
HAL Id: hal-03766240
https://hal.science/hal-03766240

Submitted on 31 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A scalable and multi-purpose point cloud server (PCS)
for easier and faster point cloud data management and

processing
Rémi Cura, Julien Perret, Nicolas Paparoditis

To cite this version:
Rémi Cura, Julien Perret, Nicolas Paparoditis. A scalable and multi-purpose point cloud server (PCS)
for easier and faster point cloud data management and processing. ISPRS Journal of Photogrammetry
and Remote Sensing, 2017, 127, pp.39-56. �10.1016/j.isprsjprs.2016.06.012�. �hal-03766240�

https://hal.science/hal-03766240
https://hal.archives-ouvertes.fr

A SCALABLE AND MULTI-PURPOSE POINT CLOUD SERVER (PCS) FOR
EASIER AND FASTER POINT CLOUD DATA MANAGEMENT AND

PROCESSING

Rémi Cura AB , Julien Perret A, Nicolas Paparoditis A

A Université Paris-Est, IGN, SRIG, COGIT & MATIS, 73 avenue de Paris, 94160 Saint Mandé, France
first name.last name@ign.fr

B Thales Training & Simulation SAS, 1 rue du Général de Gaulle 95523 Cergy-Pontoise, France

ABSTRACT:

In addition to more traditional geographical data such as images (rasters) and vectors, point cloud data are becoming
increasingly available. Such data are appreciated for their precision and true three-Dimensional (3D) nature. However,
managing point clouds can be difficult due to scaling problems and specificities of this data type. Several methods
exist but are usually fairly specialised and solve only one aspect of the management problem. In this work, we propose
a comprehensive and efficient point cloud management system based on a database server that works on groups of
points (patches) rather than individual points. This system is specifically designed to cover the basic needs of point
cloud users: fast loading, compressed storage, powerful patch and point filtering, easy data access and exporting,
and integrated processing. Moreover, the proposed system fully integrates metadata (like sensor position) and can
conjointly use point clouds with other geospatial data, such as images, vectors, topology and other point clouds. Point
cloud (parallel) processing can be be done in-base with fast prototyping capabilities. Lastly, the system is built on
open source technologies; therefore it can be easily extended and customised.
We test the proposed system with several billion points obtained from Lidar (aerial and terrestrial) and stereo-vision.
We demonstrate loading speeds in the ∼50 million pts/h per process range, transparent-for-user and greater than 2 to
4:1 compression ratio, patch filtering in the 0.1 to 1 s range, and output in the 0.1 million pts/s per process range,
along with classical processing methods, such as object detection.

1. INTRODUCTION

The last decades have seen the rise of Geographical In-
formation System (GIS) data availability, in particular
through the open data movement. Along with traditional
image (raster) and vector data, point clouds have recently
gained increased availability (the site opentopography1 is
a good example) and usages (robotic, 3D, virtual reality).
Sensors are increasingly cheap, precise and available.
However, due to their massive un-organised nature (no
neighbourhood information) and limited integration with
other GIS data, the management of point clouds still re-
mains challenging. This makes point cloud data barely
accessible to non-expert users. Yet, many fields would
benefit from point clouds, had they an easiest way to use
them.

1.1 Problems

Point clouds data sets are commonly in the TeraByte
(TByte) range and have very different usages; therefore,

1www.opentopography.org

every aspect of their management is complex and has to
scale.

Having such large data sets makes the compression an
essential need. Not only is the compression necessary,
but it also has to maintain a fast read and write access,
and be transparent for the users. Indeed, we observe that,
today, virtually all images and videos are compressed;
most users not noticing it at all.

Similarly, so much data cannot (should not) be duplicated
and must be shared, following a broader trend in the In-
formation Technology world. Sharing data necessarily
introduces concurrency issues (several users simultane-
ously reading/writing the same data).

Users usually need to access only a part of the data
at once, thus efficiently extracting (filtering) a subset
is important. With many varying usages, the criterae
for choosing the subset may be volatile, and sometimes
mixed.

Visualising something helps understanding it. In the
case of multi-billion point clouds, a Level Of Detail

www.opentopography.org

LOAD
- server reads
- client sends STORE

- groups of points
- compressed

METADATA
- secure and rela�onal
- extended (trajectory, sources)
- generalisa�on/visualisa�on

FILTER
- indexes
- can use other GIS data

PROCESSING
- in-base easy prototyping
- classic out-of-base workflow

EXPORT
- server sends
- client reads
- point streaming
- point cloud files
 as a service

point cloud
files

RDBMS

Figure 1: Graphical Abstract : In-base point cloud management pipeline in the Point Cloud Server (PCS).

(LOD) strategy is necessary, because the data set cannot
be displayed in its entirety at once.

Features of point clouds can be very different depend-
ing on their source (Lidar, stereovision, medical, etc.),
regarding the number and type of attribute, the geometric
precision and noise, etc. Yet, point clouds usually are
geospatial data, which makes them akin to vectors and
rasters from the GIS world. Thus, point clouds may be
used conjointly to other data types, either directly or by
converting point clouds to images or vectors.

Lastly, point clouds are processed in many different ways
suiting each user’s needs. These methods must be fast
and easy to design, scale well, and be robust.

Another important problem is related to point cloud man-
agement. For various reasons, point clouds are often
handled as sets of points. Yet, a point cloud (data set) is
much more than just points, as it also includes meta-data
and other information such as sensor geometry, etc. Man-
aging such data sets is difficult; like knowing which data
sets are available and where. Because data sets are het-
erogeneous, managing extended meta-data such as point
cloud coverage, date of acquisition and so on is also diffi-
cult, especially without a standard data format. Treating
point clouds as only points is especially problematic, as
is illustrated by a very recent benchmark release2, which
provides massive and very useful hand-labelled point
clouds, yet does not provide any meta-data at all, neither
extended meta-data nor contextual data.

In this article, we propose to use a point cloud server
(PCS) to solve some of these problems. The proposed
server architecture provides perspectives for meta-data,
scalability, concurrency, standard interfaces, co-use with
other GIS data, and fast design of processing methods.
We create an abstraction layer over points by dealing
with groups of points rather than individual points. This
results in easy compression, filtering, LOD, coverage,
and efficient processing and conversion.

2www.semantic3d.net

1.2 Related work

File system Historically, point clouds have been stored
in files. In order to manage large volumes of these files,
a common solution is to build a hierarchy of files (a tree
structure, like a quad tree for instance) and access the
data through a dedicated set of softwares. This approach
is continuously improved (Hug et al., 2004; Otepka et al.,
2012; Richter and Döllner, 2014) and a detailed survey
of the features of such systems can be found in (Otepka
et al., 2013). This approach is simple, and scaling is rel-
atively easy (provided the Operating System (OS) max-
imum file number is not reached). However, using a
file-based system has severe limitations. These systems
are usually built around one file format, and are not neces-
sarily compatible with other formats. Recent efforts have
been made towards format conversion3. The features of
such systems are very limited (limited meta-data han-
dling, lack of integration with other GIS data, difficulty
to use several point clouds together). Moreover, these
systems are not adapted to sharing data and multi-users
environments (concurrency).

DBMS for points Hofle (2007) proposed to use a Data
Base Management System (DBMS) to cope with the con-
currency issue. The DBMS creates a layer of abstraction
over the file-system, with a dedicated data retrieval lan-
guage (SQL), native concurrency capabilities (supporting
several users reading/writing data at the same time), and
the wrapping of user interactions into transactions that
can be cancelled in case of errors. DBMSs have also
been used with raster and vector data for a long time, and
the possibility to define relations in the RDBMSs (Rela-
tional DBMS) offers a simple way to create robust data
models, and deal with meta-data. Adding the capability
to create point clouds as services, DBMSs solve almost
all the problems we face when dealing with point clouds.
Usually, the database stores a great number of tables, and
each table storing a point per row (Lewis et al., 2012;
Rieg et al., 2014). Such a database can easily reach bil-
lions of rows. Nevertheless, storing these many rows is
problematic because DBMSs may have a non-negligible

3http://www.pdal.io/

www.semantic3d.net
http://www.pdal.io/

overhead per row. Moreover, indexing such a number of
row is slow and takes a lot of space, and the possibilities
for compression are limited.

Column store database and No-SQL These limita-
tions are more generic than point clouds, and apply to
any massive amount of data which is weakly relational
and does not get updated often. As such, they have
been researched and inspired the concept of column-
oriented databases, such as MonetDB4. This database
system is used to store individual points (Martinez-Rubi
et al., 2014, 2015; van Oosterom et al., 2015). This ap-
proach is effective to store large amounts of row without
much overhead, and also solves most of the indexing
issues. However, points are not compressed, integration
with other GIS data is weak, and scaling to multiple com-
puters is not straightforward. In parallel, stripped down
column stores were proposed, having been specially tai-
lored for massive and weakly relational data, forming
the No-SQL databases. They scale extremely well to
many computers and can deal with large amounts of
data (Wang et al. (2014) and SpatialHadoop5). However,
this comes at a price. Indeed, NoSQL databases must
drop a few guarantees on data. At the moment, they are
not integrated with other GIS data and have much less
functionalities. Indeed, NoSQL databases are closer to
being a file-system distributed on many computers (with
efficient indexing) than being DBMSs. Thus, massive
scaling still necessitates specialised hardware, and the
people to maintain it.

Cloud Computing A recent possible workaround for
this issue is to use Cloud Computing facilities 6 to store
the points, like Amazon S3. In this solution, data storage
is offered as a service and externalised. This may provide
the ultimate scaling, but suffers from the same limitations
as the NoSQL, with open issues on indexing.

DBMS for patch All the previous data management
systems try to solve a very difficult problem: manag-
ing a massive quantity of individual points. Solutions
that scale well must focus on data storage and retrieval,
and drop the rest of the management problem (feature,
meta-data, integration, processing). Another recent ap-
proach is being explored in pgPointCloud (2014) and
other commercial RDBMS. The key idea is to manage
groups of points (called patches), rather than points, in
a RDBMS. Creating this abstraction layer over points
allows retention of all the advantages of a RDBMS, but
keeps the number of rows low, thus avoiding the associ-
ated scaling difficulties (index, compression). Moreover,
the proposed abstraction offers new theoretical possibil-
ities, because it creates a generalisation of the groups

4www.monetdb.org
5http://spatialhadoop.cs.umn.edu/
6https://github.com/hobu/greyhound

of points. The price is that, in order to access a point,
its whole group has to be accessed first, and so the way
points are grouped must be compatible with the intended
point usages.

In this work, we present a point cloud management sys-
tem fully based on pgPointCloud (2014) and other open
source tools. We test the main aspects of this point cloud
management system to prove that it answers the common
needs of point cloud users, as illustrated by Figure 1.

1.3 Plan

Following the IMRAD format (Wu, 2011), the remainder
of this article is divided into three sections (Method: § 2.,
Result: § 3. on page 10, Discussion: § 4. on page 19).

