
HAL Id: hal-03766225
https://hal.science/hal-03766225

Submitted on 31 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dealing with the product constraint
Steve Malalel, Victor Jung, Jean-Charles Régin, Marie Pelleau

To cite this version:
Steve Malalel, Victor Jung, Jean-Charles Régin, Marie Pelleau. Dealing with the product constraint.
Lecture Notes in Computer Science, 2022, �10.1007/978-3-031-08011-1_18�. �hal-03766225�

https://hal.science/hal-03766225
https://hal.archives-ouvertes.fr


Dealing with the product constraint

Steve Malalel, Victor Jung, Jean-Charles Régin, and Marie Pelleau

Université Côte d’Azur, CNRS, I3S, France
{firstname.lastname}@univ-cotedazur.fr

Abstract. The product constraint ensures that the product of some
variables will be greater than a given value, that is Πn

i=1xi ≥ w. With
the emergence of stochastic problems, this constraint appears more and
more frequently in practice. The variables are most often probability
variables that represent the probability that an event will occur and the
minimum bound is the minimum probability that must be satisfied. This
is often done to guarantee a certain level of security or a certain quality of
service. To deal with this constraint, it is tempting as proposed by many
authors to take the logarithm of the sum and the bound in order to
transform the product into a sum. In this article we show that this idea
creates many problems and forbids an exact calculation. We propose
and compare different representations allowing to compute the set of
solutions of this problem exactly or up to a certain precision. We also
give an efficient method to represent that constraint by a Multi-valued
Decision Diagram (MDD) in order to combine this constraint with some
others MDDs.

1 Introduction

More and more problems involve uncertain data associated with probabilities.
For quality of service or security reasons, it is frequently imposed that any so-
lution must be associated with a minimum probability. This kind of problem is
naturally modeled by defining for each variable x representing uncertain values,
a variable px which represents the probabilities of these values. Then, the vari-
ables x and px are linked together (i.e. x = a ⇔ px = p(a)) and the constraint
Πn
i=1pxi

≥ w is added to the model in order to guarantee that each solution will
be associated with a probability higher than a given value.

We are mainly interested in defining the multi-valued decision diagram (MDD)
of this constraint as it is classically made for a sum constraint. We assume that
the values of variables are decimal with a given precision.

Usually, the product constraint is modeled by taking the logarithm of both
terms, and so by transforming it into the sum

∑n
i=1 log(pxi

) ≥ log(w). It seems
more convenient because the product of variables is not easy to manage in con-
straint programming solvers due to overflows. However, using a logarithm has
a major drawback: we lose the possibility to make exact calculations because
the logarithm function cannot be represented exactly in a computer as it can
return a transcendental number. Thus, floating-point numbers have to be used
and errors in the representation have to be managed.
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In this paper we study several methods for defining the MDD of this con-
straint. The first one is based on the sum of the logarithm. The second one com-
putes the exact MDD of the product of variables. Unfortunately, this method
may need a lot of memory. Therefore we propose to relax the previous MDD up
to a certain precision. On the other hand, we present a method that builds the
MDDs by successive iterations and further compresses it, taking into account
the bound imposed on the constraint. Each iteration corresponds to a precision
that is higher than the previous one. The main idea is to stop considering the
parts of the MDD that will always be satisfied when the precision of the com-
putation is increased. For instance, no matter the precision, we will always have
(0.95...× 0.95...) > 0.9.

The paper is organised as follows. First, we recall some definitions. Then, we
present different methods to compute the MDD of the product constraint. Next,
we experiment with these methods. At last, we conclude.

2 Preliminaries

2.1 Constraint Programming

A finite constraint network N is defined as a set of n variables X = {x1, . . . , xn},
a set of current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set
of possible values for variable xi, and a set C of constraints between variables.
We introduce the particular notation D0 = {D0(x1), . . . , D0(xn)} to represent
the set of initial domains of N on which constraint definitions were stated. A
constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir ) is a subset
T (C) of the Cartesian product D0(xi1)×· · ·×D0(xir ) that specifies the allowed
combinations of values for the variables xi1 , . . . , xir . An element of D0(xi1) ×
· · ·×D0(xir ) is called a tuple on X(C) denoted by τ . In a tuple τ , the assignment
of the ith variable is denoted by τi.

