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Adaptive Power Control for Sober High-Performance Computing

Ismail Hawila,1 Sophie Cerf,2 Raphaël Bleuse,1 Swann Perarnau,3 and Éric Rutten1

Abstract— Soberness—in terms of electrical power—of data
centers and high-performance computing systems is becoming
an important design issue, as the global energy consumption of
information technologies is rising at considerable levels. This
issue is all the more complex as these systems are increasingly
heterogeneous and variable in their behavior, for example, w.r.t.
performance and power consumption, and less predictable, thus
demanding runtime management and feedback control.

This paper addresses the problem of the control of the power
allocated to processors and hence their energy consumption and
performance. The use of feedback control allows the energy
consumption to be reduced by decreasing the speed without
losing performance, by exploiting periods where read/write
operations slow the progress. Previous works present limitations
regarding both modeling (nonlinear models with numerous
parameters) and control performance (mainly instability caused
by platform variations). We develop a novel adaptive control
that is robust to the variety of execution platforms while
maintaining the existing global goals of energy management.
We evaluate—on a real system using the Grid’5000 testbed—the
robustness of the control to changes in initial parameters and to
disturbances, and we compare it with the previous proportional-
integral (PI) control. Our adaptive control approach allows for
up to 25% energy savings.

Keywords: Adaptive Control, Control for Computing, En-
ergy Consumption

I. INTRODUCTION

A. Control Theory for High-Performance Computing

The study of complex systems (e.g., climate, genomics,
high-energy physics) requires powerful computing infras-
tructures in order to run codes of compute-intensive and
data-intensive applications. Dedicated computing platforms,
referred as “high-performance computing” (HPC) systems,
are built to address the needs of such studies. Both the
hardware and software stacks of HPC systems are getting
increasingly complex to cope with the increasing comput-
ing requirements within a finite and economically tractable
power budget. This complexity is expressed, for example,
by the increased failure rate of hardware, varying and data-
dependent behaviors of applications, complex and hard-to-
predict interactions between running applications.

The energy consumption of these computing systems is
becoming an important problem, and hence there is a need
for more soberness through regulation of energy and power.
The objective of power management is to have optimal
performance under a given power budget. In order to respond
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to changes in system and application behavior, the power
management must be dynamic and requires measurement
of the online performance of the running application, with
decisions taken at runtime. The need for feedback regulation
starts to emerge.

An approach to such problems, termed autonomic comput-
ing, was proposed in [1]. In autonomic computing, systems
are self-adaptive; that is, they manage themselves according
to given goals and objectives, with a notion of feedback loop
involving a variety of decision mechanisms such as ad hoc
implementations, artificial intelligence and machine learning,
scheduling, and constraint programming. A particularly in-
teresting approach involves control theory [2], [3], [4].

Control theory has been used in computing systems, espe-
cially in cloud systems [5], [6], and in real-time systems [7]
and the Internet of Things [8]. Its use for HPC systems is
recent, however. For example, Yabo et al. [9] used a control
theory approach for management of scientific workflows
in HPC systems. Recent works on energy management of
computing systems use control theory. Imes et al. [10] used
control theory for energy minimization in real-time systems,
where they rely on the use of a dynamic voltage frequency
scaling actuator to enforce a power limit. Other works use
the Running Average Power Limit (RAPL) [11] mechanism
as an actuator for power regulation: this actuator allows
the enforcement of a maximum power level for processors’
consumption, called the powercap. For example, Imes et
al. used RAPL combined with a control-theory approach
on real-time systems to control power while specifying a
performance goal [12].

The use of control theory for energy management in HPC
systems does not have a lot of presence in the literature.
Therefore, when tackling power regulation for HPC systems,
having an accurate measure of applications performance
is crucial. For this, Ramesh et al. [13] were able—based
on interviews with HPC application specialists—to define
the performance of applications as a progress metric that
correlates with the scientific usefulness and found that for
some applications the progress correlates with the applied
powercap.

B. Contributions

The present work builds on and improves on the energy
regulation for sober HPC systems proposed by [14]. That
previous work defined a nonlinear model with first-order
dynamics and a proportional-integral (PI) controller relying
on RAPL as a power actuator to decrease energy consump-
tion while sustaining an appropriate level of performance.
However, the work was not robust enough to disturbances



and changes in the experiment environment. In particular
it relied on a difficult-to-tune model with many parameters
and did not answer the need for adaptation of the controller
to various execution environments (facing the variability of
processors) and time variations (concurrency on the platform,
aging, temperature, etc.). To tackle these issues, we design
a new adaptive controller that is more robust than the PI
and simpler to design. The contributions of this work are as
follows:

• Identification of the limitation of the model and the
available control in [14]

• Design of an adaptive controller that is robust to differ-
ent clusters and to the applications environment

• A novel initialization method called two-runs, well
suited for short and repeated controller executions

• Extensive experimental evaluation of the proposed con-
troller on the data center testbed.

