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Abstract

This paper studies an optimal boundary control law for a heterogeneous traffic flow model with disturbances in order to alleviate
the congested traffic. The macroscopic first-order N-class Aw-Rascle traffic model consists of 2N hyperbolic partial differential
equations. The vehicle size and the driver’s behavior characterize the type of vehicles. There are m positive characteristic
velocities and 2N −m negative characteristic velocities in the congested traffic after linearizing the model equations around
the steady-state depending on the spatial variable. By using the backstepping method, a controller implemented by a ramp
metering at the inlet boundary is designed for rejecting the disturbances to stabilize the 2N×2N heterogeneous traffic system.
The developed controller in terms of proportional integral control is derived from mapping the original system to a target
system with a proportional integral boundary control rejecting the disturbances. The integral input-to-state stability of the
target system is proved by using the Lyapunov method. Finally, an optimization problem is established and solved for seeking
the optimal controller.
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1 Introduction

Traffic congestion is a pervasive problem that leads to
the increased fuel consumption and the risky driving
conditions. It is natural to use the boundary control on
the available control signals as the ramp metering or the
variable speed limit to stabilize the highway traffic sys-
tems. Paper [21] contributes to the boundary control de-
sign for the multi-directional congested traffic evolving
on the large-scale urban networks represented by a con-
tinuum two-dimensional plane. In [24], a reinforcement
learning boundary controller is designed to mitigate the
stop-and-go congested traffic for the 2 × 2 quasilinear
Aw-Rascle-Zhang (ARZ) partial differential equations
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(PDEs) model by using the proximal policy optimiza-
tion which is an algorithm based on the neural networks.
In [3], a delay-robust stabilizing state feedback boundary
control law is developed for an underactuated network of
two subsystems of a heterodirectional linear first-order
n + m hyperbolic PDEs system. In Paper [11], an op-
timal PI controller is designed for the linearized ARZ
traffic model by computing the value of L2 gain from dis-
turbance to output, that is to measure the disturbance
rejection capacity (see the recent survey [17]).

Usually, macroscopic models typically described by
PDEs are more suitable to study the congested traffic
and the disturbances in the traffic flow. In Paper [12],
the linearized ARZ traffic flow model with boundary
disturbances is mapped into an iISS target system by
using a backstepping transformation in order to obtain
a full state feedback controller, and we use backstepping
method to derive an observer-based output feedback
controller to dissolve traffic congestion resulting from
traffic breakdown. The exact boundary controllability
of a class of nonlocal conservation laws modeling traf-
fic flow is studied in [5]. In [13], the authors propose a
new continuum model with an additional anisotropic
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term which ensures the characteristic velocities can be
less than or equal to the macroscopic flow speed. An
extension of the speed gradient (SG) model is intro-
duced to study the mixed traffic flow system in [15].
Paper [18] extends the Aw-Rascle (AR) model for the
heterogeneous traffic by using the area occupancy, and
analyzes the properties of the extended model. A new
car-following model for the heterogeneous traffic flow is
presented in [20]. In [18], the macroscopic N -class AR
traffic model with the consideration of vehicle size is
used because of the validation of simulation. A contin-
uum multi-class traffic model is proposed on the basis of
a three-dimensional flow–concentration surface in [19].
Paper [10] studies a two-type vehicle heterogeneous
traffic model to acquire the overtaking and creeping
traffic flows. In paper [9], a generalized ARZ traffic flow
system is derived by modifying the pressure relation in
the ARZ model and by using the data-fitting method.

The backstepping method is used to derive a boundary
controller in some papers. In [22], a boundary observer
for the nonlinear ARZ traffic flow model is designed to
estimate the information of the traffic states by using the
backstepping method. A controller is designed for the
underactuated cascade network of the interconnected
PDEs systems by using backstepping in [2]. In consid-
eration of the limits of technology and cost, there have
been works inspired by [8], designing a control law for
the linearized ARZ traffic flow model by using the back-
stepping transformations (see also [23]). Paper [7] uses
the backstepping method to design an output feedback
boundary control for the stop and go traffic problem of
the linearized two-class AR traffic flow system. As an
extension of the two-type vehicle traffic flow model in
the paper [7], this paper generally investigates N > 2
vehicle types with the help of some coefficient matrices
but in the presence of the unknown and bounded distur-
bances (high traffic demand) at the inlet and a bottle-
neck (flow restriction, constant densities) at the outlet
of the considered road section. This paper assumes the
flow conservation of each vehicle type at the upstream
inlet x = 0, rather than the constant overall traffic flow
entering and leaving the investigated track section in
the paper [7]. In addition to these differences with re-
spect to the paper [7], it is natural for the applications to
consider the case of a nonuniform steady-state and the
transport velocities depending on the spatial variable.
Moreover, the objective of this paper is to reject distur-
bances and alleviate the congested traffic (convergence
to the nonuniform steady-state), not to regulate the leav-
ing traffic flow. By means of solving the optimization
problem, we obtain the optimal tuning parameters to
minimize the likelihood of the congested traffic. Paper [8]
uses a backstepping transformation to design a control
law, and derives theH2 exponential stability for a quasi-
linear 2 × 2 system of the first-order hyperbolic PDEs.
Paper [4] studies the sufficient conditions for the local
input-to-state stability (ISS) in the sup norm of the gen-
eral quasilinear hyperbolic systems with the boundary

input disturbances. For the one-dimensional parabolic
partial differential equations with disturbances at both
boundaries, the estimations of the input-to-state stabil-
ity in the various norms are studied in paper [16].

Contributions: This paper states a new result on the
controller design by using the backstepping method
for the linearized multi-type traffic flow hyperbolic
system around a nonuniform steady-state to reject dis-
turbances and then to alleviate the congested traffic.
Firstly, this work presents the derivation of an extended
multi-type AR traffic flow model in the characteristic
form. Secondly, we prove the integral input-to-state
stability (iISS) of a target system which has a source
term of integral form and a proportional-integral (PI)
boundary control for rejecting disturbances. Moreover,
a controller implemented by ramp metering is designed
to robustly stabilize the heterogeneous traffic system
by applying the backstepping method to the multi-type
vehicle traffic model.

This paper is organized as follows: Section 2 introduces
the multi-type AR traffic flow model with the parame-
ters characterizing different vehicle types and the formu-
lation of the control problem to be solved. In Section 3,
the iISS of the target system is proved by the Lyapunov
method, and a controller is designed by using the back-
stepping approach. In Section 4, the optimization prob-
lem is presented and the numerical results are provided
for verifying the existence of the optimal controller. The
paper ends with the concluding remarks in Section 5.

Notation. The set of positive real numbers is repre-
sented by R>0. C

0 is the set of continuous functions,
C1 is the set of continuously differentiable functions.
max(S) is the maximum value of all the elements in S,
if S is a set. ∂tf and ∂xf respectively denote the partial
derivatives of a function f with respect to the variables t
and x. f ′ denotes the first derivative of a function f with
respect to the variable x, and ḟ denotes the first deriva-
tive of a function f with respect to the variable t. For a
function φ = [φ1, . . . , φn]

⊤ : [0, L]× [0,+∞) → Rn, we
define the following norms, the L2-norm

∥φ∥L2((0,L);Rn) =

(∫ L

0

(φ2
1(ξ, t) + · · ·+ φ2

n(ξ, t)) dξ

) 1
2

,

the L∞-norm ∥φ∥L∞((0,L);Rn) =

max
{
∥φ1∥L∞((0,L);R), . . . , ∥φn∥L∞((0,L);R)

}
,

the H1-norm ∥φ∥H1((0,L);Rn) =

(∫ L

0

(
∥φ∥2L2((0,L);Rn) + ∥φx∥2L2((0,L);Rn)

)
dx

) 1
2

,
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and theH2-norm ∥φ∥H2((0,L);Rn) =

(∫ L

0

(
∥φ∥2L2((0,L);Rn)

+∥φx∥2L2((0,L);Rn) + ∥φxx∥2L2((0,L);Rn)

)
dx

) 1
2

.