We present some constraints that we will use in the rest of this paper.

Definition 1 Given X a set of variables and w a value, the sum constraint
ensures that the sum of all variables x ∈ X is greater than or equal to w.
sum(l, u) = {τ | τ is a tuple on X(C) and

∑
i=0 τi ≥ w}

Definition 2 Given X a set of variables and w a value, the product constraint
ensures that the product of all variables x ∈ X is greater than or equal to w.
product(l, u) = {τ | τ is a tuple on X(C) and Πi=0τi ≥ w}

Use of logarithm function. Using mathematical functions in CP imposes
to have some guarantees on the values that are computed. In this case, two
important concepts are considered: the correctness and the completeness.

Consider M a model of a problem P , that can use different types of numbers
like floating-point and real numbers. We say that a model M satisfies the cor-
rectness condition iff all solutions found by the solver are solutions of P . In other
words, there is no solution of M that is not a solution of P . The completeness
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condition is satisfied iff all solutions of P are solutions of M . If both conditions
are met then we say that P is exactly solved.

Unfortunately, the log function may be very complex to calculate exactly,
mainly because the discrete logarithm problem (given real numbers a and b,
the logarithm logb(a) is a number x such that bx = a) is considered to be
computationally intractable. Note that computing the log function with a fixed
precision is equivalent to the discrete logarithm problem. Therefore, we need
to compute an approximation of log. Consider log (resp. log) a lower bound
(resp. upper bound) of the log function. If the product constraint is modeled
by

∑n
i=1 log(pxi) ≥ log(w) then the model is correct, because

∑n
i=1 log(pxi) ≥∑n

i=1 log(pxi) ≥ log(w) ≥ log(w). If the product constraint is modeled by∑n
i=1 log(pxi

) ≥ log(w) then the model is complete because
∑n
i=1 log(pxi

) ≥∑n
i=1 log(pxi

) and log(w) ≥ log(w).
As the filtering algorithms in CP are based on the deletion of values that do

not belong to a solution, it is fundamental to guarantee that at least all solutions
of the problem are considered and thus that the model is complete. This means
that we need to be able to compute both a lower and an upper bound of the log.
Unfortunately, the properties of the log functions available in a language, like
Java, or in a library is not always provided. However, modern implementation
of elementary functions are at least faithful [7], i.e., they return one of the two
floating-point numbers surrounding the exact value log(x). Thus, with floating-
point representation, a lower bound can be obtained by subtracting one machine
epsilon to the value returned by the log function and an upper bound can be
obtained by adding one machine epsilon to the value returned by the log function.

Use of decimal variables. Decimal variables impose a certain precision in their
representation and in the calculations involving them. If they are represented by
floating-point variables IEEE754 rounding modes can be managed for ensuring
the safeness of some operations (in order to guarantee the completeness of the
model). Note that some programming languages, like Java, do not offer this
possibility.

We will use the following notations:

Notation 1
• δ is the precision of a decimal variable, i.e. the number of decimal digits

that are taking in account (after the decimal separator).
• ε is the computational precision between decimal numbers.

2.2 Multi-valued Decision Diagram

The decision diagrams considered in this paper are reduced ordered multi-valued
decision diagrams (MDD) [6,8,1], which are a generalisation of binary decision
diagrams [2]. They use a fixed variable ordering for canonical representation and
shared sub-graphs for compression obtained by means of a reduction operation.
An MDD is a rooted directed acyclic graph (DAG) used to represent some multi-
valued functions f : {0...d− 1}n → true, false. Given the n input variables, the
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DAG contains n+ 1 layers of nodes, such that each variable is represented at a
specific layer of the graph. Each node on a given layer has at most d outgoing arcs
to nodes in the next layer of the graph. Each arc is labeled by its corresponding
integer. The arc (u, a, v) is from node u to node v and labeled by a. Sometimes
it is convenient to say that v is a child of u. The set of outgoing arcs from node u
is denoted by ω+(u). All outgoing arcs of the layer n reach tt, the true terminal
node (the false terminal node is typically omitted). There is an equivalence
between f(a1, ..., an) = true and the existence of a path from the root node to
the tt whose arcs are labeled a1, ..., an.