Each section has the same organisation covering the
bases of point cloud usages (See Figure 1 on the pre-
vious page). First, we consider how points can be stored
as groups in a Point Cloud Server (Storing). Then, we
consider how to load point clouds in the PCS (Loading).
Point clouds contain meta-data that can also be stored and
used (Point Cloud Context). We study how to access only
a part of the points using conditions (Filtering). Points
can be outputted from the PCS (Exporting). Last, we
consider various methods to exploit points (Processing).

Thus, each subsection is found in method, results, discus-
sion with the same subsection numbers.

2. METHODS

2.1 Storing groups of points in a RDBMS

The proposed solution relies on a PostgreSQL (2014)
RDBMS server using the PostGIS (2014) and pgPoint-
Cloud (2014) extensions. The key idea is to store a point
cloud per server table, with one row storing a compressed
group of points. Groups of points are called patches of
points. The type of a point (attributes size, definition,
nature) is defined in a global XML schema. See Figure 2
for an overview of how storage is organized in PCS.

The user can load data into the server using several com-
mon means (major programming languages, Bash, SQL,
Python), from any format of point cloud that can be ex-
pressed as a list of values. Point clouds are stored without
loss and are compressed. Sophisticated database indexes
allow efficient filtering of the patches. Point clouds can
be used with vector and rasters and other point clouds.
Meta-data are integrated and exploited. Furthermore,
point clouds can easily be converted into other GIS data
(vector/raster). Processing methods are directly acces-
sible within the database; additional methods can be
added externally or internally. Accessing points from the
database is also easy and can be done in several ways
(whole files, specific points and streaming).

www.monetdb.org
http://spatialhadoop.cs.umn.edu/
https://github.com/hobu/greyhound

point patch (group of points) pointclouds Metadata- constrained type - compressed
- indexed

- 1 per table - relationnal
- classical / extended

(2.1,4.7,1.0,9,..)

Point type = XML schema
 X : float, offset, scale, description
 Y : double,

&

e-x AxT

e-x BxT

...

...

5
6
7

1000101001...
1000111101...

1000001110...

generalisations coverage maps todo map vector raster

trajectorymetadata

&

Figure 2: PgPointCloud storage illustration. Point attributes are described by an XML schema. Points are grouped in
patches, indexed and compressed, which may have several generalisations. A point cloud is stored in a table, with one
patch per row, along with other tables generalising the point cloud (like coverage map). The PCS also stores meta-data
(date, place) in a relational way, extended meta-data like trajectories, and possibly other GIS data like vector and
rasters.

2.1.1 Storing groups of points rather than points
Briefly, storing groups of points offers the advantages
of generalisation (potentially more complex semantic
objects), reduces the number of rows in the database by
several orders of magnitude, reduces index size, allows
efficient compression, and offers a common framework
for different types of point clouds coming from different
sources. Working on groups of points separates the filter-
ing and retrieving of points. This allows to take decisions
based on filtering results before retrieving points. For
instance, based on the density, an optimal LOD can be
automatically chosen. Groups can also easily be split or
fused at any point after data loading.

It is important to note that storing groups of points rather
than points also introduces a fundamental limitation: to
obtain an individual point, we need to get the full group
first. This means that the grouping points approach is
only possible when points can be categorised into groups
that are coherent for the intended applications. Inciden-
tally, all intended applications must require the same
grouping rules.

Generalisation Choosing to use groups of points in-
stead of individual points amounts to use a generalisation
of the data, that is an abstraction. Abstracting the data
is very common in GIS. For instance, when making a
map of a large city, representing all individual building
footprints would diminish the user understanding of the
map. Instead, building footprints may be aggregated to
form urban blocks (see Mackaness et al. (2014) for a
recent introduction to the generalisation topic).

Regarding point clouds, we may have a group of 10k
points sampled along a small part of the road that is flat
(10k 3D points). For some application, we could abstract
the group with a plane (three 3D points). Geometrically
representing this group of points by a plane reduces stor-
age, but the change is more profound, because the plane
is another representation of the underlying object that
has been sensed.

The plane could be used as part of a facade reconstruc-

tion Lafarge et al. (2013), or even be the base for a further
building generalisation Meng and Forberg (2007).

The generalisation does not have to be geometric. For
instance, a group of points can be abstracted by statistical
distributions (similarly to Preiner et al. (2014), although
they use the distribution for surface reconstruction).

Ummenhofer and Brox (2015) illustrate both uses. They
use an octree and thetrahedrals as support for their ge-
ometric generalisation, and aggregates as a statistical
representation. Combining both, they can reconstruct
surfaces without using the points but only their generali-
sations.

Such generalisation is by essence highly tailored to an
usage, being a form of information-loosing modeling. In
this article, we propose several generalisations adapted
to a variety of usages (Figure 19 page 16). Those gen-
eralisations can be used conjointly in the Point Cloud
Server. By doing so, we avoid the pitfall of duplicating
the data for each specific usage.

reference data
sidewalk
building
not build

temporal
groups of points
(convex hull)
for 4 ms

Figure 3: Rotating Lidar (Velodyn) with strong temporal
dependency (200 ms acquisition).

2.1.2 Point grouping strategy Points should be grouped
with regard to how they will be retrieved afterwards.
As points tend to be retrieved by their spatial position
(spatial-grouping), grouping the points that are spatially
close together makes sense. Some Lidar devices include
a strong time dependency, and are commonly used to de-
tect moving objects. In this case, time-grouping may be
interesting, in order to easily differentiate between points
roughly at the same position, but acquired at varying time
(See Fig. 3, and Section 3.1 and Fig. 14 p. 12). Grouping

rules may also mix spatial and temporal rules, as well
as other rules like semantic grouping if this information
is available (for instance, points pertaining to buildings
would be in separate groups than points pertaining to the
ground).

nb of groups

pts/group

Figure 4: Choosing group size is a trade-of between
filtering and storage.

While many rules are possible to group points, it always
results in a trade-off (see Figure 4). Having small groups
usually means many groups, which is bad for storing,
because it will increase the number of rows, thus the
size of the indexes and associated overhead, and reduce
compression possibilities. On the opposite, having large
groups is bad for filtering (and maybe compression, if
points becomes too dissimilar), because, to get one par-
ticular point, the whole group has to be read.
However, we stress that all groups do not have to fol-
low the same rules, thus group size can be adapted to
local characteristics of the point cloud, for instance to
geometry (grouping depending on density) or seman-
tic (grouping depending on attributes or classification).
See Section 3.1 for an example of varying grouping size
based on geometry, where groups are merged/split in 8
(similarly to voxels) until the target number of points per
group interval is met.

2.2 Loading

point
cloud
files

read files

client server

client server

group
points

into patch
compress

patch
write

patch in
table

table in
database

server oriented :

client oriented :

Figure 5: Processes necessary for load (and output) of
points into the database can be performed by the client(s)
or the server, depending on the application.

Writing data in a PostgreSQL RDBMS is standard. Clients
exist in all major programming languages. Because
DBMSs are built for concurrency, all the presented meth-
ods use parallelism.

For the specific application of writing point clouds, the
goal is to go from point cloud files to (compressed) patch
of points stored in tables inside the database (See Figure
5). To this end, several intermediary steps have to be
performed. In a server/client architecture, we conceptu-
ally separate solutions depending on who is supposed to
cover most of the process. In a ”Server oriented” design,
the server does almost everything. In a ”Client oriented”
design, the client does almost everything. Please note

that this division is only conceptual.
Section 3.1 page 11 contains more details about how
patches are compressed.

point files

PCS

point to
text

program

stdin

COPY
to temp

table

temp
point
table

regroup
points

patch
table

Figure 6: Conceptual schema for parallel loading.

’Server oriented loading’ Our first loading method
(Figure 6) reads point cloud files, converts them to a
stream of attributes and writes them to temporary tables
in the database. The database groups points into patches
and adds the patches to the final point cloud table. Please
note that the database could directly read point cloud
files.

Distributed ’Client oriented loading’ In the previous
method, the database performs the grouping of points
into patches and the actual writing of patches into tables.
We could lessen the workload of the server by allowing
the client to do the grouping.
We design a ’client oriented’ (Python) loading method.
It is similar to the method adopted by the PDAL7 project,
which we also test here. The clients read point cloud
files, group points into patches, and send the patches to
the database. The database compresses the patches and
writes them into the final point cloud table. Please note
that the client could also perform the compression.

2.3 Point Cloud and Context

Historically, RDBMS databases have been designed to
create and maintain relationships between data. Because
our method relies on a RDBMS, we can leverage this
capacity. One of the goals of our system is to manage
point clouds rather than points. This way, a point cloud
is not considered a set of points, but rather a set of points
associated with various meta-data and contextual infor-
mation (and maybe processing methods). In particular,
our system can store the full meta-data model, as well
as more indirect meta-data like the trajectory of the sen-
sor. Meta-data can also be organised in a relational way
in order to be consistent between different point clouds.
By integrating point clouds into a relational database,
and having several representations for patches (See the
generalisation concept, in Section 2.1.1), we can easily
create coverage maps. It also enables to use several point
clouds together as well as mix point clouds and other
GIS data (raster and vector), directly or after converting
point clouds to other GIS data types.

7www.pdal.io

www.pdal.io

trajectory

trajectory

trajectorytrajectory

trajectory

trajectory

image table

images

sensing_campaign

time_range
point_table
trajectory
sources

sensor

Name
Type
Rate

available_sensor

sensor
sensing_campagn
calibration

points

point

trajectory

trajectory

trajectory

sensor_calibration

matrices
errors ...

Figure 7: Example of a data model to store meta-data.
See Hofle (2007, p. 15) for a real model.

Managing metadata The point cloud server offers the
perfect framework to regroup all the meta-data concern-
ing the point cloud. For instance, the popular .las file
format proposes to store a project id, date of acquisition,
and name of the hardware. Being based on standardised
and limited fields, very few meta-data are stored. Fur-
thermore, the information can be missing or erroneous.
Using a RDBMS, it is possible to create an unlimited
relational model of the meta-data and to easily (and auto-
matically) enforce it. For instance, instead of a project
id, we could refer to a list of projects, each having an as-
sociated list of partners, start and finish dates, associated
authorisations, etc. Instead of the name of the hardware,
we could refer to a list of hardwares, having each differ-
ent configurations, typical precision of the sensor, point
type, methods for reading the raw data, etc. See Figure 7
for a basic example of meta-data schema. We stress that,
in fact, several point clouds meta-data are already related
to each other in an implicit way. For instance, the date of
acquisition of a point cloud can be implicitly related to
the date of acquisition of another point cloud.

The benefits for point cloud management are numerous,
from simple, such as looking for point clouds based on
those meta-data (e.g. find all point clouds in a given
area with a given density, acquired in a given time range,
whose geometric error is less than 1 cm), to much more
complex, such as on-the-fly re-registering of the point
clouds when the estimated sensor position is updated.

Such meta-data could also be used in the filtering step.
For instance, for an application relying on colour, the
user would be able to automatically get points acquired
through stereo-vision and not through Lidar.