Rn denotes the set of real n-dimensional column vec-
tor. Rn×l denotes the set of real n × l matrices. 0n×l

denotes the n × l zero matrix. In is a n-dimensional
identity matrix. Dn denotes the set of n-dimensional
diagonal matrix. D+

n denotes the set of n-dimensional
diagonal matrix in which the main diagonal entries
are positive. The n-dimensional column vector is

represented as M =
[
M1 M2 · · · Mn

]⊤
, where the

argument Mi (i = 1, 2, . . . , n) is a scalar or a col-
umn vector. The diagonal matrix is represented as
M = diag{d1, d2, . . . , dn} with the diagonal entry di
(i = 1, 2, . . . , n). The block diagonal matrix is repre-
sented as M = diag{M1,M2, . . . ,Mn}, and the block

matrix is represented as M =


M11 M12 · · · M1n

M21 M22 · · · M2n

...
...

. . .
...

Mn1 Mn2 · · · Mnn

,
where the main diagonal argument Mi (i = 1, 2, . . . , n)
and the argument Mij (i, j = 1, 2, . . . , n) are matrices.
[M ]i,j denotes the entry of matrix M in the i-th row
and the j-th column. {Mij}n1≤i≤n2,l1≤j≤l2

denotes a

matrix consisting of the entries of matrix M in the rows
from n1-th to n2-th and the columns from l1-th to l2-th.
M−1 denotes the inverse matrix of a square matrix M .
M⊤ denotes the transpose of a matrix M . λ(M) is the
set of all the eigenvalues of a matrix M , and |λ(M)| is
the set of absolute values of all the eigenvalues, if M is
a square matrix. The symbol ∗ stands for a symmetric
block in a matrix.

2 Traffic Flow System and Control Problem

The multi-type AR traffic flow model and the interpre-
tations of the crucial parameters are presented in this
section. The preparations for designing a controller are
also done including the transformations of the states and
the linearization around a nonuniform steady-state. On
the basis of the control problem to be solved, the corre-
sponding boundary conditions are derived.

2.1 Multi-type AR traffic flow model

We investigate the multi-type AR traffic flow model
in [18] that describes the dynamics of a heterogeneous
traffic consisting of N vehicle types on a road segment

with the length L,

∂tρi(x, t) + ∂x

(
ρi(x, t)vi(x, t)

)
= 0, (1)

∂t

(
vi(x, t) + pi (Ao(ρ))

)
+ vi(x, t)∂x

(
vi(x, t) + pi (Ao(ρ))

)
=

Ve,i (Ao(ρ))− vi(x, t)

τi
,

(2)

with the independent spatial variable x ∈ (0, L) and the
independent time variable t ∈ [0,+∞), where i is the
index of vehicle type with i = 1, 2, . . . , N , ρi(x, t) and
vi(x, t) are respectively the density and the velocity of
the vehicle type i. Additionally, the density ρi(x, t) is
defined as the number of vehicles passing the road section
per unit length, and the velocity vi(x, t) is defined as
the average speed of vehicles passing the location x in
unit time. The relaxation time τi of the vehicle type i
is subject to the driving behavior, the area occupancy
Ao(ρ) is formulated as

Ao(ρ) =
a⊤ρ

W
, (3)

where a = (a1, a2, . . . , aN )⊤ (ai is the occupied surface
per vehicle for type i), ρ = (ρ1, ρ2, . . . , ρN )⊤, and W
is the width of the road segment. The area occupancy
Ao(ρ) describes the percentage of the road space occu-
pied by all the vehicle classes on the considered road
section. In the physical sense, 0 < Ao(ρ) ≤ 1.

For the heterogeneous traffic, the traffic pressure func-
tion pi (Ao(ρ)) of the vehicle type i is an increasing func-
tion of the area occupancy Ao(ρ) (see [7]),

pi(Ao(ρ)) = vMi

(
Ao(ρ)

AoMi

)γi

, i = 1, 2, . . . , N, (4)

where the free-flow velocity vMi and the maximum area
occupancy 0 < AoMi ≤ 1 of the vehicle type i respec-
tively describe the maximal velocity in the free regime
and the maximum percentage of occupied surface in the
congested regime, if there is only vehicle class i on the
considered road segment. As described in the paper [7],
the constant γi > 1 is the pressure exponent of the vehi-
cle type i that can be tuned to get realistic traffic pres-
sure pi(Ao(ρ)).

The steady-state speed-Ao relationship of vehicle class
i (= 1, 2, . . . , N) is given by the Greenshield’s model
in [6] as

Ve,i(Ao(ρ)) = vMi − pi (Ao(ρ)) = vMi

(
1−

(
Ao(ρ)

AoMi

)γi
)
.

(5)
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There is a negative connection from the decreasing func-
tion Ve,i (Ao(ρ)) describing the desired velocity of the
drivers to the crowded degree.

2.2 Linearization of multi-type AR traffic flow model

Inspired by the case ”2 vehicle classes” in [7], the multi-
type AR traffic model (1)-(2) is linearized around a
nonuniform steady-state

u∗ = (ρ∗1, v
∗
1 , ρ

∗
2, v

∗
2 , . . . , ρ

∗
N , v∗N )⊤ ∈ C1([0, L];R2N ),

where ρ∗i , v
∗
i satisfy, for i = 1, 2, . . . , N ,

v∗i ρ
∗
i
′ + ρ∗i v

∗
i
′ = 0, (6)

v∗i v
∗
i
′ + v∗i p

′
i =

Ve,i(Ao(ρ∗))− v∗i
τi

, (7)

with ρ∗ = (ρ∗1, ρ
∗
2, . . . , ρ

∗
N )⊤. From (6), note that ρ∗i v

∗
i =

di with the given constant di and the given value for
ρ∗i (0), i = 1, 2 . . . , N . We assume that this nonuniform
steady-state exists on [0,L].

Denoting (ρ̃1, ṽ1, ρ̃2, ṽ2, . . . , ρ̃N , ṽN )⊤ with

ρ̃i = ρi − ρ∗i ∈ H1([0, L]× [0,+∞);R),

ṽi = vi − v∗i ∈ H1([0, L]× [0,+∞);R),
i = 1, 2, . . . , N , by ũ ∈ H1([0, L] × [0,+∞);R2N ), the
system (1)-(2) is transformed to the following equation,
for all x ∈ (0, L), t ∈ [0,+∞),

A(ũ)ũt(x, t) +B(ũ)ũx(x, t) + C(ũ)ũ(x, t) = 0, (8)

where, for i, j = 1, 2, . . . , N ,

A(ũ) =


A11(ũ) A12(ũ) · · · A1N (ũ)

A21(ũ) A22(ũ) · · · A2N (ũ)
...

...
. . .

...

AN1(ũ) AN2(ũ) · · · ANN (ũ)

 , (9)

with

Aij(ũ) =


[

1 0

δii(ρ) 1

]
, if j = i,[

0 0

δij(ρ) 0

]
, if j ̸= i,

(10)

B(ũ) =


B11(ũ) B12(ũ) · · · B1N (ũ)

B21(ũ) B22(ũ) · · · B2N (ũ)
...

...
. . .

...

BN1(ũ) BN2(ũ) · · · BNN (ũ)

 , (11)

with

Bij(ũ) =


[

ṽi + v∗i ρ̃i + ρ∗i
(ṽi + v∗i )δii(ρ) ṽi + v∗i

]
, if j = i,[

0 0

(ṽi + v∗i )δij(ρ) 0

]
, if j ̸= i,

(12)

and

C(ũ) =


C11(ũ) C12(ũ) · · · C1N (ũ)

C21(ũ) C22(ũ) · · · C2N (ũ)
...

...
. . .

...

CN1(ũ) CN2(ũ) · · · CNN (ũ)

 , (13)

with (14). Therein, for i, j = 1, 2, . . . , N ,

δij(ρ) = ∂ρjpi (Ao(ρ)) =
vMi γiaj
AoMi W

(
Ao(ρ)

AoMi

)γi−1

,

σij(ρ) = ∂ρjδij(ρ) =
vMi γi(γi − 1)a2j

(AoMi W )2

(
Ao(ρ)

AoMi

)γi−2

.