The reduction of an MDD is an important operation that may reduce the
MDD size by an exponential factor. It consists in removing nodes that have
no successor and merging equivalent nodes, i.e., nodes having the same set of
neighbors associated with the same labels. This means that only nodes of the
same layer can be merged.

Construction of MDDs. The classical approach to build MDD(C), the MDD
of a constraint C, is to use states. When building MDD(C), we assign an infor-
mation representing the current state s(x) of the constraint C to each node x.
Given (u, a, v) an arc, s(u) the state of the node u and a transition function, we
are able to produce s(v) the state of the node v and to know if this state satisfies
the constraint C or not. If two different nodes a and b have the same state (i.e.
s(a) = s(b)), they can be merged into one node ab with s(ab) = s(a) = s(b)
during the building process. As we try to build the MDD of a constraint we add
a validity function that anticipates the fact that a state cannot lead to at least
one solution. This function, noted isValid returns false if we can guarantee that
a state will never satisfy the constraint. This function is called before creating
a state. For a given layer i it computes the maximum value from the next layer
to tt denoted by vMax [i+ 1].

In the case of the sum (resp. product) constraint, the state represents the
current sum (resp. product) of the current node. The creation of a new state is
given by function createState. The transition function is simply the addition
(resp. multiplication) between the current sum (resp. product) and the label,
therefore we will not explicit them.

3 Product constraint as a sum of logarithms

There are two possible ways to build the MDD of the constraint depending
on the representation of the decimal/floating-point variable: either by floating-
point or by integers. In any case, a faithful log function has to be used and the
rounding errors of the sum have to be managed. In the first case, the MDD of
the constraint is just the MDD of the sum constraint on floating-point variables.
The latter case deserves more attention.

The logarithm is computed up to a certain precision λ, that is to say the
number of digits taken into account after the decimal point [3]. This value can
be different than δ (the precision of decimal variables). It is therefore important
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Algorithm 1 Integer Logarithm Representation

createState(state, label) : State
newState← createState()
newState.sum← state.sum+ label
return newState

isValid(C, state, label, layer) : Boolean
newSum← state.sum+ label
maxPotential← newSum+ vMax [layer + 1]
return maxPotential ≥ C.min

signature(C, state, label, layer, size) : Integer
return d(state.sum+ label)/10δ−εe

merge(C, state1, state2)
if state2.sum < state1.sum then state1.sum← state2.sum

to take a precision value such that the integer representation of the sum does
not cause an overflow: n × 10λ+d ≤ 2b, with d the maximum number of digits
required to represent the integer value of the logarithm, n the number of variables
and b the number of bits used to represent the integer (32 for an int, 64 for a
long). We will denote this representation Integer Logarithm Representation.
Algorithm 1 gives a possible implementation of the required functions to build
the MDD of the product constraint, with vMax [i] =

∑n
j=imax(Dj). Algorithm

1 also gives a possible implementation of the merging conditions. To perform
merges during the construction process, we introduce a signature function
that will behave as a hash : if two nodes have the same signature, then we merge
them according to the merge function. This allows us to keep a slightly more
precise sum variable, while still being able to merge nodes and save some space.

4 Exact representation of the product constraint

This method aims to be as accurate as possible by representing the result of
consecutive multiplications without loss. First, the decimal variables are trans-
formed into integer variables. We choose a value for δ (i.e., the number of decimal
we want to take into account for representing the values of variables) and then
we turn decimals into their corresponding integers (for example with the deci-
mal 0.98 and δ = 4, we obtain 9800). Afterward, knowing w, the minimum value
of the product of variables, and n the number of variables in the scope of the
constraint, we calculate the minimal threshold min = bw × 10(n×δ)c.

