dissipa-
tion within our scans must amount to more than these global
fractions of dissipation. Furthermore, if we had chosen a lower
threshold to identify structures, we would have detected weaker
scans closer to the lateral edges of the dissipation structures.
Since the proportions in physical natures do not appear to depend
much on the strength of the scan, we might expect to find the
same proportions in these weaker scans. As a result, the frac-
tions we currently measure might apply to a more significant
fraction of the global dissipation, although it is difficult to ascer-
tain it (overlap between scans of neighbouring structures and
lack of planarity for some of the weaker scans might moderate
the above arguments). In particular, we are not able to assess
whether there is a diffuse component of dissipation outside the
intense dissipative regions.

5.3. Pixel-by-pixel distribution

Our method identifies a large majority of the scans we probed in
each simulation and time steps studied. The criteria for the iden-
tification of the scans are very strict, with the aim of discovering
the structures’ basis causing the dissipation in the isothermal
compressible MHD regime. Although restricted to the purest
structures, we identify a significant fraction of the total dissi-
pation of the simulations. In Sect. 5.2, we mention the difficulty
of relating total dissipation rates to the scan distribution. Here,
we attempt to link the distributions of scans to the distribution
of the pixels above a given threshold. To partly remedy overlap-
ping problems that might occur between scans, we flagged cells
above a given threshold of the simulation according to the first
identification that contain them. The resulting dissipation rate
identification is shown in the top plots of Fig. 19.

The black line shows the fraction of dissipation captured
by the threshold four standard deviations over the mean. The
colours below show the fraction of each pixels above this thresh-
old identified as each of the four main natures we find in our
scans (the white space combines pixels that were never flagged
because they always fall in unidentified or unknown scans). This
time evolution graph clearly shows how the distributions differ
at early times for our two different initial conditions, and how
they stabilise after little bit less than one turnover time. This con-
firms the result that we found for scan distributions and state in
Sect. 4.1.

5.4. Connectedness

Furthermore, if we consider only the well-identified scans, we
observe that about 70% of the related connected structures are
identified by a single type of scan and 80% have more than 75%
of their scans identified by the same nature (see Fig. 20). We
can therefore consider propagating the dominant type of a con-
nected structure to the remainder of its cells. This allows us to
avoid the edge effects of structures and increases the identified
dissipation fraction. The result is shown in the bottom plots of
Fig. 19. This graph tells us, first of all, that the fully uniden-
tified connected structures, although representing a significant
fraction of the studied structures in number, participate very little
in the total dissipation of the cube. These are small fragmented
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Fig. 19. Contribution of dissipative structures and their different natures to global dissipation. Top plots: fraction of the total dissipation high
dissipation structure contribute to (black line) and the contribution of cells that belong to a scan that is identified (coloured areas) for OT and ABC
initial conditions simulations. Bottom plots: we use the most represented identification in each structure and attribute the total dissipation rate of
the structure to this kind. This method is supported by the fact that we find connected structures to be mainly made of one kind of discontinuity.

.

Fig. 20. High-dissipation structures extracted from an OT initial condi-
tions simulation atPm = 1. The time step of this output is t ' 1/3tturnover.

events, which also comprise the short filament-like structures
seen in Fig. 3. Second, we notice that the unidentified scans
often belong to structures dominated by rotational discontinu-
ities, except for the OT simulations at an early time, when they
are sometimes part of fast shocks (see Fig. 20). For ABC runs,
until about 0.7 turnover times, the dissipation generated by the
Parker sheets decreases slightly to the benefit of that produced by
the rotational discontinuities (bottom right panel of Fig. 19). This

implies that despite the uniqueness of the identifications within
a related structure, a significant fraction of the Parker sheets
are found within structures formed by rotational discontinuities,
which relates to our previous remarks on the continuity between
Parker sheets and rotational discontinuities; our divide between
the two is rather arbitrary, and these connected structures could
probably be gathered into a single Alfénic discontinuity class.