In a more generic way, we point to the success of the Re-
source Description Framework (RDF) in the last decade
as a sign that meta-data management is important and
expected by users.

Coverage map Using the server, we create meta-data-
like point clouds coverage maps (Figure 17, 18, page 14)
, which are essential to quickly understand point clouds
coverage , similarly to (Lewis et al., 2012, Figure 8), or

Youn et al. (2014). The idea is to have several repre-
sentations of a point cloud. The 2-level representation
would be to represent the area covered by the point cloud
by polygons at a detailed level (large scale). For perfor-
mance and map-generalisation reasons, the point cloud
could also be represented by a single point when viewed
from afar (small scale)

With this set of maps, one can instantaneously and easily
check what type of point cloud is available in a given
area using a colour code (for instance). Because the Point
Cloud Server mixes GIS and point clouds, going a step
further than the two-levels visualisation (a point at small
scale, detailed polygons at large scale) toward a 4-level
visualisation is natural. More generally, mixing Remote
Sensing data and GIS data enables much more advanced
applications (Aubrecht et al. (2009)). See Section 3.3 for
full details on coverage map creation.

Extended metadata We can extend the classical no-
tion of metadata a step further and consider that it also
concerns the raw information that was used to create the
point cloud. For Lidar point clouds, this would be the
trajectory and position of the sensing device, along with
the raw sensing files. For stereo point clouds, this would
be the camera poses for every image used to construct
the point cloud, along with the images. This information
can be stored in the server, and leveraged in filtering (see
Section 3.3), processing and uncertainty management
(for instance registration).

Using several point clouds and other GIS data Point
clouds are created by different sources, like stereo-vision,
aerial Lidar, terrestrial Lidar, RGBZ device (Kinect),
medical imaging devices (MRI), etc. The Point Cloud
Server mixes all these data, along with other GIS data
(rasters and vectors). Vectors and rasters are stored
and exploited using PostGIS (2014). We can use geo-
referenced point clouds together, thus exploiting their
complementarity.

In a typical scenario, a user interested in a place queries
the Point Cloud Server. He automatically obtains points
from the several point clouds available at this place, for
instance a low resolution, large coverage 1 pt/m2 aerial
Lidar point cloud, complemented by a more detailed but
very local 10 kpts/m2 stereo-vision point cloud.

Point cloud as raster or vector In the spirit of gener-
alisation (see Section 2.1.1), it is advantageous for some
applications to convert points to other GIS data types,
such as raster or vectors, directly within the database. We
propose several in-base groups of points vector represen-
tations, such as bounding box, oriented bounding box,
concave envelope similar to alpha shape (Edelsbrunner
et al., 1983), and bounded 3D plans (Figure 19). These
representations can be used to extract information at the

patch level, accelerate filtering, enable large scale visu-
alisation, etc. We also propose two in-base means to
convert points to multi-band rasters by a Z projection.

Figure 8: A part of a point cloud is converted to a raster.
We use bilateral smoothing, gradient (Sobel), and line
detection (RRANSAC by Chum and Matas (2002)) to
reconstruct the pedestrian crossing. These operations are
much faster and easier on rasters rather than points.

Rasterisation is a common first step in the literature be-
cause neighbourhood relationships are explicit between
pixels, unlike points. Figure 8 illustrates how a first con-
version to raster allows to use powerful and classical
image processing methods to extract information from
point clouds.

Point Cloud patches as Graph / Topology The speci-
ficity of point cloud is to not embed neighbourhood in-
formation. Yet, graph analysis offers powerful tools. We
propose to take advantage of pgRouting (2015), which is
a PostgreSQL extension that adds basic graph functions.

We can build a weighted graph embedded in 3D over
the groups of points (ie. a graph whose vertices are the
groups of points and edges the neighbouring relations
between those groups, while the weight of an edge is the
3D distance between centroids of groups of points). (See
Figure 9)

points (15 M) vertices (18 k) edges (89 k)

Figure 9: Building a graph embedded in 3D over point
groups. Up-Left: the original part of the point cloud. Up-
Right: the node of graph (centroid of patches). Down-
Left: graph edges: the adjacency relationship between
patches. Down-Right: visualisation in GIS.

This graph is in fact a very rough approximation (up
to the patch size) of the point cloud surface. We can
leverage it for fast geodesic distance computation along
this surface.

Orthogonally, we can build a simplified graph and use
it as the starting point of road network reconstruction.
Road network reconstruction is a large topic with widely

different types of strategy (see Quackenbush et al. (2013)
for an introduction), we only use this topic to show the
PCS capabilities, (see Section 3.3 and Figure 24 page
15).

2.4 Point Cloud Filtering

Point clouds are big; yet, we often need a very small
part of them (Figure 10, parameters in 3.3 page 14).
Thus, the capacity to filter a point cloud is essential for
many uses. Acceleration structures (commonly called
index) are the accepted solutions. This essentially creates
indexes of the data to accelerate searches. Octree, B-
tree, R-tree, and Morton-curves are popular acceleration
structures. Designing and optimising these indexes is
a major research subject (see Kiruthika and Khaddaj
(2014), for instance) and is also the main designing factor
in point cloud management systems.

Filtering strategy Because our system stores patches
(groups of points), we can separate the filtering and the
retrieving of data. The strategy is then to first efficiently
filter data at the patch level by rejecting most of the
patches (reducing points from billions to millions, for
instance), then, if necessary, further filter the remaining
points.

Indexing Our system extensively uses n-D indexes
(BTree, RTree) that are native to PostgreSQL. We in-
dex patches (not points), and we expect that there are
a few million patches. Basically, these indexes answer
in the 0.01to1srange to any filtering queries (depend-
ing on the number of patch filtered), such as ’What are
the patches with f(patch) between .. and ..’; provided
that f(patch) is appropriatly indexed. f(patch) can be
anything, a spatial position, an attribute of the points
contained in the patch, a function, etc.

Indexes of functions are very powerful and can save a
lot of space (no need to add an extra column to store
the value of f for every row). For instance, we may
have a fast function f that gives a measure in [0; 1] of
how much the patch looks like a vertical cylinder. Now,
when looking for all the patches p that really resemble
cylinder (f(p) > 0.8), for instance), we do not need
to recompute f each time for every patch, nor store all
values of f . The server will only stores simplified f
values (typically stored on fewer bits) within the index,
uses it to remove the vast majority of useless patches,
then recomputes f for the few remaining patches that are
good candidates.

PostgreSQL also determines whether to use available
indexes or not, and in which order. This feature may
prove essential. Indeed when accessing a large amount
of information, it will be faster to simply read all the data
rather than use the index (sequential vs. random access).

Figure 10: Illustration of a filtering condition presented in Section 3.3 p.14. Among billions of points, only those
respecting complex filtering conditions are found in ∼ 0.1s. Results are shown in QGIS.

 SELECT gid, patch
 FROM my_patches
 WHERE
 ST_Intersects(patch::geometry, ...) = TRUE AND
 Pc_NumPoints(patch) BETWEEN 10 AND 100 AND
 file_name ILIKE E'file_.*2.ply' AND
 rc_range(patch, 'intensity') && numrange(0,1.5) AND
 EXISTS (SELECT 1 FROM buildings AS b
 WHERE ST_Intersects(patch::geometry,b.geom))

Spatial position (using any
geometry)

attribute of patch (density)

attribute of patch (source file
name)

attribute of points in patch
(intensity)

Spatial position
(using another vector layer)

Filtering on : SQL query

Figure 11: Example of a filtering query on patches with various types of filtering conditions.

This decision is automatically made based on statistics on
tables and a genetic optimisation engine8. The database
can actually estimate how many rows will be needed by
a query. Then, knowing the cost of reading one row via
index (random access), and the cost of reading the whole
table (sequential access), it can decide which strategy
to choose. The genetic optimisation engine is used to
choose how the query will be executed, using join, index,
inner loops, etc.

Figure 11 illustrates a filtering query combining various
conditions.

2.5 Exporting

Similarly to Section 2.2 (Input, page 5), we divide the
output methods into two categories. The first family of

8www.postgresql.org/docs/current/static/

geqo-pg-intro.html

solutions is when the server performs most of the out-
put processes (”Server oriented exporting”), for instance
writing the points in a file, or letting the user access the
points through queries.

The second family of solutions is when the clients per-
form most of the output process (”Client oriented export-
ing”). We can also see the output as a service, be it for
classical GIS software (using the lens), or for WebGL
browser.

2.5.1 Client oriented export

Client oriented: Distributed export We also designed
a Python method to perform massive parallel export. Sim-
ilarly to Section 2.2 (Input), the goal is to reduce the
work done on the server and increase the work done
on the clients. In this version, the server sends raw bi-
nary uncompressed patches (groups of points), and the
transformation to points is done by the client(s). This is
similar to PDAL workflow.

www.postgresql.org/docs/current/static/geqo-pg-intro.html
www.postgresql.org/docs/current/static/geqo-pg-intro.html

2.5.2 Server oriented export

Server oriented: PLY File As a Service (PLYFAS)
Our system can be used transparently with a file-based
workflow. Indeed, users may already have legacy pro-
cessing tools that work with files. Of course, these tools
could be easily adapted to read points from the database
and not from files, but users may want to use their usual
tools as-is. For this case, we propose PLYFAS, an easy
mean to export points from the database and create a
.ply file (please note that PDAL could also be used to
export PLY files). The user can use the small PLYFAS
API to request the database to create a ply file from any
set of points. The user may simply want one of the exact
original point cloud files that were loaded into the point
cloud server (mimicking a traditional workflow). How-
ever, the user has also access to much more power and
can request a file with filtered points by any means intro-
duced in Section 2.4, or with the additional processing
results of Section 2.6. For instance, the user can request
all the points in a given area that have been classified as
’building parts’ with a given confidence, and that were
sensed during the second week of March 2014. In addi-
tion, the user can ask to get a target point density (Level
Of Details), and to get deduplicated points (duplicated
points are removed from the result), etc. Some of this
operations are easy to perform in SQL (See for instance
Section 3.3 page 17).

Server oriented: Using PostgreSQL drivers/connec-
tor PostgreSQL can be accessed using many program-
ming languages, thus any PostgreSQL driver can be used
to connect to the server and output points. This work-
flow is very similar to what a classical processing pro-
gram would do. The classical ’open point cloud file, read
points, do processing, write results’ becomes ’connect
to server, read points, do processing, write results on the
server or elsewhere’.

By using the server to access points, the user gets addi-
tional capabilities. For instance, the user does not have to
read a whole file (or any files) if he is interested in only
a few points. Using the point cloud server, the user can
directly filter the point cloud to obtain only the desired
points, and even use in-base processing or LOD to fur-
ther limit the points obtained. Furthermore, the PCS can
be accessed concurrently by several users, facilitating
parallel processing, and more notably parallel writing
(for the results for instance) in the server.