Because of the invertibility of A(ũ), i.e., |A(ũ)| ≠ 0,
we transform and linearize the system (8) around the
nonuniform steady-state u∗, then for all x ∈ (0, L), t ∈
[0,+∞), the linearized system is derived as follows,

ũt(x, t) + F (u∗)ũx(x, t) = G(u∗)ũ(x, t), (15)

where, for i, j = 1, 2, . . . , N ,

F (u∗) =


F11(u

∗) F12(u
∗) · · · F1N (u∗)

F21(u
∗) F22(u

∗) · · · F2N (u∗)
...

...
. . .

...

FN1(u
∗) FN2(u

∗) · · · FNN (u∗)

 , (16)

with

Fij(u
∗) =

[
v∗i ρ∗i
0 v∗i − ρ∗i δii(ρ

∗)

]
, if j = i,[

0 0

(v∗i − v∗j )δij(ρ
∗) −ρ∗jδij(ρ

∗)

]
, if j ̸= i,

(17)

and

G(u∗) =


G11(u

∗) G12(u
∗) · · · G1N (u∗)

G21(u
∗) G22(u

∗) · · · G2N (u∗)
...

...
. . .

...

GN1(u
∗) GN2(u

∗) · · · GNN (u∗)

 , (18)
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Cij(ũ) =



[
v∗i

′ ρ∗i
′

1
τi
δii(ρ) + v∗i σii(ρ)ρ

∗
i
′ 1

τi
+ v∗i

′ +
∑N

k=1 δik(ρ)ρ
∗
k
′

]
, if j = i,[

0 0
1
τi
δij(ρ) + v∗i σij(ρ)ρ

∗
j
′ 0

]
, if j ̸= i.

(14)

with (19).

Inspired by [25], the characteristic polynomial P2N

(characteristic variable λ) in this paper is analyzed as
follows,

P2N (λ) = |λI2N − F (u∗)|
= (λ− ϕ1)(λ− ϕ2) · · · (λ− ϕ2N−1)(λ− ϕ2N )

×

(
1 +

(
1

λ− ϕ1
− 1

λ− ϕ2

)
· · ·
(

1

λ− ϕ2N−1
− 1

λ− ϕ2N

)

(ϕ1 − ϕ3)(ϕ3 − ϕ5) · · · (ϕ2N−3 − ϕ2N−1)(ϕ2N−1 − ϕ1)

)
,

(20)

with ϕ1 = v∗1 , ϕ2 = v∗1 − ρ∗1δ11(ρ
∗), ϕ3 = v∗2 , ϕ4 = v∗2 −

ρ∗2δ22(ρ
∗), . . ., ϕ2N−1 = v∗N , ϕ2N = v∗N − ρ∗NδNN (ρ∗).

Assume that ϕ1 > ϕ2 > ϕ3 > ϕ4 > · · · > ϕ2N−1 > ϕ2N ,
then

P2N (ϕi) < 0, i = 1, 2, · · · , 2N, (21)

P2N (ϕ1 + ϕ3 + · · ·+ ϕ2N−1) > 0, (22)

and there is a constant ai, i = 1, 2, 3, · · · , N − 1, on the
domain ϕ2i > ai > ϕ2i+1 such that

P2N (ai) > 0. (23)

By using the intermediate value theorem, (21), (22), (23)
imply that the polynomial P2N (λ) has 2N − 1 distinct
positive eigenvalues λ1, λ2, λ3, λ4, · · · , λ2N−1 such that

ϕ1 + ϕ3 + · · ·+ ϕ2N−1 > λ1 > ϕ1 > ϕ2 > λ2 > a1
> · · · > λ2N−3 > ϕ2N−1 > ϕ2N−2 > λ2N−2 > aN−1

> λ2N−1 > ϕ2N−1 > 0. (24)

From (20), note that if λ < min{2ϕ3 − ϕ1, 2ϕ5 −
ϕ3, · · · , 2ϕ2N−1 − ϕ2N−3, 2ϕ2N − ϕ2N−1},

P2N (λ) > 0. (25)

Therefore, if ϕ2N < 0, there is a negative eigenvalue
−λ2N on the domain 0 > ϕ2N > −λ2N > min{2ϕ3 −
ϕ1, 2ϕ5 − ϕ3, · · · , 2ϕ2N−1 − ϕ2N−3, 2ϕ2N − ϕ2N−1}; if
ϕ2N > 0, there is a negative eigenvalue −λ2N on the do-
main 0 > −λ2N > min{2ϕ3−ϕ1, 2ϕ5−ϕ3, · · · , 2ϕ2N−1−

ϕ2N−3, 2ϕ2N − ϕ2N−1} under the following conditions

P2N (0) =ϕ1ϕ2 · · ·ϕ2N−1ϕ2N + (ϕ1 − ϕ2)(ϕ3 − ϕ4)

· · · (ϕ2N−1 − ϕ2N )(ϕ1 − ϕ3)(ϕ3 − ϕ5)

· · · (ϕ2N−3 − ϕ2N−1)(ϕ2N−1 − ϕ1) < 0. (26)

By the analysis of (25), we note that under the
condition (26), there is not less than one negative
eigenvalue (congested traffic), if 0 > min{2ϕ3 −
ϕ1, 2ϕ5 − ϕ3, · · · , 2ϕ2N−1 − ϕ2N−3, 2ϕ2N − ϕ2N−1}. If
0 < min{2ϕ3−ϕ1, 2ϕ5−ϕ3, · · · , 2ϕ2N−1−ϕ2N−3, 2ϕ2N−
ϕ2N−1}, all the eigenvalues are positive (free traffic).
The analysis of eigenvalues in this paper is actually the
generalization of the case N = 2 in [7].

The hyperbolicity of the system (15) is clearly discussed
as above, i.e., for all u∗ ∈ C1([0, L];R2N ), the matrix
F (u∗) has 2N real distinct eigenvalues different to zero.
Given 2N eigenvalues

λ1 > λ2 > · · · > λm > 0 > −λm+1 > · · · > −λ2N ,
(27)

of F (u∗), λi ∈ C1([0, L];R>0), i = 1, . . . , 2N , that does
not depend on t, and assuming that the congestion mode
is kept along the trajectory, we denote by m the num-
ber of positive eigenvalues. We get that 2N − m is the
number of waves against the traffic flow (upstream) in
the congested traffic due to the reaction of the drivers
to their respective leading vehicles, and due to the high
value of Ao(ρ). In order to alleviate the traffic conges-
tion, we thus compute the 2N −m boundary conditions
reducing ∥Ao(ρ)∥L∞((0,L);R). Due to (3), it’s done by con-
trolling the sum of the states. Because of ∥Ao(ρ)∥L∞ ≤
C∥Ao(ρ)∥H1 with a positive constant C, we will study
the scenarios 2N − m ≥ 1 in the H1 sense in this pa-
per. The two-type vehicle case is investigated in the
paper [7], where m = 3, N = 2. With an invertible
transformation matrix T ∈ C1([0, L];R2N×2N ) whose
columns are the corresponding right eigenvectors of 2N
eigenvalues, by using the transformation ω = T−1ũ ∈
H1([0, L]× [0,+∞);R2N ), the linearized system (15) is
rewritten as, for all x ∈ (0, L), t ∈ [0,+∞),

∂tω(x, t) + Λ(x)∂xω(x, t) = M(x)ω(x, t), (28)

where

Λ = diag{Λ+,−Λ−} ∈ C1([0, L];D2N ),
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Gij(u
∗) =



[
v∗i

′ ρ∗i
′

1
τi
δii(ρ

∗) + v∗i σii(ρ
∗)ρ∗i

′ − δii(ρ
∗)v∗i

′ 1
τi

+ v∗i
′ +
∑N

k=1,k ̸=i δik(ρ
∗)ρ∗k

′

]
, if j = i,

[
0 0

1
τi
δij(ρ

∗) + v∗i σij(ρ
∗)ρ∗j

′ − δij(ρ
∗)v∗j

′ −δij(ρ
∗)ρ∗j

′

]
, if j ̸= i.