The remainder of this paper is organized as follows.
Section II presents the system and describes the problem
and the control formulation. Section III reviews the previous
work and outlines its limits. Section IV presents the adaptive
controller and two-runs, its initialization strategy, which
are then validated and discussed in Section V. Section VI
summarizes the conclusions and briefly presents perspectives
for future work.

II. SYSTEM DESCRIPTION

This section pedagogically presents the HPC application
and architecture of our proposed system from a computing
perspective (Section II-A) and then translates it in a proper
control formulation (Section II-B) highlighting the plant,
actuator, and sensor. An analysis of the system’s challenges
(Section II-C) ends this section.

A. HPC System: Application and Architecture

This work aims at regulating the performance and energy
consumption of an HPC application using powercap actu-
ation. The performance of an application can be analyzed
by determining which resource is a limiting factor. We
distinguish three major limiting resources: (i) computation,
(ii) memory, and (iii) data exchanges with input/output de-
vices. An application is said to be compute-bound (memory-,
I/O-, resp.) when the time to execute the application is
determined by the time spent computing (communicating
with memory, waiting on I/O operations, resp.). Complex
applications can be broken down into sequences of phases
with different boundedness.

Modern processors are able to adapt the speed of computa-
tion to save energy. The original approach described in [14]
and refined in this work takes root in the observation that
during non-compute-bound phases, processors can be slowed
down without affecting the performance of the application.

A typical HPC system architecture is as follows. The
infrastructure is organized as clusters of computing resources
with identical hardware specifications. A cluster is a set of
machines called nodes. Each node contains one or several
sockets—usually 1, 2, or 4. Each socket hosts a single

processor. We use the words socket or processor interchange-
ably. Refer to Section V-A for details on the clusters (gros,
dahu, chifflot) used in this work. Modern Intel proces-
sors implement RAPL (Running Average Power Limit) [11],
which allows the user to define a maximum power draw per
socket, or powercap. This power limit is enforced by RAPL
through an internal loop that acts on processors’ states.

HPC applications are executed on a subset of the HPC
infrastructure. For the sake of simplicity, we consider in
this work an application executing on a single node. On
each node, a dedicated software component is in charge
of centralizing the application sensing and the hardware
actuation. Here this role is assumed by the Node Resource
Manager (NRM) middleware [15]. NRM hosts and runs the
controller. Figure 1 depicts the computing architectural view
of the system, where the signals used in the control loop are
represented by the arrows.
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Fig. 1: Architecture of the system: example of a cluster
consisting of a node with two processors. Arrows represent
the signals used in the control loop (see Fig. 2).

B. Control Formulation

From a control theory perspective, the HPC application
along with the hardware is considered as the plant. We
measure the performance of this application at runtime
through a progress sensor. The RAPL actuator allows one
to dynamically vary the power available for the application.
Note that the internal process of the RAPL mechanism—
undisclosed by the manufacturer—is not considered in this
work; hence we adopt a black-box approach. The user sets
their objective as an allowed performance degradation with
respect to the performance of a full-power execution. The
controller computes the control signal—here the powercap—
based on the progress measure and the translated user
reference. The control loop is shown in Fig. 2.

The control signal is the powercap, denoted u(ti). The
power actuator (RAPL) guarantees that a given average
power is maintained by modifying the processor internal
state. The sampling time ∆t = ti − ti−1 is defined by the
frequency with which we update the powercap.