Server oriented: Lens for traditional GIS Point clouds
are best visualised in dedicated software. Yet, point
clouds are also geospatial data, and benefits much from
being visualised and analysed in powerful GIS tools (like
QGIS). However those tools do not scale over the Million
points range. We propose a ”lens” that reveals the points
it covers (Figure 12)). The idea is that a user moves a

polygon acting as a ”lens” over a place of interest in
the map, revealing the underlying points, using any GIS
client that can access the database. The concept has al-
ready been used to improve an interface (See Bier et
al. (1993); Lobo et al. (2015)), Pindat et al. (2012) also
proposed a lens with varying shape. Using triggers and a
view, we ensure that the points are updated when the lens
changes. Moreover, the lens also allows to choose the
density of points it displays (using Level Of Details), and
the vehicle pass we are interested in (temporal filtering).
This feature is necessary, because the registration error
between several passes may be a problem (See Figure
12).

1

2
3

registration error
(3 passes)

changing lens position
changing

lens shape
changing
vehicle
pass

changing
LOD

Figure 12: A polygon representing a lens that reveals the
points underneath it (among billions), with a given Level
Of Detail and vehicle pass. Points are automatically
updated when the lens is modified by the user, using a
pure in-base solution, which makes it compatible with
any client.

Server oriented: Asynchronous point cloud stream-
ing to browser The last output possibility is to stream
points in a web context. The goal is to display a point
cloud into a web browser with background loading (i.e.,
the points are displayed as they arrive, the user keeps
browsing and the loading is non-blocking).

For this, we use a Node.js server between the client and

the Point Cloud Server, which enables non-blocking in-
teractions. We stress that from the PCS perspective, the
task is standard (give points that are at a given place),
again possibly taking avantage of LOD (send only the
necessary number of points, and not all the possible
points, which may be critical for limited-hardware situ-
ation like mobile phone or tablets). We use an implicit
LOD scheme which is described in Cura et al. (2016)
(working paper).

2.6 Processing Point Cloud with the Server

Processing point clouds We think it is important to
offer both point clouds and adapted tools to users (leaning
toward giving access to services). Indeed, for most of
the users, a point cloud is only a mean to get another
information via processing.

Our system can be used for processing in two ways. The
most classical is out-of-base processing. A client obtains
the points, does something, and writes the results in the
server or elsewhere.
However, our system also offers in-base processing. In
this form, the user directly adds processing methods
within the PCS. Processing methods become very close
to the data and can be reused or combined to create more
complex methods. The client does not have to install
anything (all methods live within the server), which is
more practical (version management, dependencies ...).

An advantage of in-base processing with the PCS is that
it is easy to add new processing methods. These meth-
ods can be written for efficiency (C, Cpp) or using high
level languages (Python, R) for very fast prototyping.
We determined that the most useful in-base processing
functions should be fast and simple. This way, the newly
written functions can be used in other aspects of the point
cloud server, such as indexing, or be combined directly
in SQL queries. For instance,

SELECT c l a s s i f y (e x t r a c t p l a n (p a t c h) ,
e x t r a c t f e a t u r e 1 (p a t c h) , . . .)

FROM p a t c h e s
WHERE c o m p u t e v e r t i c a l i t y (p a t c h) >0.8

Of course both type of processing can be used conjointly.
In the previous scenario, the classifier would be trained
outside of PCS for better memory and performance man-
agement.

3. RESULTS

3.0 General System Test

We design several experiments to test all thecomponents
of the point cloud server on several datasets (Figure 13).

Figure 13: Paris data set (terrestrial Lidar), Medical Imag-
ing data set (X-Ray CT Scan), Vosges data set (aerial
Lidar), Stereo data set (Stereovision)

All the experiments have ample room for optimisation,
and can easily be reproduced (using only open source
tools). We use PostgreSQL 9.3, PostGIS 2.2, PgPoint-
Cloud 1.0, Python 2.7, PDAL 1.1, Numpy 1.10 and Scipy
0.17. We stress that all the facts should be indicative at
best, because dealing with massive data introduces a
strong hardware factor. For instance, the same loading
method (parallelized PDAL) used in the reference bench-
mark van Oosterom et al. (2015) is 4 times slower with
our hardware. Moreover, the PCS uses several layers of
caching whose influence may blur the results.

Result at the system level Overall, we load several
Billion points into the PCS, perform several processing in
and out of base (second to hour), extensively use simple
and complex filtering (response time from millisecond
to second), convert points to images and vectors, and
output points (≥ 100k pts/s). The entire system works
as intended and is efficient and powerful enough to be
used in research settings.

Data sets used For this work, we mainly use four data
sets (including IQmulus (2014)) illustrated in Figure 13.
They were chosen to be as different as possible (sizes
from millions to billions of points, sensing from active
to passive, wavelength from a few nanometres to Near
Infrared, nature of sensing from surface to volumetric,
different numbers of attributes from none to 21) to further
evaluate how the proposed methods can generalise on
different data. We emphasize that the Vosges data set is
a massive aerial Lidar point cloud covering mountains
and forests.

Hardware We tested all our methods on two settings
corresponding to two target users. The first use case is

Table 1: Figures of the Point cloud data sets used in the experiments.

data set Type
Nb. of
points

Nb. of
original files

Spatial
coverage

Nb. of
attributes

Typical
spacing

File
Type

Vosges Aerial Lidar 5.2B ∼1450 1330 km2 9 1 m .las (bin)
Paris Terrestrial Lidar 2.15B ∼ 750 42 km 21 1 cm .ply (bin)

Stereo Stereovision 70M 16 3 m2 6 0.1 mm .ply (bin)
Medical Imaging Medical Imaging 1.95 M 1 20 dm3 0 0.6 mm .ply (bin)

a non-specialised user with non-dedicated hardware. To
this end, the setting is simple and portable (the point
cloud server is hosted on a virtual box on an external
drive). The second use case is for a specialised user,
with dedicated hardware. The setting is powerful and
offers much more storage space (dedicated server with
12 cores, 20 GB RAM, SSD for OS, regular disk for
storage, Ubuntu 12.04). Timings are indicative because
of influence of caching and configuring.

3.1 Storing groups of points in a RDBMS

Table 2: Creating and indexing patches for the test data
set.

data set
Grp
Size

Grp
Dim

Patch
nb (k) A

vg
pt

s/
pa

tc
h

(k
pt

s)

Pa
tc

h
in

de
x

si
ze

(M
B

)

Vosges 50m 2D 580 8.9 27+15
Paris 1m 3D 6570 0.325 300+150

Stereo 1
250

m 2D 180 0.4 12+3
Medical 1

100
m 3D 4.8 0.4 0.4

Table 2 gives the results on the grouping and indexing
aspects.

Point grouping strategy Points must be categorised
into groups that will make sense for subsequent uses of
the point cloud. Groups of points must be big enough so
the number of rows is tractable, but not too large because
getting only one point still necessitates obtaining the
entire group. We designed these grouping rules with
two criterias. First, the number of rows is less than a
few millions so that the index fits in the server memory
(Table 2). Second, the range of number of rows is still
manageable for classical GIS software (e.g. QGIS). We
can afford to have arbitrary large groups as a result of the
PostgreSQL TOAST9 storage system.
Grouping is done at data loading, but we can change the
groups and grouping rules at any time. Index creation is
very fast (a few seconds to a few minutes), and the index
size is ≤ 1 % of the point cloud size.

Storing patches and not points Indexes are built on
patches and not on points, and thus are several orders of
magnitude smaller and much faster to build. We estimate

9http://www.postgresql.org/docs/current/

static/storage-toast.html

the size of indexes if we were to store one point per row
rather than one patch per row. For this, we measured how
PostgreSQL index size and build time evolves with the
row number. The results are mostly linear (tested from
10 kpoints to 10 Mpoints), as seen in table.

XYZ points
table size

RTree index
size

RTree index
building time

65 MB/Mpts 52 MB/Mpts 18 s/Mpts

Using this scaling behaviour, we estimated the spatial
index size if the point were not stored by groups but
individually (one point per row). Without surprise, index
size and built time would become intractable if points
where stored one by one and not by groups.

data set
Estimated point
index size (GB)

Estimated point index
build time (h)

Vosges 2600 290
Paris 1000 120

Stereo 35 4
Medical 132 1 min

Compressing point clouds Patches are compressed
before storage using the dimensional pgpointcloud com-
pression10. Table 3 compares loaded data set space oc-
cupation on the server with the original binary files on
the disk (See Table 1 for original file format). In our
case, patches are compressed attribute-wise, with either
a run-length, common bit removal, or zip strategy. This
means that, for each patch, each attribute (dimension)
is compressed independently using the strategy which
is deemed optimal for this attribute. The compressing
efficiency widely varies depending on the data and the
type of points attributes. As a comparison, a tool spe-
cialised on .las file compression like the one proposed by
Isenburg (2013) achieves a 8.3 compression ratio on the
Vosges data set. It uses a more adapted delta encoding
approach for XYZ and time and does not compress the
attributes.

Compressing and decompressing data introduces an over-
head on the data access. We estimate it by profiling the
uncompress and compress functions. Again, the over-
head is dependent on the type and number of attributes.
For instance, stereo contains double attributes that are

10https://github.com/pgpointcloud/pointcloud#

compressions

http://www.postgresql.org/docs/current/static/storage-toast.html
http://www.postgresql.org/docs/current/static/storage-toast.html
https://github.com/pgpointcloud/pointcloud#compressions
https://github.com/pgpointcloud/pointcloud#compressions

Table 3: Analysing compression ratio and compression/decompression speed.

data set Points Disk size Server size
Compression

ratio
Comp. Speed

M pts/s
Decomp. Speed

M pts/s
Vosges 5.2B 170 GB 39 GB 4.36 4.49 4.67
Paris 2.15B 166 GB 58 GB 2.86 1.11 2.62

Stereo 70M 1 GB 490 MB 2.05 2.44 7.38
Medical 2M 23 MB 7.7 MB 2.98 7.66 25.8

compressed with the zip strategy, which is slower in
compression. See Table 3 for the result.

Spatial or temporal grouping In this experiment, we
use two different grouping methods on terrestrial Lidar
data. This type of Lidar (Velodyn) rotates around Z axis
at 10Hz (see Figure 3 on page 4 for one rotation), and is
commonly used to perform object tracking (see the work
of Azim and Aycard (2012) for instance).
In such a case, the main filtering aspect may be temporal,
and not only spatial. In the temporal scenario, we group
points acquired every 4 ms together, and display the con-
vex hull for easier visual understanding. In the spatial
scenario, we group the points with a 1m grid.
Without surprise, temporally-grouped patches have a
more regular number of points, whereas the spatially-
grouped patches have a much more diverse density (see
the histogram of Fig. 14). In both cases the compression
is similar, as the filtering time.

In the Spatial grouping, knowing precisely the sampling
rate (10Hz), it is then easy to get points that are sensed
during a turn n, but not before or after. This capability
would be the basis of object/change detection. .

Adapt patch grouping rules In our solution, points
are grouped at loading time with fixed rules. This sys-
tem is well adapted to point clouds with homogeneous
density, like aerial Lidar. However, these fixed grouping
rules are not optimal for terrestrial Lidar, where the point
density varies strongly based on the distance to the Lidar
device.