(19)

Λ+ = diag{λ1, λ2, . . . , λm} ∈ C1([0, L];D+
m),

Λ− = diag{λm+1, λm+2, . . . , λ2N} ∈ C1([0, L];D+
2N−m),

M = T−1G(u∗)T ∈ C1([0, L];R2N×2N ).

Then, the following definitions are given for the subse-
quent analysis and investigation,

|Λ| = diag
{
Λ+,Λ−} ∈ C1([0, L];D+

2N ),

Λ′ = diag
{
λ′
1, . . . , λ

′
m,−λ′

m+1, . . . ,−λ′
2N

}
∈ C0([0, L];D2N ),

(Λ+)′ = diag{λ′
1, λ

′
2, . . . , λ

′
m} ∈ C0([0, L];D+

m),

(Λ−)′ = diag{λ′
m+1, λ

′
m+2, . . . , λ

′
2N} ∈ C0([0, L];D+

2N−m),

where λ′
i (i = 1, 2, . . . , 2N) is the derivative of λi with

respect to the spatial variable x.

2.3 Problem statement

The control problem is motivated by alleviating the con-
gestion on a road segment with the disturbances at the
inlet boundary and the flow restriction at the down-
stream boundary. For example, the occurrence of traffic
congestion is attributed to the excess of the capacity of
bottleneck at the downstream outlet and the high traffic
demand (modeled as the disturbances) at the upstream
inlet of the considered road section.

In order to alleviate the traffic congestion, we design a
boundary control law to reject disturbances for an in-
vestigated road segment, on which a ramp metering is
installed at the inlet x = 0 and a constant density is kept
at the outlet x = L,

ρi(L, t) = ρ∗i (L), ∀t ∈ [0,+∞), (29)

and a flow restriction at the downstream boundary rep-
resented by the speed drop, i.e.,

vi(L
−, t) > vi(L

+, t), (30)

for i = 1, 2, . . . , N . The constant steady-state density
ρ∗i (L) at the outlet for each vehicle class i is guaranteed
by the speed limit signs. The diagram of the control
model is illustrated in Figure 1.

We can derive the following equation on the basis of the
flow conservation at the upstream inlet x = 0, for all

t ∈ [0,+∞),

Q∗
in + p̄(t) +Q∗

rmp +ΘU(t) =


ρ1(0, t)v1(0, t)

ρ2(0, t)v2(0, t)
...

ρN (0, t)vN (0, t)

 ,

(31)

where Q∗
in ∈ RN is a vector whose entries are

the constant inflow of each vehicle class, and p̄ ∈
C1([0,+∞);RN ) is a vector whose entries are the
unknown disturbances of flow rate of each vehicle
class and serves as an exogenous variable depending
on the time variable t. The actuation signal vector
U ∈ C0([0,+∞);R2N−m) with a coefficient matrix
Θ ∈ RN×2N−m is implemented by an on-ramp meter-
ing at the upstream boundary of the considered road
segment. The matrix Θ is the control matrix describ-
ing the impact of the control input to the flow of each
vehicle class. From (6), the nominal on-ramp flux rate
Q∗

rmp ∈ RN satisfies the relation

Q∗
in +Q∗

rmp =


ρ∗1(0)v

∗
1(0)

ρ∗2(0)v
∗
2(0)

...

ρ∗N (0)v∗N (0)

 =


ρ∗1(L)v

∗
1(L)

ρ∗2(L)v
∗
2(L)

...

ρ∗N (L)v∗N (L)

 =


d1

d2
...

dN

 .

(32)

The equation (32) represents the sum of the inflow Q∗
in

and the referenced input on-ramp flux rate Q∗
rmp, as

the referenced input, is equivalent to the steady-state
flow at the inlet and outlet boundaries of the considered
road segment. Then, (31) shows that the control input
is implemented to reject the disturbances p̄.

From the boundary condition at x = L, by combining
(31) with (32) and linearizing, the boundary conditions
are derived, for all t ∈ [0,+∞),

A1ũ(0, t) = p̄(t) + ΘU(t), (33)

B1ũ(L, t) = 0, (34)
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0 L

U(t)Q∗
rmp

Q∗
in

p̄(t)

ρi(0, t)vi(0, t) ρ∗i (L)

vi(L
−, t) > vi(L

+, t)

Fig. 1. Multi-type vehicles traffic on a road with disturbances and flow restriction.

with

A1 = diag {[v∗1(0), ρ∗1(0)], . . . , [v∗N (0), ρ∗N (0)]} ∈ RN×2N ,

B1 = diag

{[
1 0

0 0

]
, . . . ,

[
1 0

0 0

]}
∈ R2N×2N .

For the sake of alleviating the congestion and preventing
the capacity drop, a controller is designed by using the
backstepping approach in this paper. In the next subsec-
tion, a Riemann coordinate transformation of the state
ω is dealt with in order to make the development and
analysis of the controller easier.

2.4 Riemann coordinates transformation

By the transformation

R =

[
R+

R−

]
= Ψω, (35)

with Ψ = diag {Ψ+,Ψ−} ∈ C∞([0, L];D+
2N ),

Ψ+ = diag

e
−
∫ x

0

[M(s)]1,1
λ1(s)

ds
, e
−
∫ x

0

[M(s)]2,2
λ2(s)

ds
,

. . . , e
−
∫ x

0

[M(s)]m,m

λm(s)
ds

 ∈ C∞([0, L];D+
m),

Ψ− = diag

e

∫ x

0

[M(s)]m+1,m+1

λm+1(s)
ds

,

e

∫ x

0

[M(s)]m+2,m+2

λm+2(s)
ds

, . . . , e

∫ x

0

[M(s)]2N,2N

λ2N (s)
ds


∈ C∞([0, L];D+

2N−m),

from ω ∈ H1([0, L] × [0,+∞);R2N ) to the new vari-
able R ∈ H1([0, L] × [0,+∞);R2N ) with R+ : [0, L] ×

[0,+∞) → Rm, R− : [0, L]× [0,+∞) → R2N−m, we de-
rive the following system with a simpler source term in
which all the diagonal entries of the coefficient matrix
are zero, for all x ∈ (0, L), t ∈ [0,+∞),

Rt(x, t) + Λ(x)Rx(x, t) = Σ(x)R(x, t), (36)

Rin(t) = KPRout(t) + Γ0(p̄(t) + ΘU(t)), (37)

where

Σ =

[
Σ++ Σ+−

Σ−+ Σ−−

]
∈ C1([0, L];R2N×2N ),

Rin =

[
R+(0, ·)
R−(L, ·)

]
∈ L∞([0,+∞);R2N ),

Rout =

[
R+(L, ·)
R−(0, ·)

]
∈ L∞([0,+∞);R2N ),

KP =

[
0m×m Γ1

Γ3 02N−m×2N−m

]
∈ R2N×2N ,

Γ0 =

[
Γ2

02N−m×N

]
∈ R2N×N ,

with

Σ++ = {ϵij}1≤i,j≤m ∈ C1([0, L];Rm×m),

Σ+− = {ϵij}1≤i≤m,m+1≤j≤2N ∈ C1([0, L];Rm×2N−m),

Σ−+ = {ϵij}m+1≤i≤2N,1≤j≤m ∈ C1([0, L];R2N−m×m),

Σ−− = {ϵij}m+1≤i≤2N,m+1≤j≤2N ∈ C1([0, L];R2N−m×2N−m),

and ϵij ∈ C1([0, L]),

ϵij =

{
0, if j = i,

[Ψ]i,i · [M ]i,j · [Ψ]−1
j,j , if j ̸= i.