We also tried to decrease the detection threshold of the dissi-
pation structures to εcorr

tot = 〈εcorr
tot 〉+ 2σεcorr

tot
to increase the fraction

of the total identified dissipation. In this case, the identification
rate decreases only by a few percent compared to a threshold of
εcorr

tot = 〈εcorr
tot 〉 + 4σεcorr

tot
. The contribution of the different natures

to the overall dissipation remains similar, and the fraction of dis-
sipation above the threshold identified by the scans increases by
about 10% overall.

5.5. Unknown identifications

By using two sets of criteria that are rather independent of each
other, we biased our identifications towards more false negatives
and fewer false positives. Thus, there remain many misidentified
scans, because they either do not fit any of our heuristic criteria
(unidentified scans) or because the two sets of criteria do not
match (misidentified scans). We outline some of the reasons why
our identification criteria might miss a significant fraction of the
scans.

The main culprits are ‘edge’ scans. These are scans at the
periphery of structures where the main direction of the gradient
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is less well defined, and therefore the scanning direction is less
relevant. For instance, the scanning direction is irrelevant in the
case of the small, filament-like structures observed in Figs. 3 and
20, where scans probably fall at least in the misidenditified cat-
egory. Also, when two structures are too close to each other, the
heuristic part of the identification is confused, because bumps or
jumps are less well defined. We note that the wave decomposition
suffers less from adjacent structures, because it is sensitive only
at the cell scale. Some of the unidentifications could also be due
to the presence of intermediate shocks (see Sect. 5.6 below) but
we consider that they probably account for only a small fraction.

Given the strong correlation between our two sets of iden-
tification criteria (heuristic and ideal waves), one could suggest
using only ideal wave decomposition to greatly increase the iden-
tification rate. We would thus reach 100% of identification, but
our results would then be subject to caution and biased towards
false positives. One should restrict this wave-only decomposi-
tion to the most planar cells where the gradient approach makes
sense. Also, the identification would then rely on the velocity
regimes, which we have shown can be subject to caution depend-
ing on the method used to estimate the travelling speed of the
discontinuities.

5.6. Intermediate shocks

If intermediate shocks are present in our simulations, our heuris-
tic criteria would voluntarily miss them, and they would fall in
the unidentified category. These shocks have either a density or
a pressure jump, but they often display a magnetic field trough.
We chose not to add this criterion here because we would not
have had an independent criterion for gradients to solidify this
heuristic one. This might be a reason why we achieve less iden-
tification in the OT case at early times, which seems more prone
to generating shocks. We in fact attempted to target intermedi-
ate shocks and have found some convincing cases. However, the
uncertainty on our estimate for the steady state velocity of these
discontinuities makes it difficult to validate the speed regimes of
these shocks on a statistically significant population. We hence
decided to postpone our investigation on these shocks. In any
case, the fraction of unidentification that we publish here puts an
upper limit on the fraction of intermediate shocks.

5.7. Driven versus decaying turbulence

Some astrophysical situations (a solar coronal ejection, a super-
nova, or a runaway star encountering a cloud, for example) can
locally inject mechanical energy in a short amount of time. In
these events, well defined initial conditions that can suddenly be
imposed and will later develop into turbulence. In these contexts,
decaying turbulence is probably a sensible approach. However,
one can question the applicability of decaying turbulence in
many other realistic astrophysical situations. First, turbulence
being ubiquitous, it is very unlikely that an initial set-up would
be entirely devoid of turbulent perturbations at the onset. Also,
the fast decay of turbulence led Stone et al. (1998) amongst other
authors to advocate the necessity of persistent driving at the
scales relevant for the interstellar clouds. Our experiments have
shown that initial conditions can imprint significant changes in
the early phases of the development of turbulence; similarly, we
expect that a given forcing may impact the resulting turbulent
cascade at least to some degree, and it will do so at all times. One
should therefore be careful to properly characterise the properties
of the forcing (such as helicity injection) used in the experiments
of driven turbulence.