We propose a mechanism to change the patch grouping
rules on loaded data sets. The user fixes a target patch
density depending on the expected number of rows and
expected usage of the point cloud. In the example, we
target a density between 0.5 and 2 kpts /m3. We then
iteratively split/merge patches to try to meet this target.
Figure 15 illustrates in 2D and 3D views of patches of
different size but containing roughly the same number of
points. With the proposed targets, the global number of
patches is roughly the same, with the benefits of having
less frequently too small or too big patches, which par-
ticularly shows in the histogram of the points per patch
for fixed size and variable size patches (16).

This adaptive grouping size also reduces the global quan-
tization error.

Figure 14: Temporal (top) and spatial (bottom) group-
ing on velodyn terrestrial Lidar data, with histogram of
number of points per patch.

Choosing grouping rule Overall, the chosen group-
ing rule has no impact on performances as long as the
number of rows remains in the same magnitude (few
millions). The impact of using different grouping rules is
essentially to enable different applications. For instance,
the adaptative grouping rule produces patches with a
much more constant density, which is useful for many
processing methods. We refer the reader to Cura et al.
(2016) (working paper) for more details on point cloud
density correction.

3.2 Loading

’Server oriented loading’ In one night, we aim at
loading the data sensed by a Lidar system during one day.

Figure 15: Illustration of variable patch size repartition
in an urban point cloud.

po
in

ts
 p

er
 p

at
ch target

1 m patches
0.5 to 8 m patches

nb of patches

Figure 16: Histogram of points per patch for constant and
variable size patch. Using variable size patch strongly
reduces the number of very small or very large patches.
Total number of patches is roughly conserved.

Indeed, a mobile mapping vehicle may be acquiring data
all day long, but would most likely not operate during
the night (street views would be useless). Thus the data
acquired during the day must be dealt with during the
night so as to keep up when vehicle is used everyday.
Please note that this requirement is specific to only one
of our four data sets.

The points are stored in files, over a gigabyte network.
We use a specialised program to convert the points file
into ASCII values (CSV). For .ply point files the program
is a modified version of the RPly library11, for the .las
files the program is LAStools 12. The points in ASCII
values are streamed to a ’psql’ process that is connected
to the database. The ’psql’ executes a ’COPY’ SQL com-

11http://w3.impa.br/~diego/software/rply
12 http://lastools.com

mand that reads the ASCII streams and creates and fills
a table with the values from the ASCII stream. When the
file has been fully streamed, we use a SQL query to create
points from attributes and group them into (compressed)
patches. These patches are inserted into the final patch
table. This pipeline (Figure 6, page 5) is executed several
times in parallel, each pipeline working on a different
file. The process is pipped so there is no intermediary
file written to disk.

Distributed ’Client oriented loading’ In this experi-
ment, we use clients to send uncompressed patches to
the server . The clients read point cloud files (.ply in our
experiment, using the plyfile13 Python module). Then,
each client groups the points into patches using a cus-
tom Python module. The patches are sent to the server
through Python. The server compresses these patches
and adds them to the final point cloud table. This ex-
periment is a proof of concept; therefore, we limit the
number of clients to one computer, using seven threads.

Result We load ”Vosges” and ”Paris” data sets through
’Parallel loading’, and ”Stereo” through Distributed par-
allel loading’ (Table 4). Morevover, we load a part of
the Vosges data set using PDAL (parallelised using a
bash script) to enable comparison of our result with van
Oosterom et al. (2015). We estimate the loading speed
of the Vosges data set with PDAL at 300kpts/s, and the
writing speed at about 750kpts/s.

We try to roughly estimate the bottleneck of each method
in the following way: we vary the number of cores used.
If the timing is linear with the number of cores, the
process is CPU-bound, that is CPU is the bottleneck.
Else, input/output (I/O) is the most likely bottleneck.

For PDAL, the bottleneck is clearly the CPU, for both
of our methods, the input/output (I/O) may also play a
role. Indeed, the point files are read over the network,
and the point tables are stored on the SSD, but the final
patch table is stored on the regular disk, which also limits
how many threads can write data on it at the same time
(we observe almost linear scaling for all methods up to 7
threads).

Please note that PDAL and our methods do not use the
same grouping rules (PDAL uses fixed max size (stream-
ing friendly), while we group points into fixed size cubes
(necessitate to read the whole input file before grouping)).
Results are in the Table 4.

3.3 Point Clouds and Context

First, we demonstrate the construction of several two-
dimensional (2D) vectorial visualisations of point clouds.

13www.github.com/dranjan/python-plyfile

http://w3.impa.br/~diego/software/rply
http://lastools.com
www.github.com/dranjan/python-plyfile

Table 4: Loading and writing time for each point cloud
data set, using various methods.

da
ta

se
t

L
oa

di
ng

tim
e

Pa
ra

lle
lis

m

L
oa

di
ng

sp
ee

d
k

pt
s/
s

W
ri

tti
ng

sp
ee

d
M

pt
s/
s

w
ri

tti
ng

lim
ita

tio
n

Vosges 11h30 8 125 1.1 write speed

Paris 8h 6 74.5 0.2
read /

uncompress
Stereo 7’20 7 160 0.55 read

The PCS can work on all point clouds at the same time,
transparently for the user. Point clouds can also be used
conjointly with other GIS data (raster and vector). Lastly,
we show an example that demonstrate the use of the
sensor trajectory meta-data (§3.3 p. 15), and the creation
of graph / topology at the patch level.

Coverage visualisation Creating a coverage visualisa-
tion is easy (about 30 SQL lines) and fast (about 150s
for Paris, one thread) with our point cloud server.

Figure 17: Successive visualisations (various scale) of
point cloud coverage, see 3.3 for details.

Indeed, instead of working with billions of points, we can
work with millions of patches (generalising the points).

We created several visualisations for the Paris data set,
ranging from 5MByte to 100kByte, each adapted to a
different scale and purpose. (see Figure 17)

• 1:25 to 1:1500: Precise, occlusions visible (∼1m).
• 1:1.5k to 1:15k: Understand acquisition structure

and road morphology (∼8m).
• 1:15k to 1:200k: Use the trajectory. If not available,

fabricate a trajectory-ersatz through basic straight
skeleton.

• ≥1:200k: A simple point with text attributes for
details, linked to a relational model.

As a proof of concept, we propose a coverage hexagonal
grid (see Figure 18), conceptually identical to a regular
grid, with some benefits (see Sahr (2011)). The idea
is to visualise both what was sensed and what remains
to be sensed in a given area (here whole Paris city), to
help plan data-sensing missions. The whole process is
fully automatic. We fabricate an hexagonal grid over the
extent of Paris (about 30s), and remove the hexagons
that are in buildings or too far from a road (about 60s).
Then we colour the hexagons depending on whether the
point cloud actually covers it or not (about 30s). Such

Figure 18: ”To-Do” hexagonal map showing the places
where the mapping vehicle has not sensed enough points
(red hexagon), and where the sensing is sufficient (blue
hexagon). Without this map, the zoomed missing part is
challenging to notice on raw data.

a visualisation is easy to create (about 30 minutes of
design), and could be tailored to more specific needs.

Using several point clouds As a proof of concept of
integration of several point clouds, we demonstrate the
conjoint use of stereo-vision point cloud and Lidar point
cloud. For this experiment, we choose to use PostgreSQL
inheritance mechanism. The idea is to create a ’parent’
table. We set the Lidar table and stereo-vision table to
be a ’child’ of the ’parent’ table. Then, we can query the
’parent’ table as if it was a super-point cloud comprised
of all the others. Querying the ’parent’ point cloud is as
fast as querying one point cloud, and we correctly attain
points from both point clouds. We stress, however, that
all the child point clouds index are used, which would
limit the scaling of this method.

Conjoint use with other GIS data We commonly used
vector data with point clouds for various research projects.
Here, the scenario is that we have an accurate but slow
pedestrian crossing reconstructing process. We want to
reconstruct the pedestrian crossing at a given intersection,
so we use advanced filtering to provide the appropriate
points to the reconstructing process (see Figure 10). To
demonstrate the possibilities, we use the following:

• Corrected version of ODParis14 building layer (350
k rows),

• Lidar sensor trajectory (42 k points regrouped in
900 rows),

• Road network data of BDTopo15 (32 k rows),
• Aerial image in a PostGIS raster table (110k rows,

each 30× 30 pixels (10 cm)).

We filter Paris point cloud to obtain patches :

• near street ’Palatine’ and ’Servandoni’ (≤ 10 m+
road width),

• near Lidar acquisition centre trajectory (≤ 3 m),
• far from buildings (≥ 1 m),

14http://opendata.paris.fr/page/home
15http://professionnels.ign.fr/bdtopo

http://opendata.paris.fr/page/home
http://professionnels.ign.fr/bdtopo

Table 5: Result of filtering.
Total
points

Found
points

Filtering
no rast.

Filtering
w. rast.

Filtering
optim

2.15 Bpts 1.2 Mpts ∼30ms ∼ 5s ∼30ms

• with high density (≥ 1000 points /m3),
• where the aerial image has a colour compatible with

street. markings (240 ≤ mean intensity ≤ 350)

The point cloud server finds all the patches concerned in
about 0.6s (with index and optimally written query) (see
Figure 10 and Table 5).

Point cloud as a raster or vector We construct ab-
stract representations of patches that are sufficient for
one task, and are much more efficient than using the
points, including the following:

• 2D bounding box (’bbox’) (default)
• oriented bounding box (’obbox’), light
• multi-polygon obtained by successive dilatation and

erosion of points (’closing’), big to store, very ac-
curate

These generalisations are about 0.5% of the compressed
patch size. We also tested 3D generalisations, either by
extracting primitives (plan, closing on 3D plan, cylinder)
or using LOD.
Lafarge et al. (2013) showed that the urban point clouds
can be accurately represented by primitives. For instance,
a dozen plans accurately explains (distance≤ 1cm) 70 %
of this scene (Figure 19). We extensively tested an or-
thogonal approach, where instead of making a new object
to generalise a group of points, we represent it by a subset
of well chosen points of this group. The method and its
applications (adaptive LOD, density analysis, and classi-
fication using density features) are explained in Cura et
al. (2016) (working paper).

Using trajectories with point clouds We imported
the Paris trajectory data (the successive positions of the
Lidar sensor every few ms). In fact, using a constrained
data model resulted in discovering errors in the raw tra-
jectory data (some rows were corrupted). Trajectories
can be used for filtering point clouds (for instance, Sec
3.3).
We demonstrate the use of trajectories for processing in
the following scenario. The goal is to localise all the
pedestrian crossings of the Paris data set (few minutes).
We (conceptually) walk along the trajectories, and every
three metres we retrieve the patches closest to the tra-
jectory. We use a crude marking-detection function on
these patches (percent of points in given intensity range).
By thresholding this score, we can be conservative or
very selective (i.e. favour recall or precision). Recall
is the amount of correctly found crossing over the total
number of crossing. Precision is the amount of crossing

that were correctly found divided by the total number of
found crossing.