There are matrices Υ1 ∈ Rm×N and Υ2 ∈ R2N−m×N

such that Υ1A1T
+(0) ∈ Rm×m and Υ2A2T

−(L) ∈
R2N−m×2N−m are invertible, and we obtain

Γ1 = −(Υ1A1T
+(0))−1Υ1A1T

−(0) ∈ Rm×2N−m,
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Γ2 = (Υ1A1T
+(0))−1Υ1 ∈ Rm×N ,

Γ3 = −Ψ−(L)(Υ2A2T
−(L))−1Υ2A2T

+(L)(Ψ+(L))−1 ∈ R2N−m×m,

with A2 = diag {[1, 0], . . . , [1, 0]} ∈ RN×2N ,

T+(0) =
{
T 0
ij

}
1≤i≤2N,1≤j≤m

∈ R2N×m,

T−(0) =
{
T 0
ij

}
1≤i≤2N,m+1≤j≤2N

∈ R2N×2N−m,

T+(L) =
{
TL
ij

}
1≤i≤2N,1≤j≤m

∈ R2N×m,

T−(L) =
{
TL
ij

}
1≤i≤2N,m+1≤j≤2N

∈ R2N×2N−m,

and

T 0
ij = [T (0)]i,j , TL

ij = [T (L)]i,j .

Since the transformation (35) is invertible, the linearized
system in terms of density and velocity has the same sta-
bility property as the system (36)-(37). Inspired by [1],
we are now in position to design the controller.

3 Controller Design

3.1 Target system

Consider the backstepping transformations, for all x ∈
(0, L), t ∈ [0,+∞),

Z+(x, t) = R+(x, t), (38)

Z−(x, t) = R−(x, t)−
∫ L

x

G1(x, ξ)R+(ξ, t) dξ

−
∫ L

x

G2(x, ξ)R−(ξ, t) dξ, (39)

where

G1 ∈ C1(T1;R2N−m×m), G2 ∈ C1(T1;R2N−m×2N−m),

are kernels defined on the triangular domain T1 ={
(x, ξ) ∈ R2| 0 ≤ x ≤ ξ ≤ L

}
.

A system can be precisely controlled by only tuning the
proportional gain, but the stability is relatively weak-
ened, and even the unstable state occurs. In the practi-
cal control engineering, PI controller is mainly used to
improve the stable property of the controlled system. In-
spired by [14], the following target system is introduced,
for all x ∈ (0, L), t ∈ [0,+∞),

Zt(x, t) + Λ(x)Zx(x, t) = Σ1(x)Z(x, t)

+

∫ L

x

C1(x, ξ)Z(ξ, t) dξ, (40)

Zin(t) = KPZout(t) +X(t), (41)

X(t) = KI

∫ t

0

Zout(σ) dσ + Γ0p̄(t), (42)

where

Z =

[
Z+

Z−

]
∈ H1([0, L]× [0,+∞);R2N ),

Σ1 =

[
Σ++ Σ+−

02N−m×m 02N−m×2N−m

]
∈ C1([0, L];R2N×2N ),

C1 =

[
C+ C−

02N−m×m 02N−m×2N−m

]
∈ C1(T1;R2N×2N ),

Zin(·) =

[
Z+(0, ·)
Z−(L, ·)

]
∈ L∞([0,+∞);R2N ),

Zout(·) =

[
Z+(L, ·)
Z−(0, ·)

]
∈ L∞([0,+∞);R2N ),

KI =

[
K11

I K12
I

02N−m×m 02N−m×2N−m

]
∈ R2N×N ,

with K11
I ∈ Rm×m,K12

I ∈ Rm×2N−m. Here C+ ∈
C1(T1;Rm×m), C− ∈ C1(T1;Rm×2N−m) are given as
the solutions to the Volterra integral equations, for all
(x, ξ) in T1,

C+(x, ξ) = Σ+−(x)G1(x, ξ) +

∫ ξ

x

C−(x, s)G1(s, ξ) ds,

(43)

C−(x, ξ) = Σ+−(x)G2(x, ξ) +

∫ ξ

x

C−(x, s)G2(s, ξ) ds.

(44)

The system (40)-(42) is considered under the initial con-
ditions,

Z(·, 0) = Z0(·) ∈ L∞([0, L];R2N ), (45)

X(0) = X0 = Γ0p̄(0) ∈ R2N . (46)

The exponential stability for the H1-norm of the tar-
get system (40)-(42) is as follows. It is based on a suf-
ficient condition that would be checked numerically in
Section 4.

Theorem 1 The steady-state Z(x, t) ≡ 0 of the sys-
tem (40)-(42) is integral input-to-state stable for theH1-
norm if there exist positive constants α, q1, q2, q3, diag-
onal positive-definite matrices P1, P4 ∈ R2N×2N , a sym-
metric positive-definite matrix P2 ∈ R2N×2N and a ma-
trix P3 ∈ R2N×2N such that the following matrix inequal-
ities hold, for all x ∈ [0, L],
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(i)

Ω(x) =


Ω11(x) Ω12 Ω13(x) Ω14

∗ Ω22 Ω23 Ω24

∗ ∗ Ω33 Ω34

∗ ∗ ∗ Ω44

 ≥ 0, (47)

where

Ω11(x) = −Λ′(x)P1 − αP1 −

(
Σ⊤

1 (x)P1 + P1Σ1(x)

+ q1Lν
2
1I2N +

(
L

q1
+

L

q2

)
C⊤

1 (0, x)C1(0, x)

)
,

Ω12 = −P3KI ,

Ω13(x) = −Λ′(x)P3 − αP3 − Σ⊤
1 (x)P3,

Ω14 = 02N×2N ,

Ω22 =
1

L
E2P1 −

1

L
K⊤

P E1P1KP − 1

L
K⊤

I E1P4KI ,

Ω23 = − 1

L
K⊤

P E1P1 −
1

L

(
K⊤

P M1 +M2

)
−K⊤

I P2,

Ω24 = − 1

L
K⊤

I E1P4KP ,

Ω33 = − 1

L
E1P1 −

1

L

(
M1 +M⊤

1

)
− αP2

− q2Lν
2
2I2N ,

Ω34 = 02N×2N ,

Ω44 =
1

L
E2P4 −

1

L
K⊤

P E1P4KP ,

with

M1 =

[
Λ+(0)P++

3 Λ+(0)P+−
3

−Λ−(L)P−+
3 −Λ−(L)P−−

3

]
,

M2 =

[
−Λ+(L)P++

3 −Λ+(L)P+−
3

Λ−(0)P−+
3 Λ−(0)P−−

3

]
,

P++
3 = {P3}1≤i,j≤m ∈ Rm×m,

P+−
3 = {P3}1≤i≤m,m+1≤j≤2N ∈ Rm×2N−m,

P−+
3 = {P3}m+1≤i≤2N,1≤j≤m ∈ R2N−m×m,

P−−
3 = {P3}m+1≤i≤2N,m+1≤j≤2N ∈ R2N−m×2N−m,

E1 = diag {Λ+(0),Λ−(L)} , E2 = diag {Λ+(L),Λ−(0)},
ν1 = max (λ(P1)) , ν2 = max (|λ(P3)|) ,

(ii)

M(x) = (−Λ′(x)− αI2N )P4 −
(
Σ⊤

1 (x)P4 + P4Σ1(x)

+ q3Lν
2
3I2N +

L

q3
C⊤

1 (0, x)C1(0, x)
)
≥ 0, (48)

with ν3 = max (λ(P4)) .