The state of a node contains the value prod which is the product of the labels
of the arcs from the root node to the current node. The prod value of the root
is 1. Algorithm 2 gives a possible implementation for the createState and
isValid functions. isValid is defined using vMax [i] =

∏n
j=imax(Dj).

Unfortunately, the use of integers is limited when representing big numbers:
multiplying all the integers together can quickly cause an overflow. In order to
address this issue, a specific data structure that can represent really big numbers
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Algorithm 2 Exact Product Implementation

createState(state, label)
newState← createState()
newState.prod← state.prod× label
return newState

isValid(C, state, label, layer) : Boolean
newProd← state.prod× label
maxPotential← newProd× vMax [layer + 1]
return maxPotential ≥ C.min

must be used. Most programming languages offer such data structures (e.g. Big-
Integer in Java). However, these data structures have two important drawbacks
that can prevent their use in practice: they quickly run out of memory during
the computation, and the computation of the multiplication takes more time as
the product value increases. It is therefore necessary to study a more relaxed
representation.

5 Relaxed Product constraint

In order to decrease the memory consumption and the computation time, we
can deliberately lose accuracy during the computation by truncating and round-
ing the result correctly, depending on a given precision ε. Therefore, instead of
computing the exact MDD by performing basic multiplications, relaxed multi-
plications are performed, which will as a result compute a relaxed MDD. This
means that the MDD can either be complete, correct, or both (but both can-
not be guaranteed). We note this multiplication ×ε with ε the precision such
that dx ×ε ye = d(x × y)/10εe and bx ×ε yc = b(x × y)/10εc. For example
d9800 ×4 9780e = 9585. Similarly we note

∏ε
the product using ×ε. Note that

for the following part the rounding is done to guarantee only the completeness,
but it can also be done to guarantee only the correctness by doing a switch be-
tween the floor rounding and the ceiling rounding. The MDD is built following
the same first steps defined for the Exact Product: we choose the precision ε and
turn floating-point numbers into their corresponding integers.

However, the minimal threshold is different: it is now defined as min =
bw × 10εc. The way the value vMax [i] is calculated for each layer is modified to
take this change into account i, vMax [i] = d

∏εn
j=imax(Dj)e.

The state of a node x still holds the value prod, but it now represents the
consecutive relaxed multiplications between the labels of the arc from the node
root to the node x. We initialise the root value as 10ε, which is the equivalent of
1 in ε precision.

Algorithm 3 gives a possible implementation of the createState and is-
Valid functions.

Even if this method cannot ensure both the completeness and the correctness
at the same time, it allows us to balance between performance and accuracy
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Algorithm 3 Relaxed Product Implementation

createState(state, label) : State
newState← createState()
newState.prod← dstate.prod×ε labele
return newState

isValid(C, state, label, layer) : Boolean
newProd← dstate.prod×ε labele
maxPotential← dnewProd×ε vMax [layer + 1]e
if maxPotential < C.min then return false
return true

of the solutions. Indeed the smaller ε is, the more equivalent states we have.
Therefore, we obtain more merges resulting in less computational resources to
build the MDD.

6 Incremental Precision Refinement

In this section we present an Incremental Precision Refinement of the set of
solutions (IPR). This method aims at computing the MDD of the constraint for
a precision ε by computing successive MDDs of the constraint having a lower
precision. Let MDDε be the MDD for the precision ε. The idea is to start by
building MDD1 and then build MDDk from MDDk−1. The advantage of this
approach is that it avoids creating intermediate states that are not in the final
reduced MDD.

We can classify the solutions computed in a relaxed MDD in two categories,
the “sure solutions” and the “relaxed solutions”. The “sure solutions” are the
solutions that no matter the precision are valid. For instance (0.95...× 0.95...) is
greater than 0.9 no matter the precision k > 2. The “relaxed solutions” are the
solutions for which a higher precision is required in order to determine if they
are solutions. For instance the fact that (0.94... × 0.95...) is greater than 0.9 is
uncertain and requires a higher precision (0.948×0.955 > 0.9 and 0.940×0.950 <
0.9).