For instance, with a recall of 0.95, we have a precision
of 0.5, and we already filtered the point cloud by a 4.8
factor. This indicates that we reduced the number of
points to consider by a factor 4.8 at the price of dropping
5 % of the pedestrian crossing to be found. This could
directly be used as a prefiltering step for a more costly
pedestrian crossing detector, which would work on 4.8
times less points (at the price of missing at least 5 % of
pedestrian crossings).

Orthogonally, with a recall of 0.16 we have a precision
of 1, filtering the point cloud with a factor 100. This
indicates that we can guarantee that the found pedestrian
crossing are effectively pedestrian crossing for 16% of
those. This could be useful for fast prototyping. Indeed
we may want to test a more subtle pedestrian crossing
detector. In this case knowing there is no false positive is
important to evaluate the new method.

Point cloud as Graph / Topology We generate a graph
embedded in 3D from patches and propose three exam-
ples of applications. First we generate the graph by creat-
ing a node per patch, the node being at the patch centroid.
We de-duplicate results to correctly deal with the fact
that the acquisition vehicle made several passes at this
place. Patches are regularly spatially placed (for instance
forming cubes of 1 m3). Then we construct an edge for
each pair of nodes that are spatially close. Depending on
the threshold, we can use 4, 8 or more connectivity (the
graph is in 3D). Figure 21 illustrate the different kind of
connectivity.

The edge weight is the 3D geometric distance between
the nodes (or a more complex measure).

Shortest path The first example takes advantage of
geodesic distance to compute the shortest path between
two groups of points (see Figure 22). We construct two
graphs, one for the regular fixed-size-grouping (1 m3),
and one for a variable-size-grouping (0.25 to 1 m wide
patches). We use PGRouting to find the shortest path
(about 0.1 sboth cases). Both results are similar, with the
shortest path along varying size patches being a better ap-
proximation, as expected. This functionality of geodesic
distance could typically be used by other advanced pro-
cessing methods.

Semantic isochrone The second example is intended
for semantic point clouds. We suppose that each patch
already has a rough classification available (aggregated
from available point classification or the result of a direct
patch classification(Cura et al. (2016), working paper).
We integrate this classification with the geometric dis-
tance to create a semantic-geometric distance. We use

Figure 19: Streets and buildings. Generalisation like Bounding Box, Oriented BBox, Spatial closing. Closing on 3D
plan detection. Level Of Details.

Figure 20: Rough pedestrian crossing detector.

Figure 21: Example of possible connectivity by connect-
ing patch centres that are closer (3D distance) than a
threshold (1.4, 1.5, 1.9 metres).

the geometric distance divided by a measure of similarity
of the patch classes. For instance, two patches are spa-
tial neighbours, one being a ground patch and another a
building patch. The semantic-geometric distance will be
large.

The graph can then be used for assisted selection. In this
scenario, we would like to get all the points pertaining to
a façade. A user selects one patch on the façade, then all
the patches within a given semantic-geodesic distances
are selected (red/yellow) using PGRouting isochrone
functionality. This results in selecting only the given
façade, as opposed to using a simple geometric distance
which would also select point on other façades (geomet-

Figure 22: Two views of shortest path on regular (yellow)
and varying (orange) size patches.∼ 100ms

rically close, but not connected see Figure 23).

More generally high level object reconstruction algo-
rithm would need this kind of feature.

Road network reconstruction The third example use
a simplified graph as the starting point to reconstruct a
road network (See Figure 24). The idea is to regroup
nodes of the graph to simplify it. We generate the simpli-
fied graph by sampling patch centroid on a voxelic grid
(8 m) coarser than the typical patch size (1 m wide), tak-
ing in priority the patch with greatest number of points,
and removing patch that are not flat enough to be on the
ground. We could directly use semantic information if
it was available to keep only ground patches. Edges are
created as usual (geometric proximity).

selected patches

geometric distance

semantic-geometric dist.

Initial patch:

:

:

Figure 23: Isochrone from the red to yellow, blue points are selected when using geometric distance, but not selected
when using semantic-geodesic distance. About 400 ms.

Please note that such down-sampling of patches is easy
to write and fast, and could as easily replaced by more
subtle aggregates:

SELECT DISTINCT ON (f l o o r (X) , f l o o r (Y) ,
f l o o r (Z))

p a t c h c e n t r o i d AS node
FROM p a t c h t a b l e /∗X , Y , Z are p a t c h

c e n t r o i d c o o r d i n a t e s ∗ /
WHERE /∗ t r y i n g t o c h a r a c t e r i s e ground

p a t c h e s t o a v o i d g e t t i n g f a c a d e and
t r e e s p a t c h e s ∗ /

n u m p o i n t s > 1000
AND p a t c h h e i g h t < 0 . 4 −−i n me te r . . .

ORDER BY f l o o r (X) , f l o o r (Y) , f l o o r (Z)
, n u m p o i n t s DESC −− l a r g e p a t c h e s have

p r i o r i t y

Using PGRouting and PostGIS, we compute the accumu-
lated graph-distance between all the pairs of nodes close
enough (50 m). We can see those (node1, node2, t distance)
as edges of another graph. We create the sparse affin-
ity matrix of this graph using Networkx (Hagberg et al.
(2008)). Then, we use spectral clustering with Scikit-
Learn (Pedregosa et al. (2011)), each node is then at-
tributed to a cluster. Networkx ans Scikit-Learn are
python modules that we use in base via plpython. We
can replace the cluster by their centroid, and build a net-
work by computing cluster adjacency relations. We then
simplify this network by ”healing” 2-connected edges.
We compare this result with a more traditional straight-
skeleton based approach (use morphological operation
to produce a polygon with holes representing the surface
of the streets, use straight skeleton to produce centre-
lines, clean the straight skeleton result with morphologi-
cal operations, build a network, topologically clean the
network).

Figure 24: From simplified graph, all topological dis-
tance from a vertex to any vertices close enough are
computed with PGRouting, the result is clustered us-
ing spectral clustering of Pedregosa et al. (2011). We
then reconstruct the network with PostGIS Topology, and
perform a final simplification step. For comparison, an
automated result using a straight skeleton based method.

3.4 Point Cloud Filtering

Filtering overview Overall, filtering of patches is very
fast on the Point Cloud Server when an index is used
(≤ 0.1s). We tried a great variety of combination of
filtering conditions, and always observed this kind of
timing provided that indexes were used. The Section 3.3
was designed to give an overview of filtering conditions.
Advance filtering condition examples can be found in
the method wiki 16. Finding the patches is almost always
much faster than actually retrieving them.

Because of caching and the influence of how the query
is written, figures are only indicative. Filtering patches
using the indexed functions takes about 0.01s, even when
using many conditions at the same time. This includes
filtering with spatial (2D and 2D+Z), temporal, any other
attributes, density, volume, etc. This also includes using
vector generalisation. Filtering with other GIS data (vec-
tor) is slower (10s), except when special care is taken
to optimise the query (0.01ms). This includes using
distance to other vector layers, using other vector layer
attributes (e.g. height of building), using time associated
with vectors, etc. Lastly, very complex filtering may take
from 10s up to several minutes depending on the number
of patches concerned.

3.5 Exporting

In this section, we list the results for the various output
methods of the PCS.

We estimate the output speed using parallelised (8 threads)
PDAL to 750kpoints/s on the Vosges data set, by sim-
ply measuring the time taken to output a few hundred
million points.

Client oriented: Using PostgreSQL drivers/connec-
tor We create a Python method that works on a client
computer. It reads uncompressed patches from the server
and directly writes them to disk (saving it as Numpy
double array). Using seven parallel workers, the result is
in Table 4 p. 14.

Server oriented: PLY File As a Service (PLYFAS)
We create a service that writes ASCII .ply files at a given
network place. The functions (API) have options to per-
form all kinds of filtering. We exported several files from
the Paris data set, with various filtering options and LOD
(from Cura et al. (2016), working paper). The global
output time observed is around 15 k points/s per worker
with a scaling of up to seven workers.

16http://bit.ly/21gI81w

Server oriented: Lens for traditional GIS Points are
in fact a PostgreSQL materialised view that store points
that are defined by the lens spatial extent and attributes.
We also add a trigger on the lens table so to refresh the
point view upon changes on lens. Optionally, a QGIS
plugin17 can also be used to improve interactivity (in-
stantly autosaving changes concerning PostGIS layers).
If the lens is small enough, this method is interactive
(∼ 2s). See Figure 12 page 9.

Server oriented: Streaming to browser We performed
a test of point cloud streaming to a WebGL application,
using a Node.js server as the ’man in the middle’.

• The browser is set to a geographical position, and
then requests the points around this position to the
Node.js server.

• The Node.js server connects to the PCS to request
the points.

• The PCS uses indexes to find patches and extract
points that are then streamed to Node.js server through
cursor use.

• The Node.js server compresses the point stream and
sends it to the web browser.

• The web browser parses the stream, puts the points
into buffers, sends the points to the graphics card
and displays them through shaders (WebGL).

We observed a reduced throughput (∼ 20 kpts/s, monothread)
because data is inefficiently transmitted as text, and is
serialised/deserialised multiple times.

3.6 Processing Point Cloud with the Server

The PCS can be extended by in-base and out-of-base
processing. In-base processing are methods that are exe-
cuted by the database from within, whereas out-of-base
processing are regular processes executed outside of the
database (possibly on other computers) that get data from
database, process, and then write results in database or
elsewhere.

We demonstrate how easy it is to create new in-base
processing methods. As such, the methods are only cited
to illustrate these capacities. Some details may be found
in Cura (2014).

In-base processing Fast prototyping is vital for wider
point cloud use. We demonstrate the potential of using
high level languages within the database to write sim-
ple processing methods. The experiment is not to create
state-of-the-art processing methods, but to measure what
a Python/R beginner can do in two weeks (designing
methods and implementing), using well established tools

17http://remi-c.github.io/interactive_map_

tracking

http://bit.ly/21gI81w
http://remi-c.github.io/interactive_map_tracking
http://remi-c.github.io/interactive_map_tracking

like Scikit-learn (Pedregosa et al. (2011)) or the Point-
Cloud Library (Rusu and Cousins (2011)).

((P): directly working on patches, can be used out of the
box on all point clouds; (R): working on rasterised point
clouds, need to use a point cloud to raster conversion
method first (in base or out of base))

• (P) clustering points using Minimum Spanning Tree
• (P) clustering points with DBSCAN (Ester et al.,

1996)
• (P) extracting primitives (plans and cylinder)
• (P) extracting a verticality index (using Independent

Component Analysis)
• (R) detecting façade footprint
• (R) detecting cornerstones
• (R) detecting road markings

We also used the server for complex out-of-base process-
ing (classifications), although, for the sake of brevity, this
is detailed in a standalone article (Cura et al. (2016)).