In other words, there exist positive constants b1, c1 such
that, for every Z0 ∈ H1

(
(0, L);R2N

)
, X0 ∈ R2N , and

for any p̄ such that ˙̄p ∈ L2[0,+∞), the solution Z ∈
C0
(
[0,+∞);H1

(
(0, L);R2N

))
,X ∈ C0

(
[0,+∞);R2N

)
to the Cauchy problem (40)-(42), (45)-(46) is defined on
[0,+∞)× [0, L] and satisfies

∥Z(·, t)∥H1

(
(0, L);R2N

)2
+ |X(t)|2

≤c1e
−αt

(
∥Z0∥H1

(
(0, L);R2N

)2
+ |X0|2

)
+ b1

∫ t

0

˙̄p⊤(s) ˙̄p(s) ds, ∀t ∈ [0,+∞). (49)

Remark. This theorem is in fact very general and could
be applied for other control problems modelled by the
hyperbolic systems. □

Proof. The followingH1 Lyapunov function candidate is
introduced for the stability analysis of the system (40)-
(42), for all t ∈ [0,+∞),

V (Z(x, ·), X(·), Zt(x, ·)) = V1 + V2 + V3 + V4, (50)

where

V1 =

∫ L

0

Z⊤(x, ·)P1(x)Z(x, ·) dx, (51)

V2 =

∫ L

0

(
Z⊤(x, ·)P3(x)X(·) +X⊤(·)P⊤

3 (x)Z(x, ·)
)
dx,

(52)

V3 = LX⊤(·)P2X(·), (53)

V4 =

∫ L

0

Z⊤
t (x, ·)P4(x)Zt(x, ·) dx, (54)

and for all x ∈ [0, L],

P1(x) ≜ P1diag
{
e−µxIm, eµxI2N−m

}
,

P3(x) ≜ P3diag
{
e−

µ
2 xIm, e

µ
2 xI2N−m

}
,

P4(x) ≜ P4diag
{
e−µxIm, eµxI2N−m

}
.

By definition, the notation Zt must be understood as,
for all x ∈ [0, L],

Zt(x, ·) ≜− Λ(x)Zx(x, ·) + Σ1(x)Z(x, ·)

+

∫ L

x

C1(x, ξ)Z(ξ, ·) dξ.
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Under the definition of V and straightforward estima-
tions, there exists a positive real constant β such that,
for every Z, we can obtain the following inequality,

1

β

∫ L

0

(
∥Z(x, ·)∥2L2 + |X(·)|2 + ∥Zx(x, ·)∥2L2

)
dx

≤ V

≤ β

∫ L

0

(
∥Z(x, ·)∥2L2 + |X(·)|2 + ∥Zx(x, ·)∥2L2

)
dx.

(55)

By time differentiation of (40) and (41), Zt can be shown
to satisfy the following equations, for all x ∈ [0, L],

Ztt(x, ·) = −Λ(x)Ztx(x, ·) + Σ1(x)Zt(x, ·)

+

∫ L

x

C1(x, ξ)Zt(ξ, ·) dξ, (56)

Żin(·) = KP Żout(·) + Ẋ(·). (57)

Taking time derivative of V1 along the solutions to (40)-
(42) and using integrations by parts, the following result
is achieved,

V̇1 =Z⊤
out(·)

(
K⊤

P Ē1P1KP − e−µLĒ2P1

)
Zout(·)

+ Z⊤
out(·)K⊤

P Ē1P1X(·) +X⊤(·)P1Ē1KPZout(·)
+X⊤(·)Ē1P1X(·)

+

∫ L

0

Z⊤(x, ·) (Λ′(x)P1(x)− µ|Λ(x)|P1(x))Z(x, ·) dx

+

∫ L

0

((
Σ1(x)Z(x, ·) +

∫ L

x

C1(x, ξ)Z(ξ, ·) dξ

)⊤

P1(x)Z(x, ·) + Z⊤(x, ·)P1(x)(
Σ1(x)Z(x, ·) +

∫ L

x

C1(x, ξ)Z(ξ, ·) dξ

))
dx,

(58)

with
Ē1 = diag

{
Λ+(0), eµLΛ−(L)

}
,

Ē2 = diag
{
Λ+(L), eµLΛ−(0)

}
.

By taking time derivative of V2 along the solutions to
(40)-(42) and using integrations by parts, we get

V̇2 ≤Z⊤
out(·)

(
K⊤

P M̄1 + M̄2

)
X(·) +X⊤(·)M̄1X(·)

+X⊤(·)
(
M̄⊤

1 KP + M̄⊤
2

)
Zout(·) +X⊤(·)M̄⊤

1 X(·)

+

∫ L

0

Z⊤(x, ·)
(
Λ′(x)P3(x)−

µ

2
|Λ(x)|P3(x)

)
X(·) dx

+

∫ L

0

X⊤(·)
(
−µ

2
P⊤
3 (x)|Λ(x)|+ P⊤

3 (x)Λ′(x)
)
Z(x, ·) dx

+

∫ L

0

(
Z⊤(x, ·)P3(x)KIZout(·)

+Z⊤
out(·)K⊤

I P⊤
3 (x)Z(x, ·)

)
dx

+ κ1

∫ L

0

Z⊤(x, ·)P3(x)Γ0

(
Z⊤(x, ·)P3(x)Γ0

)⊤
dx

+
L

κ1

˙̄p⊤(·) ˙̄p(·)

+

∫ L

0

((
Σ1(x)Z(x, ·) +

∫ L

x

C1(x, ξ)Z(ξ, ·) dξ

)⊤

P3(x)X(·) +X⊤(·)P⊤
3 (x)(

Σ1(x)Z(x, ·) +
∫ L

x

C1(x, ξ)Z(ξ, ·) dξ

))
dx,

(59)

with a positive constant κ1 and

M̄1 =

[
Λ+(0)P++

3 Λ+(0)P+−
3

−e−
µ
2 LΛ−(L)P−+

3 −e
µ
2 LΛ−(L)P−−

3

]
,

M̄2 =

[
−e−

µ
2 LΛ+(L)P++

3 −e
µ
2 LΛ+(L)P+−

3

Λ−(0)P−+
3 Λ−(0)P−−

3

]
.

By taking time derivative of V3 along the solutions to
(40)-(42), we can derive the following result with a pos-
itive constant κ2,

V̇3 ≤ LZ⊤
out(·)K⊤

I P2X(·) + LX⊤(·)P2KIZout(·)

+ Lκ2X
⊤(·)P2Γ0

(
X⊤(·)P2Γ0

)⊤
+

L

κ2

˙̄p⊤(·) ˙̄p(·).
(60)

Taking time derivative of V4 along the solutions to (40)-
(42), (56) and using integrations by parts, we get

V̇4 ≤ Ż⊤
out(·)

(
K⊤

P Ē1P4KP − e−µLĒ2P4

)
Żout(·)

+ Ż⊤
out(·)K⊤

P P4Ē1KIZout(·)
+ Z⊤

out(·)K⊤
I Ē1P4KP Żout(·)

+ Z⊤
out(·)K⊤

I Ē1P4KIZout(·) +
1

κ3

˙̄p⊤(·) ˙̄p(·)

+ κ3Ż
⊤
out(·)K⊤

P Ē1P4Γ0

(
K⊤

P Ē1P4Γ0

)⊤
Żout(·)

+ κ4Z
⊤
out(·)K⊤

I Ē1P4Γ0

(
K⊤

I Ē1P4Γ0

)⊤
Zout(·)

+
1

κ4

˙̄p⊤(·) ˙̄p(t) + ˙̄p(·)⊤Γ⊤
0 Ē1P4Γ0 ˙̄p(·)

+

∫ L

0

Z⊤
t (x, ·) (Λ′(x)P4(x)− µ|Λ(x)|P4(x))Zt(x, ·) dx

+

∫ L

0

((
Σ1(x)Zt(x, ·) +

∫ L

x

C1(x, ξ)Zt(ξ, ·) dξ

)⊤

P4(x)Zt(x, ·) + Z⊤
t (x, ·)P4(x)
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(
Σ1(x)Zt(x, ·) +

∫ L

x

C1(x, ξ)Zt(ξ, ·) dξ

))
dx,

(61)

with positive constants κ3 and κ4.

The three rightmost integrals in (58), (59) and (61) are
considered individually,

∫ L

0

((
Σ1(x)Z(x, ·) +

∫ L

x

C1(x, ξ)Z(ξ, ·) dξ

)⊤

P1(x)Z(x, ·) + Z⊤(x, ·)P1(x)(
Σ1(x)Z(x, ·) +

∫ L

x

C1(x, ξ)Z(ξ, ·) dξ

))
dx

≤
∫ L

0

(
(Σ1(x)Z(x, ·))⊤ P1(x)Z(x, ·)

+ Z⊤(x, ·)P1(x) (Σ1(x)Z(x, ·))
)
dx

+ q1Le
2µLν21

∫ L

0

Z⊤(x, ·)Z(x, ·) dx

+
L

q1

∫ L

0

(C1(0, x)Z(x, ·))⊤(C1(0, x)Z(x, ·)) dx.