In particular, a lot of attention has been devoted to the impor-
tance of solenoidal versus compressible forcing (Federrath et al.
2010). This has led to techniques for observationally probing
the degree of compressibility of the gas; some regions of the
ISM near the galactic centre were found to be dominated by
solenoidal driving (Federrath et al. 2016), while others associ-
ated with stellar feedback were found to be more compressively
driven (Menon et al. 2021). Intermediate situations were also
witnessed in Orion B (see Orkisz et al. 2017, for example). These
considerations are important, as the nature of star formation is
believed to be strongly influenced by the driving of the tur-
bulence (Federrath & Klessen 2012). In the present study, we
did not attempt to check the influence of compressible versus
solenoidal initial velocity fields (our initial velocity fields are
divergence free), but one can imagine that initially more weight
would be given to shocks had we started with velocities includ-
ing a compressive component. We still believe though that the
tendency to evolve towards incompressible structures would per-
sist (imagine starting the origin of times after a fraction of the
turnover time: this might be an illustration of what could happen
if we started the simulation with compressible initial conditions).
Finally, an intermediate solution would be to start decaying tur-
bulence with a snapshot of fully established driven turbulence, or
to imprint synthetic models of turbulence, such as those designed
by Durrive et al. (2020), on the initial conditions.

6. Conclusions and prospects

The aim of the present study is to systematically characterise the
physical nature of intense extrema of dissipation in MHD simula-
tions of turbulence. We developed a technique to locally recover
the total dissipation including the numerical losses. We tested
the classic rule of thumb that grid-based simulations need twice
the resolution of similar spectral schemes; in this case, we find
that numerical dissipation is indeed below half of the total, but
dissipative fronts are widened by a factor of about three. Since
obtaining the expected thickness would require an extra factor
of ten in resolution, we feel the current usage provides a good
compromise.

We devised a way to characterise the geometry and the
physical nature of local intense variations of the state vari-
ables of the gas. We find the non-linear waves associated with
these large gradients and disclose their Rankine–Hugoniot cate-
gory. We show that at the dissipation peak, the fully dissipative
gradients must be close to an ideal MHD wave gradient. We
observe that the nature of this gradient is surprisingly consistent
throughout the profile of the dissipation structure. For exam-
ple, fast shocks are composed of essentially fast wave gradients,
and we confirmed it with the 1D semi-analytical models of
isothermal shocks of Appendix A. We used this property to our
advantage and we designed a method to classify the dissipation
structures into fast shocks, slow shocks, Parker sheets, and rota-
tional discontinuities. We successfully identified a large majority
of the intense dissipation, which allows us to draw statistical
conclusions.

We show that initial conditions can strongly affect the nature
of the dissipation structures at early times. However, early sig-
natures of the initial conditions are quickly lost after about one
turnover time. At this point, dissipation becomes dominated
by weakly compressive structures (Alfvén discontinuities rather
than shocks). This may be due to the sonic Mach number hav-
ing decreased closer to one at this point. We aim to investigate
higher Mach numbers and more compressive initial conditions
in the future.
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Despite the complexity of the magnetised 3D flows we inves-
tigated in this study, the strongest dissipation structures are
locally planar and steady and can be assimilated to Rankine–
Hugoniot discontinuities. We noted unexpected correlations
between the entrance parameters of these discontinuities (which
can be reduced to a 2-parameter family); further work is needed
to explain how these correlations arise in a turbulent medium.

We compared three methods to measure the travelling speed
of these non-linear waves and checked that the resulting velocity
regimes are compatible with our identifications. The difficulty in
accurately measuring the travelling speed makes it impossible to
assess the statistics of the elusive intermediate shocks, although
we report we could find clear examples of them (not shown in
this paper).

The access to an accurate travelling speed will facilitate the
follow-up of structures in time, which will help discover if the
statistical changes with respect to time are due to collisions (or
breading) between structures, birth or death of given structures,
possible changes in nature of a given structure in time or to the
development of substructures and instabilities within a structure.

We do not find strong evidence for the slow shocks being
more subject to corrugation instability as originally found by
Park & Ryu (2019). In general, connected structures appear
equally fragmented regardless of their various natures (see
Fig. 20), but a more quantitative study might conclude other-
wise. It seems to us that Alfvénic discontinuities are often found
in parallel sub-layered systems, while fast shocks often occur
in isolation, but again a quantitative analysis might conclude
otherwise.