This method is based on the fact that “sure solutions” in MDDk are solutions
in all the following iterations. Thus the method focuses only on the part of the
MDD containing “uncertain solutions” to improve the precision at a lower cost.

6.1 Extracting suspicious arcs

The first step of the algorithm is to identify and extract arcs and nodes that are
part of at least one “relaxed solution”. In order to do so, we use the scheme intro-
duced in [4] to propagate the bounds of the product constraint to each node of
the MDD. In our case, the property associated with a node is the current possible
sum interval for the sum constraint and the current possible product interval for
the product constraint. A bottom-up propagation is performed (instead of the
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Algorithm 4 Extraction

extraction(mdd, w) : MDD
mddM ← createMDD()
mdd.root.value← 0
mdd.root.x1 ← mddM .root
L[0]← {mddM .root}
foreach i ∈ 0..r − 1 do

foreach Node x ∈ L[i] do
foreach label ∈ ω+(x) do

y ← x.getChild(label)
v ← x.value+ label
if y.property[0] + v < w then

x1 ← x.x1
y1 ← y.x1
if y1 is nil then

y1 ← createNode()
y.x1 ← y1
addNode(L, y1, i+ 1)

addArc(x1, label, y1)
y.value← min(y.value, v)

merge all nodes of L[r] into t
pReduce(L)
return mddM

top-down propagation presented in the cited paper). Starting from the tt node
the propagation computes for each node the interval of the minimal values, called
property, needed to be part of a “sure solution”. After the bottom-up propaga-
tion, a top-down propagation of properties is performed. Starting from the root
node, each outgoing arcs (source, v, destination) is checked. If the value v of
the arc combined with the property p of the destination is below the threshold
w, then we cannot be certain that this arc only leads to “sure solutions”. This
arc is thus added to the marked MDDM containing all arcs and nodes marked
“suspicious”. When such an arc is marked, the value of the node destination is
updated to the lowest value between its current value and the value of source
combined with the value of the arc v. At the end of the algorithm, we obtain
the MDDM containing all arcs and nodes appearing in at least one “relaxed
solution”.

The implementation of the algorithm is given Algorithm 4. The algorithm
takes as input an MDD mdd and the lower bound w.

Note that the algorithm only deals with a lower bound w, but can easily be
adapted to deal with an upper bound, or both a lower and upper bound.

Proposition 1 After executing Algorithm 4 MDDM contains all the “suspi-
cious” arcs and nodes.
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Proof. Let the root node with property p < w. This means that at least one
“relaxed solution” pass by the root node, which means that at least one “relaxed
solution” pass by one of its children. Let pc be the value of the property of the
child c, and v be the value of the arc from c to root. If pc + v < w, it means
that at least one “relaxed solution” pass by the arc (root, v, c), because taking it
makes the property go below the threshold. Now, suppose that each node holds
the value of the lowest path from the root. Consider the arc (x, label, y) where
x has a value vx below the threshold w, and y has a property py. py + label+ vx
correspond to the lowest possible path taking the arc (x, label, y). If this value is
below the threshold w, then it means that at least one “relaxed solution” pass
by this arc.

6.2 On the fly intersection

After extracting MDDM containing all “relaxed solutions”, we need to improve
the precision in order to only have solutions. To do so, we perform the intersection
between the MDD with higher precision and MDDM , but without computing
the entire constraint: we only need the parts in common with MDDM . In order
to do so, we perform the on the fly intersection [5]. This allows us to compute
higher precision only for the parts of the MDD that need it, without wasting
time and memory to recompute a large amount of solutions.

6.3 IPR Algorithm

We give a possible implementation of the global algorithm (Algorithm 5) that
computes the MDD of the product constraint using the different schemes pre-
sented in this section. The algorithm will stop once it reaches an equilibrium, or
when the maximum precision allowed is reached.