(62)

Similarly, we derive the inequalities for the other two
integrals,

∫ L

0

((
Σ1(x)Z(x, ·) +

∫ L

x

C1(x, ξ)Z(ξ, ·) dξ

)⊤

P3(x)X(·) +X⊤(·)P⊤
3 (x)(

Σ1(x)Z(x, ·) +
∫ L

x

C1(x, ξ)Z(ξ, ·) dξ

))
dx

≤
∫ L

0

(
(Σ1(x)Z(x, ·))⊤ P3(x)X(·)

+X⊤(·)P⊤
3 (x) (Σ1(x)Z(x, ·))

)
dx

+ q2Le
µLν22

∫ L

0

X⊤(·)X(·) dx

+
L

q2

∫ L

0

(C1(0, x)Z(x, ·))⊤(C1(0, x)Z(x, ·)) dx,

(63)∫ L

0

((
Σ1(x)Zt(x, ·) +

∫ L

x

C1(x, ξ)Zt(ξ, ·) dξ

)⊤

P4(x)Zt(x, ·) + Z⊤
t (x, ·)P4(x)(

Σ1(x)Zt(x, ·) +
∫ L

x

C1(x, ξ)Zt(ξ, ·) dξ

))
dx

≤
∫ L

0

(
(Σ1(x)Zt(x, ·))⊤P4(x)Zt(x, ·)

+ Z⊤
t (x, ·)P4(x)(Σ1(x)Zt(x, ·))

)
dx

+ q3Le
2µLν23

∫ L

0

Z⊤
t (x, ·)Zt(x, ·) dx

+
L

q3

∫ L

0

(C1(0, x)Zt(x, ·))⊤(C1(0, x)Zt(x, ·)) dx.

(64)

Using (58)-(64), there exists a constant α > 0 such that,
for all t ≥ 0,

V̇ = V̇1 + V̇2 + V̇3 + V̇4

≤ −αV −
∫ L

0


Z(x, ·)
Zout(·)
X(·)
Żout(·)


⊤

Ω̄(x)


Z(x, ·)
Zout(·)
X(·)
Żout(·)

 dx

−
∫ L

0

Z⊤
t (x, ·)M̄(x)Zt(x, ·) dx

+ ˙̄p⊤(·)
((

L

κ1
+

L

κ2
+

1

κ3
+

1

κ4

)
I2N + Γ⊤

0 Ē1P4Γ0

)
˙̄p(·),

(65)

where, for all x ∈ [0, L],

Ω̄(x) =


Ω̄11(x) Ω̄12(x) Ω̄13(x) Ω̄14

∗ Ω̄22 Ω̄23 Ω̄24

∗ ∗ Ω̄33 Ω̄34

∗ ∗ ∗ Ω̄44

 (66)

with

Ω̄11(x) = µ|Λ(x)|P1(x)− Λ′(x)P1(x)− αP1(x)

− κ1P3(x)Γ0(P3(x)Γ0)
⊤ −

(
Σ⊤

1 (x)P1(x)

+ P1(x)Σ1(x) + q1Le
2µLν21I2N

+

(
L

q1
+

L

q2

)
C⊤

1 (0, x)C1(0, x)

)
,

Ω̄12(x) = −P3(x)KI ,

Ω̄13(x) =
µ

2
|Λ(x)|P3(x)− Λ′(x)P3(x)− αP3(x)

− Σ⊤
1 (x)P3(x),

Ω̄14 = 02N×2N ,

Ω̄22 =
e−µL

L
Ē2P1 −

1

L
K⊤

P Ē1P1KP − 1

L
K⊤

I Ē1P4KI

− κ4

L
K⊤

I Ē1P4Γ0(K
⊤
I Ē1P4Γ0)

⊤,
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Ω̄23 = − 1

L
K⊤

P Ē1P1 −
1

L

(
K⊤

P M̄1 + M̄2

)
−K⊤

I P2,

Ω̄24 = − 1

L
K⊤

I Ē1P4KP ,

Ω̄33 = − 1

L
Ē1P1 −

1

L

(
M̄1 + M̄⊤

1

)
− κ2P2Γ0(P2Γ0)

⊤ − αP2 − q2Le
µLν22I2N ,

Ω̄34 = 02N×2N ,

Ω̄44 =
e−µL

L
Ē2P4 −

1

L
K⊤

P Ē1P4KP

− κ3

L
K⊤

P Ē1P4Γ0

(
K⊤

P Ē1P4Γ0

)⊤
,

and

M̄(x) = (−Λ′(x) + µ|Λ(x)| − αI2N )P4(x)

−
(
Σ⊤

1 (x)P4(x) + P4(x)Σ1(x)

+ q3Le
2µLν23I2N +

L

q3
C⊤

1 (0, x)C1(0, x)
)
.

(67)

Under the conditions (47), (48), ∃µ,κ1,κ2,κ3,κ4 > 0
small enough, such that Ω̄ ≥ 0 and M̄ ≥ 0, thus

V̇ ≤ −αV + α1 ˙̄p
⊤(·) ˙̄p(·), (68)

withα1 = max
(
λ
((

L
κ1

+ L
κ2

+ 1
κ3

+ 1
κ4

)
I2N + Γ⊤

0 P4Ē1Γ0

))
.

Thus along the solutions to the system (40)-(42), for all
t ∈ [0,+∞),

V ≤ V (0)e−αt + α1

∫ t

0

˙̄p⊤(s) ˙̄p(s) ds. (69)

Combining this relation with (55), there exist positive
constants c1 = β2, b1 = βα1 such that, for all t ∈
[0,+∞),∫ L

0

(
∥Z(x, t)∥2L2 + |X(t)|2 + ∥Zx(x, t)∥2L2

)
dx

≤ c1e
−αt

(∫ L

0

(
∥Z0(x)∥2L2 + |X0|2 + ∥Zx(x, 0)∥2L2

)
dx

)

+ b1

∫ t

0

˙̄p⊤(s) ˙̄p(s) ds, (70)

completing the proof of Theorem 1. □

By applying [1] (Theorem D.6), the transformations de-
fined in (38) and (39) are in C2(T1). Moreover, differ-
entiating these transformations with respect to x, and
applying Theorem 1.2 in [1], it can be shown that the
H1 norm of the system (40)-(42) is equivalent to the H1

norm of the system (36)-(37). Thus, the exponential sta-
bility of theH1 norm of the system (40)-(42) implies the
corresponding one for the H1 norm of the system (36)-
(37).

3.2 Control law

Take time derivative and spatial derivative on (38)-(39),
and substitute them into (40)-(42) to get the following
equations of the kernels G1 and G2, for all (x, ξ) ∈ T1,

Λ−(x)G1
x(x, ξ)−G1

ξ(x, ξ)Λ
+(ξ)

= G1(x, ξ)
(
(Λ+)′(ξ) + Σ++(ξ)

)
+G2(x, ξ)Σ−+(ξ),

(71)

Λ−(x)G2
x(x, ξ) +G2

ξ(x, ξ)Λ
−(ξ)

= G2(x, ξ)
(
−(Λ−)′(ξ) + Σ−−(ξ)

)
+G1(x, ξ)Σ+−(ξ),

(72)

with the boundary conditions

G1(x, x)Λ+(x) + Λ−(x)G1(x, x) = Σ−+(x), (73)

G2(x, x)Λ−(x)− Λ−(x)G2(x, x) = −Σ−−(x), (74)

G1(x, L)Λ+(L)−G2(x, L)Λ−(L)Γ3 = K1(x), (75)

and K1(x) is a strictly upper triangular matrix in the

form K1(x) =
{
kj1(x)

}
1≤j≤m

.