One may challenge the applicability of such simplified
isothermal MHD simulations to a medium as complex as the
interstellar medium. However, the present study hints that, to
some extent, the details of the microphysics matter only within
the internal structure of discontinuities. For example, the statis-
tics of the entrance parameters do not change when Pm is varied.
This is reminiscent of the study by Brandenburg (2014), which
suggested that variations withPm were controlled by the individ-
ual 1D structure of the shocks, and it is also echoed in the review
of reconnection by Zweibel & Yamada (2016), which focuses on
the respective roles of global and local processes. If this holds,
one could imagine post-processing the statistics from 3D simu-
lations with more detailed 1D models including non-equilibrium
chemistry, such as the Paris-Durham shock models (Flower et al.
1985; Flower & Pineau des Forêts 2015), as was demonstrated in
Lesaffre et al. (2020) for 2D unmagnetised turbulence.

The ultimate objective is to estimate the turbulent dissipation
rate in diffuse matter and its characteristics in the broad perspec-
tive of unravelling molecular cloud growth and star formation
(e.g. Hennebelle & Falgarone 2012). The fall-off (or the absence
of fall-off at small scales) of power spectra of a variety of tracers
of diffuse interstellar matter (e.g. Miville-Deschênes et al. 2016)
is a key piece of information to be combined with the kinetic
information provided by high-spectral-resolution observations of
either atomic gas (e.g. Reach & Heiles 2021) or molecular lines
(Hily-Blant et al. 2008; Falgarone et al. 2009). This latter route
is of course challenging because it requires the modelling of
non-equilibrium chemistry driven by dissipation bursts.

Conversely, our multi-dimensional simulations suggest
improvements to 1D traditional models. Although the structures
we find are mostly plane-parallel, we find that the main deviation
from 1D profiles is sideways mass loss into the dissipative sheet.
In the future, we can imagine refining 1D models by including
such mass loss, as did Parker in his fiducial Parker-sheet model,
for example (Parker 1963).

Finally, we believe that the tools we put forward in this paper
will give more ground to the view of developed turbulence being
a statistical collection of coherent structures. For example, a
series of works (e.g. Zhdankin et al. 2013, 2014, 2015, 2016)
on the dissipation structures in reduced MHDs has led to new
insights on the analytics of intermittency and turbulent dynamics
by Mallet & Schekochihin (2017). Density statistics deviations
from log-normal were explained by an appropriate collection of
shocks in Robertson & Goldreich (2018). Recent development
in the theory of anisotropic compressible MHD turbulence use
to their advantage the statistics of shocks to interpret the prob-
ability density function of the density (Beattie et al. 2021). In
the meantime, Cluster satellite observations (Perrone et al. 2016,
2017) have witnessed the signatures of both Alfvén and compres-
sive coherent structures in the fast and slow components of the
solar wind. Recent developments in solar wind observations may
soon be able to constrain the statistics of the various individual
types of dissipation structures (Bruno & Carbone 2013).
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Appendix A: Steady-state 1D MHD shocks

Here, we consider the internal structure of a steady-state isother-
mal planar MHD shock. We can always operate a Galilean trans-
formation to place ourselves in the frame moving along with the
shock, so that the pre-shock velocity is in the normal direction
to the working surface, which we define as the first space co-
ordinate x. In addition, we can rotate this frame along the nor-
mal so that the second space coordinate y is along the pre-shock
transverse magnetic field, and so both third components z of the
magnetic field and the velocity are zero along the whole shock
(thanks to the co-planarity property within shocks; this would
not be the case in a rotational discontinuity).

We write u and 3 for both the first and second coordinates
of the velocity in this frame, and similarly we write Bx and By
the coordinates of the magnetic field (orthogonal to the working
surface and transverse). We finally write ρ as the mass density
and x as the first space coordinate.