Algorithm 5 IPR Algorithm

IPR(w, ε, D) : MDD
mddc ← createMDD(0, w,D)
mddM ← extraction(mddc, w)
mddS ← mddc −mddM
foreach e in 1..ε do

mddc ← performIntersection(mddM , C, e)
mddM ← extraction(mddc, w)
if mddM is empty then return mddS
mddS ← mddS ∪ (mddc −mddM )

return mddS ∪mddc

The first step of the algorithm is to compute the initial MDDc (with lowest
precision). Once this MDD is created, we execute the extract function (Algorithm
4) and retrieve the associated MDDM . Then, we compute the difference between
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the MDDc and MDDM , basically filtering the initial MDD from all uncertain
solutions. We store all good solutions in an accumulator MDDS . We then repeat
the same steps over MDDM : we intersect it with the MDD of the constraint C
with higher precision e (performIntersection), then extract, filter, and add
solutions to MDDS . The algorithm stops when MDDM is empty or when the
maximum precision allowed is reached.

Note that, even if very unlikely, it is possible that MDDc = MDDM . This
cannot be a stop criterion for the algorithm as it would still be possible that all
solutions of MDDc require a higher precision to decide if they belong to MDDS

or not.

7 Experiments

The algorithms presented in this paper have been implemented in Java 11. The
experiments were performed on a machine having four E7-4870 Intel processors,
each having 10 cores with 256 GB of memory and running under Scientific Linux.
All the experiments were run in sequential.

First we use fixed data sets, then we study the impact of varying some param-
eters (number of variables, domain size, w value). The fixed data sets, denoted
by data1... data10, involve 10 variables with a domain of size 10. Each value
represents a probability between 95% and 100% to ensure that there exist solu-
tions for the instances. Each resolution was made with our minimum threshold
w representing 90%. All the data used in this paper are available upon request.

7.1 Exact product method

Data set #Solutions Time (ms) Memory (MB)

data1 341 051 7 403 2 268

data2 902 485 14 134 3 383

data3 1 819 820 24 629 6 508

data4 489 297 5 469 1 807

data5 104 506 2 373 879

data6 882 970 13 567 3 394

data7 4 049 230 98 740 14 072

data8 510 291 23 077 4 121

data9 5 473 625 389 801 25 273

data10 797 484 37 497 4 689

Table 1: Time (ms) and Memory (MB) needed to compute the exact MDD using
the Exact Product method.

The Exact Product method behaves exactly as expected: we obtain the exact
MDD at a high cost both in term of memory consumption and time (Table 1).
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This method is nonetheless interesting because it serves as a proof of the total
number of solutions, which will be helpful to compare the relative accuracy of
other methods (Table 2).

7.2 Logarithm and Relaxed Methods

Comparison of the methods. Concerning the number of solutions produced
by the Logarithm method (both Integer and Library) and Relaxed Product
method, we notice an interesting phenomenon: the more we increase the precision
ε, the less we improve the lower bound and thus the accuracy of the solutions
at each iteration (Table 2). Even worse, the time needed to compute the MDD
does not scale at all with the number of solutions (Table 3). For instance, the
time needed to compute 5 473 669 solutions is about 13s (Table 2 and Table
3) for ε = 7, while the time needed to compute 5 473 625 solutions is about
103s for ε = 8. On this data, the computation time is 8 times slower when
ε = 8 than when ε = 7 for a difference of 44 solutions. It means that the
trade-off between precision and computational resources is not worth it. It is
nevertheless complicated to determine the correct ε such that we do not spend
too much time on computation for a relatively good approximation of the exact
MDD. Furthermore, the “relaxed” solutions introduced by the relaxation are
very close to the defined threshold w (as shown by the lower bounds in Table 2).
However, we notice that it is faster to build the MDD using the logarithm than
using the Exact Method; we obtain the exact MDD at ε = 8 for a time of 103s
(compared to almost 400s). This difference is explained by the heaviness of the
exact representation.