These equations are under-determined, and to ensure
the well-posedness, the additional boundary conditions
are added,

G2
ij(0, ξ) = g2ij(ξ), 1 ≤ j < i ≤ 2N −m, (76)

for some arbitrary functions g2ij , 1 ≤ j < i ≤ 2N −m.

The wellposedness of solution to the kernel equations
(71)-(76) follows from a coordinate change (x, ξ) 7→ (L−
x, L − ξ) and an application of Theorem D.6 in [1] on
the triangular domain
T0 =

{
(L− x, L− ξ) ∈ R2| 0 ≤ L− ξ ≤ L− x ≤ L

}
.

There is a matrix Θ ∈ R2N−m×m such that ΘΓ2Θ ∈
R2N−m×2N−m is invertible, then we deduce, from (37),
(38), (39), (41), (42), the following controller defined as,
∀t ∈ [0,+∞),

U(t) =
(
ΘΓ2Θ

)−1
Θ

∫ t

0

(
K11

I R+(L, σ) +K12
I R−(0, σ)

)
dσ

−
(
ΘΓ2Θ

)−1
ΘK12

I

∫ t

0

∫ L

0

(
G1(0, ξ)R+(ξ, σ)

+G2(0, ξ)R−(ξ, σ)
)
dξ dσ

−
(
ΘΓ2Θ

)−1
ΘΓ1

∫ L

0

(
G1(0, ξ)R+(ξ, t)
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+G2(0, ξ)R−(ξ, t)
)
dξ. (77)

Due to the dependence of U on the parameter Γ2 and
the inclusion of the parameter Γ2 in the coefficient ma-
trix Γ0, Γ0 has an effect on U , and thus has an impact
on the iISS of the system (36)-(37). Under the condi-
tions of Theorem 1, the target system (40)-(42) is in-
tegral input-to-state stable. Thus, using the invertibil-
ity of backstepping transformation, the original system
(36)-(37) is integral input-to-state stable in theH1-norm
with the control law (77).

4 Optimal controller and numerical studies

In Theorem 1, we theoretically assume that there are P1,
P2, P3 and P4 such that Ω andM satisfy the inequalities
(47) and (48). In this section, an optimization problem
is presented and solved for verifying the existences of P1,
P2, P3, P4 and obtaining the optimal values of parame-
ters of the designed controller. The experiment is set and
the results of computation are presented and discussed.

4.1 Optimal controller

From (3), we note thatAo(ρ) depends on the density vec-
tor ρ. The higher value of ∥ρ∥L∞((0,L);RN) is, the higher
value of ∥Ao(ρ)∥L∞((0,L);R) is, then the traffic conges-
tion is more possible to happen. Even though the traffic
system has been stabilized, the traffic congestion easily
happens again due to the high road occupancy. In or-
der to minimize the probability of re-occurrence of the
congested traffic after stabilization, we set the following
optimization problem to derive the optimal control law
U ,

min
ρ∗
i
(0),v∗

i
(0),KI ,α,q1,q2,q3,P1,P2,P3,P4

∥Ao(ρ)∥L∞((0,L);R)

subject to (47) and (48). (78)

From (77), the value of U depends on the parameters Γ1,
Γ2, K

11
I , K12

I and the kernels G1, G2 at x = 0. From the
definitions of KP , KI and Γ2, we notice that the con-
troller U actually depends on the parameters KI , ρ

∗
i (0),

v∗i (0), ρ
∗
i (L), and v∗i (L) (i = 1, 2, . . . , N), while the val-

ues of them for the optimal controller can be obtained by
solving the optimization problem (78). Due to ρ∗i v

∗
i = di,

i = 1, 2, . . . , N , KI , ρ
∗
i (0) are the key parameters of the

controller for the given v∗i (0).

4.2 Numerical studies

For numerical computation, the traffic parameters of two
vehicle classes on a considered road section in the con-
gested regime are chosen as in [7], see Table 1. The spa-
tial variable x is discretized on the domain [0, L]. Given
v∗1(0) = 50 km/h and v∗2(0) = 25 km/h, the values of ρ∗1,

Name Symbol Value Unit

Number of vehicle class N 2 1

Relaxation time τ1 30 s

τ2 60 s

Pressure exponent γ1 2.5 1

γ2 2 1

Free-flow velocity vM1 80 km
h

vM2 60 km
h

Maximum Ao(ρ) AoM1 0.9 1

AoM2 0.85 1

Occupied surface per vehicle a1 10 m2

a2 42 m2

steady-state density at the inlet ρ∗1(0) 110 veh
km

ρ∗2(0) 70 veh
km

steady-state velocity at the inlet v∗1(0) 50 km
h

v∗2(0) 25 km
h

Road width W 6.5 m

Road length L 1 km

Number of grid points Nx 40 1

Table 1
Selected values of parameters.

ρ∗2 on the domain [0, L] are derived by solving the or-
dinary differential equations (6)-(7) with the initial val-
ues ρ∗1(0), ρ

∗
2(0). By using a linear search method, we

compute ρ∗1(0), ρ
∗
2(0), and solve the optimization prob-

lem (78). These parameters are crucial for the control
gains. We obtain the optimal values of ρ∗1(0), ρ

∗
2(0) in

Table 1 and see Figure 2 for the plot of the nonuniform
steady-state. The relationships a1 < a2, τ1 < τ2 and
v∗1(0) > v∗2(0) in Table 1 illustrate that, class 1 repre-
sents small and fast vehicles, and class 2 describes big
and slow vehicles. When α → 0, q1 = 10−6, q2 = 1,
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Fig. 2. Relation between the spatial variable x and the
nonuniform steady-state u∗ = (ρ∗1, v

∗
1 , ρ

∗
2, v

∗
2)

⊤.
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q3 = 10−5, and

P1 = diag {2.1347, 2.6029, 4.8043, 2.5084} × 103,

P2 =


8.8861 0 0 0

∗ 8.8862 0 0

∗ ∗ 8.8861 0

∗ ∗ ∗ 8.8861

× 103,

P3 =


−13.2307 −0.0486 −0.0275 −0.0458

0.0555 −15.9336 0.0023 −0.2843

0.0550 −0.0041 −29.1363 1.0618

−0.0411 −0.2236 0.4766 14.8374

 ,

P4 = diag {2.3839, 2.7027, 4.2496, 1.5339} × 103.

The solution to the optimization problem (78) gives

K11
I =


−20 30 30

−24 −7 26

−10 20 −30

× 10−5, K12
I =


60

30

20

× 10−5,

Γ1 =


−0.785

1.0467

−4.2039

 ,Γ2 =


0 0.0469

0 −0.0625

0.0332 0.2051

 ,

for which the conditions of Theorem 1 are satisfied, and
the iISS of the linearized system (36)-(37) and the orig-
inal system (1)-(2) are verified by simulations, see Fig-
ure 3 and Figure 4. Taking different control gains for

Fig. 3. From left top to right down: time and space evolu-
tions of the solution to the linearized system (36)-(37) with
controller (77) and control gains given by the optimization
problem (78).

which the conditions of Theorem 1 are not satisfied, it is
shown in Figure 5 that this controller does not succeed
to stabilize the system (36)-(37).

Fig. 4. From left top to right down: time and space evolu-
tions of the state components ρ1, v1, ρ2, v2 to (1)-(2) with
controller (77) and control gains given by the optimization
problem (78).

Fig. 5. From left top to right down: time and space evolutions
of the solution to the linearized system (36)-(37) with a
controller whose control gains do not satisfy the sufficient
conditions of Theorem 1.

5 Conclusion

The robust control problem was studied to stabilize the
multi-type linearized AR traffic flow system. A controller
was designed by using backstepping and the existence
of the optimal controller was validated by solving the
optimization problem.

Inspired by [8], the H2 locally iISS and state estimation
problem will be studied for the quasilinear system in the
future research. It would be of interest to solve this anal-
ogous problem by using a more complicated backstep-
ping transformations to simplify the target system.
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