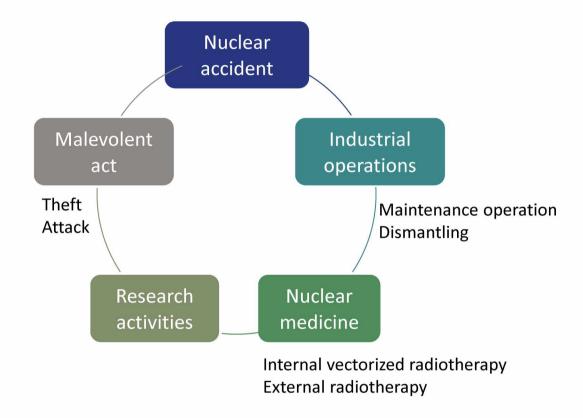


LIPOSOMAL FORMULATIONS OF NEW DECORPORATION MOLECULES FOR THE TREATMENT OF INTERNAL STRONTIUM/COBALT CONTAMINATIONS

Céline Bouvier-Capely
Elias Fattal
François Fay
Géraldine Landon

30 May – 9 June 2022 / Budapest, Hungary

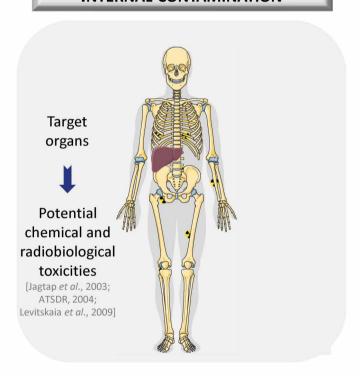
WHAT ARE THE EXPOSURE SITUATIONS?


COBALT-60

- Metal
- Activation product
- β- emitter
- $T_{1/2} = 5.27$ years

STRONTIUM-90

- · Alkaline earth metal
- Fission product
- β-emitter
- $T_{1/2} = 29.14$ years


- → Civilian population
- → Military responders
- → Nuclear industry workers

WHAT ARE THE HEALTH RISKS?

INTERNAL CONTAMINATION

Recommended emergency treatment

[Guide ASN. 2008]

60**Co**

- 1/ DTPA calcium salt
- 2/ Cobalt gluconate

90Sr

- 1/ Ammonium chloride
- 2/ Calcium gluconate
- 3/ Sodium alginate
- → Moderate efficacy and lack of specificity

[Fisher et al., 1978; Sharma et al., 2011]

To develop a more effective pharmacological treatment for decorporation

WHAT IS A DECORPORATING AGENT?

Definition of « decorporate » [Fisher, 2000]

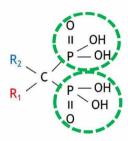
To remove radioactive metals from the body using chelating agents or other administered pharmaceutical agents.

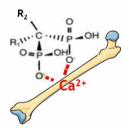
Main features required of a decorporating agent [Crisponi, 2013]

- ✓ Non-toxic chelating agent
- ✓ High affinity of the agent for the molecule of interest
- ✓ Formation of a stable ligand-metal complex
- ✓ Formation of a urinary soluble and excretable ligand-metal complex

WHAT ARE THE POTENTIEL THERAPEUTIC STRATEGIES?

Therapeutic strategies **Bisphosphonate** TO SELECT TO PREVENT THE TO INCREASE THE series MARKETED == **EXCRETION OF RN* ABSORPTION OF RN** [Bugada et al., 2004; 2007] **MOLECULES** Chemical Not sufficiently Affinity towards Chemical Pharmaceutical synthesis and effective approach approach screening Similar Non-specific distribution of ⊿ Affinity → Bioavailibility Costly process ✓ Selectivity RN [Bugada et al., 2004 2007]