With these notations, the isothermal conservation of mass,
momentum, and magnetic field become:

0 = ∂x(ρu), (A.1)

0 = ∂x[ρu2 + ρc2 +
1

8π
B2
y +

4
3
µ∂xu], (A.2)

0 = ∂x[ρu3 +
1

4π
ByBx + µ∂x3], (A.3)

0 = ∂xBx, (A.4)
0 = ∂x[uBy − 3Bx + η∂xB], (A.5)

where we introduced the dynamical viscosity µ = ρν and the
resistivity η coefficients as well as the isothermal sound speed
c. We now affect subscripts 0 to the pre-shock quantities (except
for the orthogonal magnetic field Bx, which is constant through-
out the shock). The mass conservation becomes ρu = ρ0u0.
We define the quantity a = By/

√
4πρ0 , which has the dimen-

sion of a velocity, and, similarly, the constant Alfvén speed
ax = Bx/

√
4πρ0 , to arrive at the following system of ordinary

differential equations:

4
3
µ

ρ0
∂xu = u0 +

c2

u0
− (u +

c2

u
) +

1
2

(
a2

0

u0
− a2

u0
), (A.6)

µ

ρ0
∂x3 = ax

a − a0

u0
− 3, (A.7)

η∂xa = ua − u0a0 − ax3, (A.8)

to compute the internal structure of isothermal MHD shocks.
The isothermal dynamical coefficient µ is a constant, but in

the current application we used a constant viscous coefficient ν,
so that µ = νρ0u0/u. The typical viscous length scale of our sim-
ulated shocks is hence ν/u0. One can further simplify the above
system by using the non-dimensional quantitites x̃ = xu0/ν,
ũ = u/u0, 3̃ = 3/u0, ã = a/a0, and Pm = ν/η:

4
3ũ
∂x̃ũ = 1 − ũ +M−2

s (1 − 1
ũ

) +
1
2
M−2

a (1 − ã2), (A.9)

1
ũ
∂x̃3̃ = ũã − 1 − 3̃, (A.10)

∂x̃ã =Pm[M−2
a (ã − 1)

ax

a0
− 3̃], (A.11)

which shows that the intrinsinc structure of our shocks depends
essentially on three non-dimensional parameters in the pre-
shock: the sonic Mach number Ms = u0/c, the transverse

Alfvénic Mach numberMa = u0/a0, and the tangent of the angle
of the magnetic field with respect to the shock working surface
ax/a0.

This system of ordinary differential equations (ODEs) can
be integrated numerically between the pre-shock (at ũ = ã = 1
and 3̃ = 0) and the post-shock. The stability analysis towards
increasing x̃ of these two steady points yields three growing or
decaying eigenvectors. We find fast shocks usually have three
unstable eigenvectors at the pre-shock, while they have three sta-
ble eigenvectors at the post-shock; one can simply integrate the
system of ODEs from the post-shock to the pre-shock from a
small perturbation of the post-shock opposite the most stable
eigenvector (which is the most unstable one in the direction of
decreasing x̃). We find slow shocks usually have two unstable
eigenvectors at the pre-shock, while they have two stable eigen-
vectors at the post-shock; the solution leaves the pre-shock from
its unstable plane and reaches the post-shock in a stable plane. To
find the solution, we used a boundary value solver with a request
to be on both these planes at a small given distance from the
two corresponding end points. We used the resulting solutions
as reference models to benchmark the results of the dedicated
experiments, which we describe in the section below.

Appendix B: Numerical dissipation in Godunov
methods

We report here on the method we used to recover the amount
of numerical dissipation present in our compressible simula-
tions and how we validated it using the above isothermal MHD
shocks. In our compressible simulations, we adopted twice the
resolution of corresponding incompressible runs that we per-
formed with pseudo-spectral methods in Momferratos et al.
(2014): 1024 versus 512, for the same dissipation coefficients
(viscosity and resistivity). Indeed, there is a common belief that
grid-based methods need twice as many elements to obtain a
resolving power equivalent to Fourier elements. However, we see
that even in this case, the numerical scheme still affects the
dissipation in the code considerably.