ε Logarithm Lower Bound Relaxed Product Lower Bound

1 9 800 000 000 ≈ 0.628 10 000 000 000 ≈ 0.628

2 261 007 356 ≈ 0.762 213 455 660 ≈ 0.821

3 9 193 737 ≈ 0.886 9 222 380 ≈ 0.891

4 5 731 323 ≈ 0.899 5 770 914 ≈ 0.8992

5 5 493 720 ≈ 0.8999 5 498 953 ≈ 0.8999

6 5 474 681 ≈ 0.89999 5 476 117 ≈ 0.89999

7 5 473 669 ≈ 0.899999 5 473 844 ≈ 0.899999

8 5 473 625 ≈ 0.90 5 473 649 ≈ 0.8999999

9 5 473 625 ≈ 0.90 5 473 627 ≈ 0.89999999

Table 2: Comparison of the number of solutions generated depending on the
precision ε for data9. Number of exact solutions: 5 473 625.

Table 3 also shows that the method using a sum of logarithm based on
a log function call from a library and using floats (Library Log), the method
using a log sum represented as an integer and whose precision is controlled
(Integer Log) and the method of relaxing the MDD of the exact product of
variables constraint (RelaxProd) give very close results as soon as one chooses a
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computational precision higher than 4 decimals. However, the IntegerLog method
seems to be faster and to consume a little less memory than the other two
methods.

Time (ms) Memory (MB)

ε Library Log Integer Log RelaxProd Library Log Integer Log RelaxProd

1 49 49 46 4 3 3

2 60 56 68 4 4 4

3 92 78 109 6 4 7

4 197 174 240 19 17 31

5 566 509 801 110 106 166

6 2 752 2 546 4 558 609 598 830

7 13 604 13 165 25 848 2 556 2 377 2 915

8 103 460 102 079 181 015 6 852 6 756 7 251

9 324 239 313 094 337 803 9 929 9 838 7 854

Table 3: Time (ms) and memory (MB) needed to compute the MDD of data9
for a given ε depending on the representation used.

7.3 Incremental Precision Refinement (IPR)

Tables 4 and 5 clearly show the advantages of the IPR routine. IPR L is the ap-
plication of the IPR routine to the Library Log model, IPR IL is the application
of the IPR routine to the Integer Log model and IPR RP is the application of
the IPR routine to the RelaxProd model.

Time (ms) Memory (MB)

Data set Lib Log IPR L IPR IL IPR RP Exact Prod Lib Log IPR L IPR IL IPR RP Exact Prod

data1 5 708 872 904 1 145 7 403 808 113 113 173 2 268

data2 12 067 1 075 1 095 1 628 14 134 1 496 154 153 229 3 383

data3 23 069 1 883 1 869 2 420 24 629 2 062 258 257 397 6 508

data4 4 629 859 858 1 127 5 469 811 109 105 173 1 807

data5 1 930 616 609 825 2 373 378 65 65 105 879

data6 10 359 980 1 018 1 424 13 567 1 494 142 137 221 3 394

data7 81 257 2 357 2 526 2 945 98 740 5 775 345 345 495 14 072

data8 21 990 954 974 1 343 23 077 1 642 133 129 205 4 121

data9 324 239 2 962 3 085 3 715 389 801 9 929 438 437 619 25 273

data10 31 717 1 182 1 200 1 614 37 497 1 552 154 153 250 4 689

Table 4: Time (ms) and Memory (MB) comparison between the Exact Product
method, the Library Log method with ε = 9 and the methods with the IPR
routine in order to compute the exact MDD.

The IPR routine improves the computation up to a factor 131 in time and 60
in memory (data9 in Table 4). Furthermore, contrary to the direct computation
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of the MDD at a given precision ε, it is possible to guarantee the exactitude
of the MDD if the IPR routine stopped before reaching the maximum allowed
precision. Moreover, we can see that the differences between all IPR methods
and the exact method or the Library Logarithm method are in the same order
of magnitude. This shows that the IPR routine is generalisable to any form of
relaxed representation.