*radionuclide

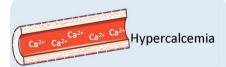

Repurposing drug

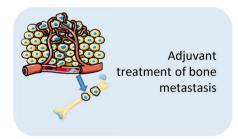
BISPHOSPHONATES SERIES

Chemical structure

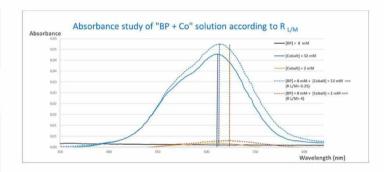
Mechanism of action

- Chelation of calcium
- Internalisation into macrophages
 - → Apoptosis


Inhibition of bone resorption


[Ebetino, 2011]

Therapeutic indications

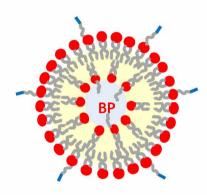

Metabolic bone disease

[Cole *et al.*, 2016]

Chemical approachPreliminary results on complexation studies

 Known to complex with BP on other divalent cations (Fe²⁺. Mg²⁺. Cu²⁺...)

[Lamson, 1984; Barja, 2001; Foti, 2013]


 Identification of the complexation Co-L in the scientific literature

Cc Biorender

PHARMACEUTICAL APPROACH

→ To vectorize BP molecules inside **liposomes**

Schematic of a liposome

OBJECTIVES

- 1- To delay their elimination from the body [Phan et al., 2005]
- 2- To target the major retention organs (skeleton and liver)

Use of liposomes in decorporation LIPOSOMES OF DTPA

²³²Th contamination

[Kumar et al., 2012]

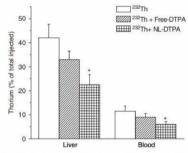


Figure 4. Effect of neutral liposomes encapsulated with DTPA (NI-DTPA) on ²³²Th decorporation from liver and blood of rats (n=7) administered with ²³²Th. Free-DTPA was taken to compare the efficacy of neutral liposomal-DTPA. Results are expressed as percentage of injected ²³²Th [600 µg/kg, i.m. for 24 h). Data shown are mean ± SD. * Indicates significantly higher decorporation of ²³²Th from liver and blood of animals treated with NI-DTPA compared to animals treated with free-DTPA therapy at p < 0.001.

²³⁸Pu contamination

[Phan et al., 2006; Almaki et al., 2021]

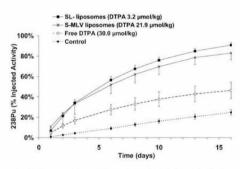


Fig. 1. Plutonium-238 cumulative excretion in urine + feces 16 days after i.v. injection of ²³⁸Pu-phytate followed by decorporation treatment (protocol 1). Treatments were injected 1 h after i.v. injection of 11.8 kBq ²³⁸Pu-phytate (phytate concentration 0.2 mM). Each value is the mean % of ²³⁸Pu-phytate injected activity (±S.D.) for five animals.

Encapsulation inside liposomes → Efficient strategy to decorporate RN

GALENIC FORMULATION PROTOCOL – METHODS TESTED

Method 1

1- Encapsulation of the molecule

- Introduction of the lipid solutions into the flask
- Evaporation of the organic solvent
- Rehydratation of the lipid film with the solution containing the molecules
- 2- Reduction in liposome size Extrusion or sonication
- 3- Purification
 Ultracentrifugation

Suspension of MLV* liposomes $\sim \mu m$

Cc Biorender

Suspension of SUV** liposomes \sim nm

Method 2

1- Preparation of blank liposomes

- Introduction of the lipid solutions into the flask
- Evaporation of the organic solvent
- Rehydratation of the lipid film with a buffer solution
- 2- Reduction in liposome size Extrusion or sonication
- 3- BP molecule encapsulation Several freeze / thaw cycles
- 4- Purification
 Ultracentrifugation

^{*}Multilamellar vesicles

^{**}Small unilamellar vesicles

GALENIC FORMULATION PROTOCOL

Caracterization of the galenic formulation

Determination of the encapsulation rate (RP-HPLC)