Appendix B.1: Experimental set-up

In order to check and control the dissipation in our configuration,
we ran 1D planar isothermal magnetised shocks with various
resolutions and compared them to the solutions devised in the
previous section. To set up the computational experiments of
this section, we first computed the Rankine-Hugoniot conditions
for a magnetised shock in the shock frame, and we initially set
up the pre-shock and post-shock conditions in two halves of the
computational box, with the jump in the middle. The outer box
boundaries are inflow and outflow conditions on each side of the
pre-shock and post-shock material, respectively. As the compu-
tation proceeds, the initial discontinuity smears out due to both
numerical and physical dissipation, but the discontinuity does
not move in space thanks to the chosen set-up. A steady state is
quickly reached, which we compare to semi-analytical solutions
of the steady state as described in the previous sub-section.

Appendix B.2: Viscous spread in the shock

Shocks have a viscous spread of the order of λv = ν/u0 (see
section A). Our 3D simulations of decaying turbulence with
10243 pixels have a box length of Lbox = 2π and viscosity of
ν = 0.7 × 10−3 , and so the pixel size is nearly nine times
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bigger than the viscous length for a u0 = 1 shock; the viscous
and resistive spread throughout these shocks is realised essen-
tially by the grid. In Lesaffre et al. (2020), we showed that the
number of zones necessary to fully resolve the viscous spread of
isothermal shocks is at least of the order of the Reynolds number
L.u0/ν ' 9000, which is far above what we can afford for a 3D
computation.

Appendix B.3: Dissipation natures

There are several sources of dissipation in our simulations: vis-
cous and ohmic dissipation due to the physical terms we have
introduced in DUMSES, and numerical dissipation intrinsic to
the scheme. Our main purpose is to locally recover the total
amount of dissipation εtot produced by both the scheme and
the physical dissipation terms. We designed several methods to
retrieve εtot by considering variants of the energy conservation
equation.

Appendix B.4: Method 1

We consider the evolution equation of kinetic and magnetic
energy:

∂t(
1
2
ρu2 +

1
8π

B2) + ∇.F 1 + u.∇(p) = −εtot, (B.1)

where εtot is the total irreversible heating and where the flux
F1 reads

F 1 = u(
1
2
ρu2) +

1
4π

(B × u) × B − νS.u + ηJ × B. (B.2)

We computed the left hand side of Equation (B.1) along a replay
of a time step of the simulation, using the flux estimates of each
dissipative half-step for the resistive and viscous contributions
to F 1 and using a Lax-Friedrichs estimate for its non-dissipative
part (evaluated within the Godunov step). We estimated u.∇(p)
at the middle of the time step thanks to the same total variation
diminishing (TVD) slopes used in the Godunov step. Finally, we
recovered εtot simply by taking the opposite of the left hand side.

Appendix B.5: Method 2

∂t(
1
2
ρu2 +

1
8π

B2 + p log ρ) + ∇.F 2 = −εtot, (B.3)

where

F 2 = F 1 + up(log ρ + 1). (B.4)

We computed the flux as in method 1 (the additional contribution
is computed in the Godunov step using a Lax-Friedrichs esti-
mate). This method has the advantage that we recover exactly
the total heating through the computational domain when we
average the local resulting heating.

Appendix B.6: Method 3

∂t(
1
2
ρu2 +

1
8π

B2) + ∇.F 3 − p∇.u = −εtot, (B.5)

where

F 3 = F 1 + up. (B.6)

We evaluated −p∇.u as u.∇(p) in method 1 and retrieved εtot as
in the previous two methods.

Fig. B.1: Dimensionless dissipation in a steady-state fast shock
(with dimensionless parameters u0 = 1, Bx/

√
4π = 0.2,

By0/
√

4π = 0.3, and c = 0.25 with η = ν = 0.7 × 10−3) for
various resolutions (dashed coloured lines; N is the number of
pixels) compared to the analytical solution from the previous
section (solid line).