4. DISCUSSION

4.1 Storing groups of points in a RDBMS

In this article, we introduce the storing of groups of
points in Section 2.1 on page 3, and we study different
grouping rules in Section 3.1 on page 11.
Storing groups of points in the PCS offers strong advan-
tages in term of compression, indexing and generalisa-
tion. Yet, it all depends on the hypothesis that points
are grouped into groups that are meaningful for the in-
tended applications. Both spatial and temporal groupings
produce good results. Spatial grouping with fixed size
patches can be a problem when the density varies strongly
(terrestrial Lidar), as patches may contain very few or
too many points. We experimented with varying patch
sizes and demonstrated that the resulting patches have a
much more regular density.

During our usage of the PCS, we noticed a practical
limitation concerning the point cloud types which are
strongly constrained, thus adding or removing attributes
is not immediate. As a perspective, using an inheritance
scheme between point types would solve this problem.

We demonstrated that storing groups of points is well
adapted to store billions of points per table. Yet, the PCS
would have trouble going over a few thousand tables,
theoretically limiting the total number of points to the
10 trillion-points range. To go beyond that, we would
need to use supplementary PostgreSQL sharding and
clustering capabilities. Those capabilities exist but have
not been used yet for point clouds, to the best of our
knowledge.

Storing groups also enables a generalisation approach,
which may have the potential to accelerate and facilitate
many point cloud usages. In this work, we only consid-
ered a few generalisations, and used them in limited ways.
Much more advanced generalisations and usages would
be possible (for instance, using Gaussian Mixture).

4.2 Loading

We present several methods to load points into the PCS
(§ 2.2 on page 5), and test them on several datasets (§ 3.2
on page 12). We successfully demonstrate a sufficient
speed to fulfil our practical requirement of loading one
day of sensing data in less than one night. Examin-
ing (Martinez-Rubi et al. (2014), Table 2) shows that
data loading could be much faster. In the ’Server ori-
ented loading’ scenario, points are converted to ascii
and streamed, which is a waste of resourcess. The PCS
could directly read .ply or .las files. In this scenario, the
database performs the grouping via generic SQL queries.
It might be faster to create a tuned C function to do this.

In the Distributed loading (’Client oriented loading’), the
client performs the grouping, but the database still per-
forms the compression. The client could also compress,
saving bandwidth and computing time for the server.
Moreover, our prototype is written in Python and could
be written for efficiency in lower level languages. As
such, the relatively recent initiative, PDAL18 has gained
maturity, and would be the ideal candidate to solve these
two limitations.

In a more distant perspective, we could skip reading post
processed .las or .ply files, and directly read the raw
sensor data, which might be nevertheless difficult due to
current lack of driver and standard accessors.

4.3 Point Cloud and Context

Point clouds are not only sets of points and also contain
very important meta-data (§ 2.3 on page 5). We used
these meta-data in several ways (§ 3.3 on page 13).

We demonstrated that such meta-data can be useful to
create multi-scale visualisations of point cloud coverage,
as well as help to analyse sensed area (”Todo” map).

Each point cloud meta-data scheme must defined and
enforced by the user, making it hard to share. A stan-
dard minimal data model would be necessary to facilitate
exchanges, similar in spirit to the INSPIRE19 European
directive.

A shared meta-data scheme allows to use several point
cloud together. We tested the PostgreSQL inheritance

18http://www.pdal.io/
19http://inspire.ec.europa.eu/

mechanism so all point clouds are parts of one meta-
point cloud. Current limitations of this mechanism would
prevent it to be used on more than a dozen point clouds,
but perspectives exist to solve this problem (using rule
system or enforcing a table-wide pre-filter based on table
coverage).

In the PCS, the point clouds also have representations
compatible with other GIS data, such as vectors and
rasters. Conjointly using vectors, rasters and point clouds
offers a new world of possibilities. We face data fusion
issues, like difference in precision, generalisation, fuzzi-
ness, etc. Moreover, vector, raster and point cloud data
may be acquired at different dates.

In-base conversion from point cloud to raster are cur-
rently very slow and tailored, being based on SQL queries.
A python-based prototype20 method may solve these lim-
itations.

Going one step further, we demonstrate that point clouds
could be generalised as graphs, which opens new possi-
bilities, such as graph based distance, semantic selection
and road network reconstruction. However, the current
approaches build the graph using plain PostGIS SQL
queries that can not scale well beyond the million of
patches. The bottleneck is simply the conversion from
patches centroid to a graph based on adjacency, and could
be done directly using powerful specialised library, such
as Boost graph library21. Moreover, the reconstructed
road network by either methods has large improvement
margins (topologically and geometrically). It would be
possible to mix PostGIS Topology (2D partition of the
space) for graph queries.

4.4 Filtering point clouds

The PCS has very advanced capabilities to access a sub-
set of the point clouds (Filtering, § 2.4 on page 7). Fil-
tering relies on indexing and we demonstrate it is very
fast provided the filtering conditions are indexed and
the points are grouped in meaningful groups (3.4 on
page 18). Level Of Detail and meta-data (trajectory)
naturally integrates well into the filtering conditions.

The filtering conditions are especially useful when using
other GIS data. It would be possible to go much fur-
ther towards complex filtering, by performing algebra
between several rasters, using attributes of vectors to fil-
ter patches, etc.
Our entire strategy relies on filtering patches first, then fil-
tering points. In cases where the patch filtering condition
does not filter much, the system becomes useless.

20https://github.com/Remi-C/PPPP_utilities/

blob/master/pointcloud/patch_to_raster.py
21www.boost.org/doc/libs/1_58_0/libs/graph/

doc/

4.5 Exporting

The PCS being based on a popular RDBMS, many ways
exist to access the data stored in it (§ 2.5 on page 8).
We demonstrated an array of export methods (§ 3.5 on
page 18), from classic server based export to multi-client
based, up to the notion of point clouds as service.

The point cloud server can output data in many ways and
thus be easily integrated into any work-flow. We, how-
ever, feel that the current speed (100 k points /s, around
2 MByte /s) is too low. It could be easily accelerated
using binary outputs and by decompressing patches di-
rectly on clients.
Similarly, the lens feature is limited, adapted LOD could
be chosen automatically, but this involves modifying the
GIS used for visualisation. Perhaps the true evolution
of the point cloud server would be to stop delivering
points, and instead deliver a service that could be queried
through standard mechanisms. For instance, the trans-
actional Web Feature Service (WFS-t) format could be
used to send points out of the box, simply using a geo-
server between the client and the point cloud server. This
could be a revolution in point cloud availability, similar
to what happened to geo-raster data (e.g., google map
WFS).

4.6 Processing Point Cloud with the Server

One of the advantages of using the PCS is the opportunity
to not only store point clouds, but also the methods to
process it (§ 2.6 on page 10). We demonstrated the PCS
capabilities for fast prototyping of in-base processing
methods (§ 3.6 on page 18).

The methods we designed are proof of concept, and far
from real state of the art. In-base processing offers many
opportunities because it is close to the data and can be
written with many programming languages. Yet, it is
also intricately limited to one thread and the amount of
memory allowed for PostgreSQL. The execution is also
within one transaction. It may also be hard to control
the execution-flow, during the execution. However, the
Python access both from within and outside the database
shows the possibility to write more ambitious process-
ing methods with several parts executing in parallel as
well as communicating, dealing properly with errors, etc.
We sucessfully integrated the PCS into a more complex
classification framework in Cura et al. (2016).

4.7 Future work

Patches and their generalisations are perfect candidates
to perform fast and efficient registration (cloud-to-cloud,
cloud-to-raster, etc.) (See Figure 25). Indeed, the clas-
sical solution for registering two point clouds relies on
many point to point distance computations (in Iterative

https://github.com/Remi-C/PPPP_utilities/blob/master/pointcloud/patch_to_raster.py
https://github.com/Remi-C/PPPP_utilities/blob/master/pointcloud/patch_to_raster.py
www.boost.org/doc/libs/1_58_0/libs/graph/doc/
www.boost.org/doc/libs/1_58_0/libs/graph/doc/

Closest Point for instance, Besl and McKay (1992)).
With large point clouds, the problem grows intractable,
and, thus, a common solution is to subsample the point
clouds to reduce the number of points. This introduces
errors, and is still less than perfect. Using extracted prim-
itives would be better, as visually explained in Figure
25. Indeed, higher level primitives contains much more
information (more abstract), and are much less numerous
(more synthetic), both being great for faster registration.

Figure 25: A schematic example of the benefits of using
generalisation of points for fast registering. The critical
part of matching could be done on geometric proxies
instead of points, reducing the number of entities to be
matched by a factor of at least 103.

Having all the meta-data, the trajectory (or camera posi-
tion matrices), and the raw data, it would be possible to
change the trajectory (matrices) and regenerate the point
cloud with updated coordinates, all of this from within
the database. Indeed, the trajectory or camera position
are usually known up to a positioning error, being the
result of a process (Structure from motion, GPS posi-
tioning, etc.). Yet, those positions could be improved
by exploiting other data, manual correction, etc. In this
case, the improved trajectory/ positions could be used
to re-generate the point cloud, leading to more accurate
point clouds and limiting data duplication. Processing of
point clouds would extract landmarks, which could be
matched with a landmark database.

5. CONCLUSION

In this article, we presented a comprehensive point cloud
server system based on groups of points (patches). Using
these patches as generalisations, we propose solutions
for basic point cloud user needs (loading, storing, fil-
tering, exporting and processing). The system is fully
open source and thus easily extensible and customisable
using many programming languages (C, C++, Python,
R, etc.). Our system opens new possibilities because
of intricate synergy with other geo-spatial data. Lastly,
we proved through real-life uses that this system works
with various point cloud types (Lidar, stereo-vision), not
only for storing point clouds, but also for processing. As
a perspective, we could explore in-base re-registration

from trajectory and raw data, in-base cloud-to-cloud reg-
istration, in-base classification, and point streaming, as
well as scaling to thousands of billions of points.

6. ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their
in-depth suggestions and corrections. This work uses
many open source projects, we thank their communities
for great features and softwares, especially Paul Ramsey,
the author of pgpointcloud. We thank our colleagues for
their ideas and help both theoretical and practical.

This work was partially supported by an ANRT grant
(20130042).