	Date	Method for liposomes ~ nm	Size (nm)	Polydispersity index	Zeta potential (mV)
METHOD 1	D ₇	Sonication	125.7	0.095	- 44.3
		Extrusion	147.1	0.067	- 42.1
	D ₃₁	Sonication	128.0	0.094	- 42.3
		Extrusion	147.3	0.043	- 40.7
	D ₇₀	Sonication	125.5	0.095	-43.6
		Extrusion	146.6	0.053	-42.1
	D ₉₂	Sonication	127.9	0.127	-42.1
		Extrusion	146.2	0.064	-46.8
METHOD 2	D ₁₀	Sonication	133.3	0.103	- 42.9
		Extrusion	154.7	0.065	- 42.8
	D ₅₄	Sonication	128.4	0.080	NA
		Extrusion	150.7	0.026	-41.2

	Date	Method for Liposomes ~ nm	Encapsulation rate (%)
METHOD 1	D_9	Sonication	40.90
		Extrusion	38.06
	D ₃₀	Sonication	38.60
		Extrusion	38.45
	D ₇₀	Sonication	40.71
		Extrusion	40.77
	D ₉₂	Sonication	39.86
		Extrusion	37.25
METHOD 2	D ₁₀	Sonication	47.07
		Extrusion	50.77
	D ₅₄	Sonication	44.40
		Extrusion	51.14

Size and encapsulation rate of liposomes stable over time

Choice of method 1 - sonication

GALENIC FORMULATION PROTOCOL

Method 1
Sonication

Caracterization of the galenic formulation (N=3)

Date	Size (nm)	Polydispersity index	Zeta potential (mV)
D ₇	125.7	0.095	- 44.30
D_9	126.8	0.098	-44.16
D_9	122.8	0.115	-46.55
Mean	125.1		-45.00
SD	2.07		1.34

Determination of the encapsulation rate (N=3)

Date	Encapsulation rate (%)
D_9	40.90
D ₁₀	40.18
D ₁₀	39.59
Mean	40.22
SD	0.007

→ Reproducible results

CONCLUSION - PERSPECTIVE

• Complexation confirmed (UV-VIS spectrophotometry) but incomplete

→ Continue complexation studies by capillary electrophoresis (stability constants)

• Galenic formulation performed by comparing different protocols

→ Satisfactory and stable results over time

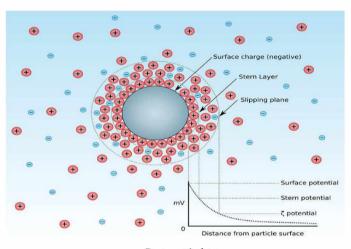
• Measure the decorporation efficiency of free and liposomal BP

Part 3

Protocol

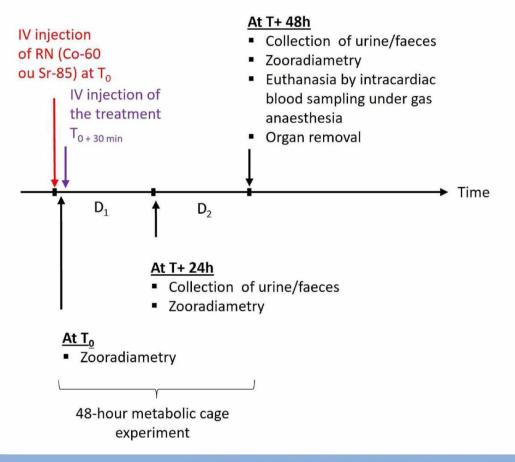
12 catheterized rats groups; each rat will be placed in metabolic cage (for a 2-days experiment)

- RN and treatment injections after an early interval
- Collect urine/feces/blood and organs (liver, femur, spleen and kidneys)
 - → gamma counting measurement


LIPOSOMAL FORMULATIONS OF NEW DECORPORATION MOLECULES FOR THE TREATMENT OF INTERNAL STRONTIUM/COBALT CONTAMINATIONS

Céline Bouvier-Capely
Elias Fattal
François Fay
Géraldine Landon

30 May – 9 June 2022 / Budapest, Hungary



ZETA POTENTIAL

Potentiel Z

EXPERIMENTAL PROTOCOL

Collected organs:

- Liver
- Kidneys
- Spleen
- Femur