Appendix B.7: Benchmark and comparison

We checked that the implementations of the three methods on
our shock experiments yield the same local total dissipation rate
to within less than 1% of the peak dissipation. This gives us con-
fidence in our implementation of the three methods. We also
checked on two actual snapshots of our simulations (ABC and
OT runs after one turnover) that the statistics of the three meth-
ods are nearly identical for the distribution of positive values for
the retrieved dissipation εtot. However, method 2 yields signif-
icantly fewer pixels with negative values, presumably because
this method does not require an estimate for terms such as p∇.u
and −u.∇(p), which are not divergences of fluxes. We further
note that the means of methods 2 and 3 are really close to one
another (less than 0.5% of the standard deviation of εtot), while
those of 1 and 2 are a bit further apart (less than 3% of the
standard deviation). We therefore adopted method 2 as the best
compromise between methods 1, 2, and 3.

Appendix B.8: Numerical convergence

Figure B.1 shows the irreversible heating rates in non-
dimensional units with a close-up of a fast shock front. It
illustrates the convergence of the total dissipation rate profile for
increasing resolutions. We integrated the total dissipation across
the shock and checked it matched the theoretical value obtained
by computing the difference of the flux F2 between pre-shock
and post-shock values. The integral of the total dissipation rate
across the shock is thus always preserved. The effect of the reso-
lution is only to smear out the dissipation profile without chang-
ing its total amount.

Figure B.1 is similar to Fig. A2 of Lesaffre et al. (2020), but
here we considered it for magnetised isothermal shocks instead
of hydrodynamic adiabatic shocks. It demonstrates that the res-
olution convergence for the heating rate is very slow and fully
obtained only for N = 8192 (see the dashed lines approaching
the black solid line in Fig. B.1). The situation corresponding
to our 3D simulations is the red curve (N = 1024); the viscous
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Fig. B.2: Comparison of profiles of various state variables of
the gas for the same fast shock as Fig. B.1 between the results of
our simulation at N = 1024 (dotted lines) and the best-fit model
(solid line). Best fit coefficients are ν = 2.2× 10−3 and η = 1.7×
10−3 (input coefficients are η = ν = 0.7 × 10−3).

heating is largely underestimated and spread out by about a factor
of three.

We note that for a velocity larger by a factor of two, the ana-
lytical solution yields a two times thinner dissipation peak, so
the numerical spread would be even larger compared to what it
should be. Had we used a constant dynamical viscous coeffi-
cient µ, the viscous spread would respond to density in addition
to velocity, and the situation would be even worse on the dense
side of the shock or for shocks penetrating denser material.
Finally, we note that such a slow convergence rate (at most
30% better accuracy for each doubling of the resolution) could
lure an unaware numericist into thinking his/her simulations are
converged.

Appendix B.9: Dissipative coefficients’ fit

We fit viscous isothermal MHD shock models from Appendix A
to the velocity and magnetic field profiles, and we recovered best
fit values for the viscosity and the resistivity coefficients, which
allow us to retrieve the effective viscous and resistive coeffi-
cients of our numerical scheme in the case of magnetised shocks.
This is a complementary method to that proposed by Lesaffre &
Balbus (2007) for non-linear Alfvén waves.

Figure B.2 shows the comparison between the semi-
analytical models of the previous section for the best fit η and
ν and the actual profile for the same shock as in Fig. B.1 and a
resolution of N = 1024 pixels. We note that the density is not as
accurate as the other variables, and so we discarded it from the fit
to retain only the velocity and magnetic field components. This
is because the mass flux conservation ρu is estimated at inter-
faces, and the extrapolation of ρ and u, whereby one increases
while the other decreases makes it worse for the product. On
the other hand, all other conserved quantities have a product of
quantities either both increasing or decreasing, which renders the
extrapolation more accurate for the product.

In Fig. B.3, we show an exploration of the effective viscos-
ity thus recovered when varying the resolution. The effective
viscosity tends towards the actual input value when the reso-
lution increases, which independantly illustrates the numerical
convergence explored in the previous subsection. Because faster
shocks have a smaller viscous spread, the effective viscosity is
larger for faster shocks, with a required resolution proportional

Fig. B.3: Comparison between fitted ν and input ν (dotted black
line) for various resolutions and three different shocks. A slow
shock (u0 = 0.8, Bx/

√
4π = 1, By0/

√
4π = 0.2), a fast shock

(u0 = 1, Bx/
√

4π = 0.2, By0/
√

4π = 0.3, same as Fig. B.2), and
another fast shock that is 4 times faster (u0 = 4, Bx/

√
4π = 0.2,

By0/
√

4π = 0.3).