7. BIBLIOGRAPHY

References

Aubrecht, C., Steinnocher, K., Hollaus, M. and Wagner,
W., 2009. Integrating earth observation and GIScience
for high resolution spatial and functional modeling of
urban land use. Computers, Environment and Urban
Systems 33(1), pp. 15–25. 6

Azim, A. and Aycard, O., 2012. Detection, classification
and tracking of moving objects in a 3D environment.
In: 2012 IEEE Intelligent Vehicles Symposium (IV),
pp. 802–807. 12

Besl, P. J. and McKay, N. D., 1992. Method for registra-
tion of 3-D shapes. pp. 586–606. 21

Bier, E. A., Stone, M. C., Pier, K., Buxton, W. and
DeRose, T. D., 1993. Toolglass and magic lenses: the
see-through interface. In: Proceedings of the 20th an-
nual conference on Computer graphics and interactive
techniques, ACM, pp. 73–80. 9

Chum, O. and Matas, J., 2002. Randomized RANSAC
with td, d test. In: Proc. British Machine Vision Con-
ference, Vol. 2, pp. 448–457. 7

Cura, R., 2014. A postgres server for point
clouds storage and processing. https:

//github.com/Remi-C/Postgres_Day_2014_

10_RemiC/tree/master/presentation. 18

Cura, R., Perret, J. and Paparoditis, N., 2016. Implicit
LOD for processing, visualisation and classification in
Point Cloud Servers. CoRR. 10, 12, 15, 18, 19, 20

Edelsbrunner, H., Kirkpatrick, D. and Seidel, R., 1983.
On the shape of a set of points in the plane. IEEE
Trans. Inf. Theory 29(4), pp. 551–559. 6

https://github.com/Remi-C/Postgres_Day_2014_10_RemiC/tree/master/presentation
https://github.com/Remi-C/Postgres_Day_2014_10_RemiC/tree/master/presentation
https://github.com/Remi-C/Postgres_Day_2014_10_RemiC/tree/master/presentation

Ester, M., Kriegel, H.-p., S, J. and Xu, X., 1996. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In: proceedings
of 2nd International Conference on Knowledge Dis-
covery and Data Mining, AAAI Press, pp. 226–231.
19

Hagberg, A. A., Schult, D. A. and Swart, P. J., 2008.
Exploring network structure, dynamics, and function
using NetworkX. In: Proceedings of the 7th Python in
Science Conference (SciPy2008), Pasadena, CA USA,
pp. 11–15. 17

Hofle, B., 2007. Detection and utilization of the in-
formation potential of airborne laser scanning point
cloud and intensity data by developing a management
and analysis system. PhD thesis, Institute of Pho-
togrammetry and Remote Sensing, Vienna University
of Technology. 2, 6

Hug, C., Krzystek, P. and Fuchs, W., 2004. Advanced
lidar data processing with LasTools. In: The Interna-
tional Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences, pp. 12–23. 2

IQmulus, 2014. IQmulus & TerraMobilita contest. http:
//data.ign.fr/benchmarks/UrbanAnalysis/.
10

Isenburg, M., 2013. Laszip. Photogrammetric Engineer-
ing & Remote Sensing 79(2), pp. 209–217. 11

Kiruthika, J. and Khaddaj, S., 2014. Performance issues
and query optimization in big multidimensional data.
In: 2014 13th International Symposium on Distributed
Computing and Applications to Business, Engineering
and Science (DCABES), pp. 24–28. 7

Lafarge, F., Keriven, R., Brédif, M. and Hoang-Hiep
Vu, 2013. A hybrid multiview stereo algorithm for
modeling urban scenes. IEEE Trans. Pattern Anal.
Mach. Intell. 35(1), pp. 5–17. 4, 15

Lewis, P., Mc Elhinney, C. P. and McCarthy, T., 2012. Li-
DAR data management pipeline; from spatial database
population to web-application visualization. In: Pro-
ceedings of the 3rd International Conference on Com-
puting for Geospatial Research and Applications, p. 16.
2, 6

Lobo, M.-J., Pietriga, E. and Appert, C., 2015. An Eval-
uation of Interactive Map Comparison Techniques. In:
CHI ’15 Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems, ACM
Press, pp. 3573–3582. 9

Mackaness, W., Burghardt, D. and Duchêne, C., 2014.
Map Generalisation: Fundamental to the Mod-
elling and Understanding of Geographic Space. In:

D. Burghardt, C. Duchêne and W. Mackaness (eds),
Abstracting Geographic Information in a Data Rich
World, Lecture Notes in Geoinformation and Cartog-
raphy, Springer International Publishing, pp. 1–15. 4

Martinez-Rubi, O., Kersten, M. L., Goncalves, R. and
Ivanova, M., 2014. A column-store meets the point
clouds. FOSS4G-Eur. Acad. Track. 3, 19

Martinez-Rubi, O., van Oosterom, P., Gonçalves, R.,
Tijssen, T., Ivanova, M., Kersten, M. L. and Alvanaki,
F., 2015. Benchmarking and improving point cloud
data management in MonetDB. SIGSPATIAL Spec.
6(2), pp. 11–18. 3

Meng, L. and Forberg, A., 2007. 3D building general-
isation. Challenges in the Portrayal of Geographic
Information. Elsevier Science, Amsterdam pp. 211–
232. 4

Otepka, J., Ghuffar, S., Waldhauser, C., Hochreiter, R.
and Pfeifer, N., 2013. Georeferenced point clouds:
A survey of features and point cloud management.
The International Archives of Photogrammetry, Re-
mote Sensing and Spatial Information Sciences 2(4),
pp. 1038–1065. 2

Otepka, J., Mandlburger, G. and Karel, W., 2012. The
OPALS data manager—efficient data management for
processing large airborne laser scanning projects. The
International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences 25, pp. 153–
159. 2

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M. and Duch-
esnay, E., 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12,
pp. 2825–2830. 17, 19

pgPointCloud, R., 2014. pgPointCloud. https://

github.com/pgpointcloud/pointcloud. 3

pgRouting, d. t., 2015. pgRouting. http://pgrouting.
org/. 7

Pindat, C., Pietriga, E., Chapuis, O. and Puech, C., 2012.
JellyLens: content-aware adaptive lenses. In: Pro-
ceedings of the 25th annual ACM symposium on User
interface software and technology, ACM, pp. 261–270.
9

PostGIS, d. t., 2014. PostGIS. www.postgis.org/. 3,
6

PostgreSQL, d. t., 2014. PostgreSQL. www.

postgresql.org/. 3

http://data.ign.fr/benchmarks/UrbanAnalysis/
http://data.ign.fr/benchmarks/UrbanAnalysis/
https://github.com/pgpointcloud/pointcloud
https://github.com/pgpointcloud/pointcloud
http://pgrouting.org/
http://pgrouting.org/
www.postgis.org/
www.postgresql.org/
www.postgresql.org/

Preiner, R., Mattausch, O., Arikan, M., Pajarola, R. and
Wimmer, M., 2014. Continuous Projection for Fast
L-1 Reconstruction. ACM Transactions on Graphics
(TOG) 33(4), pp. 47. 4

Quackenbush, L. J., Im, I. and Zuo, Y., 2013. Road
extraction: a review of lidar-focused studies. Remote
Sensing of Natural Resources pp. 155–169. 7

Richter, R. and Döllner, J., 2014. Concepts and tech-
niques for integration, analysis and visualization of
massive 3d point clouds. Comput. Environ. Urban
Syst. 45, pp. 114–124. 2

Rieg, L., Wichmann, V., Rutzinger, M., Sailer, R., Geist,
T. and Stötter, J., 2014. Data infrastructure for multi-
temporal airborne LiDAR point cloud analysis – ex-
amples from physical geography in high mountain
environments. Computers, Environment and Urban
Systems. 2

Rusu, R. B. and Cousins, S., 2011. 3D is here: Point
Cloud Library (PCL). In: IEEE International Con-
ference on Robotics and Automation (ICRA), IEEE,
Shanghai, China, pp. 1–4. 19

Sahr, K., 2011. Hexagonal discrete global grid systems
for geospatial computing. Arch. Photogramm. Cartogr.
Remote Sens. 22, pp. 363–376. 14

Ummenhofer, B. and Brox, T., 2015. Global, dense mul-
tiscale reconstruction for a billion points. In: Proceed-
ings of the IEEE International Conference on Com-
puter Vision, pp. 1341–1349. 4

van Oosterom, P., Martinez-Rubi, O., Ivanova, M.,
Horhammer, M., Geringer, D., Ravada, S., Tijssen,
T., Kodde, M. and Gonçalves, R., 2015. Massive point
cloud data management: Design, implementation and
execution of a point cloud benchmark. Comput. Graph.
49(Special Section on Processing Large Geospatial
Data), pp. 92–125. 3, 10, 13

Wang, F., Aji, A. and Vo, H., 2014. High performance
spatial queries for spatial big data: from medical imag-
ing to GIS. SIGSPATIAL Spec. 6(3), pp. 11–18. 3

Wu, J., 2011. Improving the writing of research pa-
pers: IMRAD and beyond. In: Landsc. Ecol., Vol. 26,
pp. 1345 – 1349. 3

Youn, C., Nandigam, V., Phan, M., Tarboton, D., Wilkins-
Diehr, N., Baru, C., Crosby, C., Padmanabhan, A.
and Wang, S., 2014. Leveraging XSEDE HPC Re-
sources to Address Computational Challenges with
High-resolution Topography Data. In: Proceedings
of the 2014 Annual Conference on Extreme Science
and Engineering Discovery Environment, XSEDE ’14,
ACM, New York, NY, USA, pp. 59:1–59:2. 6

	Introduction
	Problems
	Related work
	File system
	DBMS for points
	Column store database and No-SQL
	Cloud Computing
	DBMS for patch

	Plan

	Methods
	Storing groups of points in a RDBMS
	Storing groups of points rather than points
	Generalisation

	Point grouping strategy

	Loading
	'Server oriented loading'
	Distributed 'Client oriented loading'

	Point Cloud and Context
	Managing metadata
	Coverage map
	Extended metadata
	Using several point clouds and other GIS data
	Point cloud as raster or vector
	Point Cloud patches as Graph / Topology

	Point Cloud Filtering
	Filtering strategy
	Indexing

	Exporting
	Client oriented export
	Client oriented: Distributed export

	Server oriented export
	Server oriented: PLY File As a Service (PLYFAS)
	Server oriented: Using PostgreSQL drivers/connector
	Server oriented: Lens for traditional GIS
	Server oriented: Asynchronous point cloud streaming to browser

	Processing Point Cloud with the Server
	Processing point clouds

	Results
	General System Test
	Result at the system level
	Data sets used
	Hardware

	Storing groups of points in a RDBMS
	Point grouping strategy
	Storing patches and not points
	Compressing point clouds
	Spatial or temporal grouping
	Adapt patch grouping rules
	Choosing grouping rule

	Loading
	'Server oriented loading'
	Distributed 'Client oriented loading'
	Result

	Point Clouds and Context
	Coverage visualisation
	Using several point clouds
	Conjoint use with other GIS data
	Point cloud as a raster or vector
	Using trajectories with point clouds
	Point cloud as Graph / Topology

	Point Cloud Filtering
	Filtering overview

	Exporting
	Client oriented: Using PostgreSQL drivers/connector
	Server oriented: PLY File As a Service (PLYFAS)
	Server oriented: Lens for traditional GIS
	Server oriented: Streaming to browser

	Processing Point Cloud with the Server
	In-base processing

	Discussion
	Storing groups of points in a RDBMS
	Loading
	Point Cloud and Context
	Filtering point clouds
	Exporting
	Processing Point Cloud with the Server
	Future work

	Conclusion
	Acknowledgements
	Bibliography