Parameters Time (ms) Memory (MB)

n |D| w IPR L IPR IL IPR RP Exact IPR L IPR IL IPR RP Exact

10 10 0.77 80 932 74 697 91 505 - 7 996 8 640 11 357 MO

10 15 0.65 8 779 9 091 9 186 - 1 262 1 267 1 351 MO

10 15 0.90 9 090 8 857 13 773 - 1 421 1 420 1 893 MO

15 10 0.85 248 596 256 005 276 118 - 24 672 24 557 24 572 MO

15 10 0.90 1 615 1 684 2 222 49 986 217 218 277 7 176

15 15 0.92 12 139 11 329 16 273 - 1 647 1 643 2 136 MO

15 15 0.90 178 285 185 549 205 604 - 20 050 20 046 22 914 MO

20 5 0.9 32 363 32 598 44 197 - 4 270 4 263 5 108 MO

Table 5: Time (ms) and Memory (MB) comparison between the different meth-
ods depending on the variations of the parameters, with n the number of vari-
ables, |D| the size of each domain and w the threshold. The first line corresponds
to data10 in other benchmarks. MO = 30GB. All solving methods have the same
number of solutions.

Variations of data set parameters Table 5 shows the behaviour of the build-
ing process depending on the different parameters such as the number of variables
n, the size of the domains |D| or the threshold w. The results seem to show that,
the more we increase n and |D|, the more difficult the problem is to resolve,
which is an expected result. The Exact Product method is only able to close one
instance, which is the easiest one (n = 15, |D| = 10, w = 0.90). Nonetheless, the
results are confirming yet again that the IPR method dominates the classical
building approach. When comparing the efficiency of the methods, we find the
same results as in Table 3 : the logarithm approach is better than the relaxed
product in terms of time and memory. Even though very close, the Library
Logarithm (L) seems to be better at solving these instances than the Integer
Logarithm (IL). However, the variation of the effect of w seems interesting : for
some instances, lowering it makes the problem more difficult (1 615ms for n = 10
|D| = 15 w = 0.90 compared to 248 596 for w = 0.85) while it makes it easier
for others (n = 10, |D| = 15).

When focusing particularly on the variation of w, we in fact observe a bell-
shaped curve evolution for the time and memory (Figures 1 and 2). The top of
the curve seems to be achieved for the value w such that it cuts the set of all
possible combinations in half (Table 3). For instance, the first line (n = 10, |D| =
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Fig. 1: Evolution of the time (ms) needed to compute the MDD for data1 de-
pending on the parameter w.

Fig. 2: Evolution of the memory (MB) needed to compute the MDD for data1
depending on the parameter w

Fig. 3: Evolution of the number of solutions for data1 depending on the param-
eter w.
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10, w = 0.77) of Table 5 is very close to the top of the curve (Figure 1), resulting
in a factor 60 in time when comparing with w = 0.90 for the same data set
(data10 in Table 4).

8 Conclusion

In this paper we studied several methods for defining the MDD of the product
constraint of decimal variables. The first and most popular one is based on the
sum of the logarithm (using either floating point or integer numbers) with a
given precision. The second one computes the exact MDD of the product of
variables. The last one relaxes the previous MDD up to a certain precision.

We showed that an exact representation is not that expensive in terms of
computational resources. More importantly we showed that models based on a
precision can be accurate when using at least 5 decimals.

We also presented an incremental precision refinement method that efficiently
computes an MDD for a given precision. It relies on the fact that if a solution
is correct (a solution of the constraint) at a given precision it is also a correct
solution at a higher precision. Thus this method only refines the precision on
the uncertain parts of the MDD. In addition, when this method stops before
reaching the fixed precision, it guarantees that the resulting MDD is exact. We
showed that this method is very efficient both in terms of computational time
and memory consumption no matter the method used to compute the logarithm.

In a future work it would be interesting to see if the obtained results on the
logarithm are still the same when values are represented as interval of proba-
bilities. Another very interesting development would be to study what are the
necessary conditions for the use of the incremental precision refinement method,
and what kind of constraints meet them.
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