Fig. B.4: Comparison between effective Pm and input Pm (dot-
ted black line) for various resolutions and the two fast shocks of
Figure B.3 (solid lines for u0 = 1 and dashed lines for u0 = 4).
Pm was varied by keeping the value of the resistive coefficient
η = 0.7 × 10−3 fixed while varying the value of the viscous
coefficient accordingly ν = ηPm.

to the entrance velocity of the shock. The type (slow or fast) of
the shock does not seem to affect the effective diffusivity of the
scheme significantly. At poor resolution, the effective viscosity is
inversely proportional to the zone number. Our chosen resolution
N = 1024 corresponds to the end of this linear relation between
resolution and scheme diffusion; higher resolution would yield a
relatively lower increase of accuracy.

We also explored the capacity of the scheme to account for
various Prandtl numbers Pm by increasing the viscous coeffi-
cient with respect to the resistive coefficient. Because the scheme
increases the diffusivity, the overall span for the Prandtl num-
ber is not as wide as for the input physical value. The situation
is even worse for the greater velocity shocks, but a resolution
of 1024 pixels still allows a comfortable probing range of Pm.
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Fig. B.5: Our numerical estimation (dashed) of total (black)
ohmic (red) and viscous (blue) dissipation in the same fast shock
as Fig. B.1 compared to the actual quantities in the best-fit model
(solid lines with corresponding colours). We note that the correct
share between ohmic and viscous dissipation relies on the effec-
tivePm being close to the actual input value ofPm, so the method
we use is worse for greater velocity shocks.

Slow shocks at Pm > 1 are not sensitive to the Prandtl num-
ber, and so they could not be used to probe its effective value
due to the numerical scheme. This is because when Pm > 1
in slow shocks, the magnetic field profiles are dominated by
the kinetic-to-magnetic energy transfers as the resistive terms
become negligible.

Appendix B.10: Ohmic versus viscous dissipation

Although thanks to our method we gained access to the total
numerical dissipation, we could not find an accurate way to
separate the numerical dissipation of magnetic fields from the
numerical dissipation of kinetic energy. In order to compute
corrected values for the viscous heating and the ohmic heat-
ing, we simply shared the total numerical heating between each
of them in proportion to their relative physical values, namely
εcorr.
v = εtotεv/(εv + εη) for viscous dissipation and, conversely

for ohmic dissipation, εcorr.
η = εtotεη/(εv + εη). Whenever our

estimate for the purely numerical dissipation is negative (i.e.
εtot < εv + εη), we simply set εcorr.

v = εv and εcorr.
η = εη. We then

computed the viscous and ohmic heatings in the best fit shock
model and compared them to the above estimation in Figure B.5.

Appendix B.11: Summary

We controlled the implementation of our dissipation rate recov-
ery method by comparing several variants of it, and we bench-
marked them against analytical solutions. We find that we are
able to recover the total dissipated energy within a localised
shock with very good precision. We used the benchmark mod-
els to estimate the diffusivity of the scheme and we find that the
effective viscosity and resistivity are both enhanced due to lack
of resolution, especially for the large velocity shocks. As a result,
the effective Prandtl number is also affected. On the other hand,
the slow convergence to the shock solution justifies our use of a
moderate resolution associated with this dissipation recovering
method. We would not gain much by running our simulations
at twice the current resolution, while we would have to increase

the resolution more than tenfold to make use of this dissipation
recovery method.

Appendix B.12: Prospects

The numerically acute reader will have noted that our method
is currently limited to Lax-Friedrichs implementations of the
Riemann solver. Other Riemann solvers require us to design a
method to incorporate the additional components of the fluxes
Fi. We checked slow and fast shocks, and they seem equally
well treated at equivalent velocities. However, we did not check
the effective diffusivities in rotational discontinuities (although
non-linear Alfvén waves such as those used in Lesaffre & Bal-
bus (2007) may provide a good estimate) or Parker sheets (these
require at least a 2D treatment).
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