The performance measurement is collected by NRM by
instrumenting the HPC application with a lightweight library



[13]. This instrumentation sends a message reporting the
amount of progress performed since the last message, which
is derived as a heartbeat. The NRM sensor outputs a progress
signal, a smoothed version of the heartbeat signal defined as
the median of the heartbeat’s arrival frequency between ti
and the last sampling period ti−1:

y(ti) = median
∀k, tk∈[ti−1,ti[

(
1

tk − tk−1

)
. (1)

C. System Analysis

We are now interested in analyzing the control problem
regarding possible disturbances, noises, and nonlinearities.
First, the literature emphasized that the RAPL actuator is
not accurate [16], and this error increases as the control
signal grows [14]. Figure 3 gives the static characteristic of
a specific HPC application [14]. Overall, the more power
given to the application, the higher its progress will be. The
system gain varies with the cluster and notably depends on
the specifications of the processors. The system presents a
nonlinearity: variations of power around low values have a
significant impact on progress, whereas variations around
large values of power only slightly improve the output.
Such behavior is explained by the memory boundedness of
the application. Although not visible on this modeling, the
system additionally presents noise in the sensing, as well as
the presence of outlier values. While the exact cause remains
uncertain, the sensing quality is observed to decrease with
the number of processors. More details on those variabilities
are given in Section III-B.

III. BACKGROUND

This section presents the state of existing work regarding
modeling and control of HPC power regulation [14]. Their
limitations are then discussed and illustrated.

A. Existing Models and Control

A study of the static case is first presented. Identification
from data collected experimentally (similar to Fig. 3) leads to
the formulation of a static model as an asymptotic regression
model:

y = K
(
1− e−α(β·u+γ−δ)

)
(2)

in which β and δ are parameters accounting for the RAPL
actuator inaccuracies. All parameters are cluster specific,
as presented in Table I. The nonlinearity of the system
(highlighted in Section II-C) is modeled by the exponential
function. A change of notation allows one to cope with this
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Fig. 2: Control feedback loop, abstraction of the architecture.
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Fig. 3: Static characteristic modeling of the system revealing
cluster-related variations and nonlinearities [14].

nonlinearity. The new input and output signals are formulated
as follows:

u = −e−α(β·u+γ−δ)

y = y −K.
(3)

One can translate the static characteristic equation Eq. (2) as

y = Ku. (4)

In a second step, the dynamical behavior is modeled. A
first-order model is used as a trade-off between simplicity
and accuracy:

H(s) =
Y(s)

U(s)
=

K

1 + τs
, (5)

where τ is the time constant characterizing the transient
behavior; linked with the dynamics of the sensor; see Eq. (1).
Since our system is in discrete time with nonconstant sam-
pling time, Eq. (5) can be rewritten as

y(ti+1) =
K∆ti+1

∆ti+1 + τ
u(ti) +

τ

∆ti+1 + τ
y(ti), (6)

with ∆ti = ti − ti−1.
For the regulation, a PI controller has been developed.

The objective is given in terms of a degradation factor ϵ.
The reference setpoint is computed by using this degradation
factor

yref = (1− ϵ) · ymax, (7)

where ymax is the nominal progress computed by using
Eq. (2), where the control input is set to the maximum
power of the cluster umax. With the error signal being e(ti) =
yref − y(ti), the PI control formulation is

PI(s) = KP +
KI

s
. (8)

That is rewritten in discrete time with nonconstant sampling
time as:

u(ti) = (KI∆ti +KP ) ·e(ti)−KP ·e(ti−1)+u(ti−1). (9)

The gains KP and KI are set by pole placement as KP =
τ

Kτ∗ and KI = 1
Kτ∗ , respectively, where τ∗ = 10 s defines

the desired dynamical behavior of the controlled system. The
PI design and its performance are presented in detail in [14].



Description Notation Unit gros chifflot dahu

RAPL slope β [1] 0.83 1.03 0.94
RAPL offset δ [W] 7.07 4.04 0.17

α [W−1] 0.047 0.028 0.032
power offset γ [W] 28.5 37.04 34.8
linear gain K [Hz] 25.6 42.82 42.4
time constant τ [s] 1

3
1
3

1
3

TABLE I: Model and controller parameters per cluster [14]

B. On the Need for Robustness

An HPC application such as our system undergoes many
variations of its behavior, depending on (i) the cluster, (ii) the
node, (iii) the run, and even (iv) during the runtime. This sec-
tion illustrates and analyzes those variations and highlights
the limitation of the state-of-the-art control, motivating our
adaptive control approach.

Open-loop experiments were conducted to illustrate the
system’s variations, as presented in Fig. 4. The input is
a stepped signal of period 20 s. First, we observe that
depending on the cluster, the system gain is significantly
different. There is about a factor 2 between the gros and
dahu clusters. This is due to the different characteristics
of the nodes composing the cluster; see Table II. Second,
the effective node on which the application is launched also
affects the system gain, as can be seen comparing data from
dahu-a and dahu-b in Fig. 4. Third, the run also creates
variability. Between two repetitions of the same experimental
conditions, results vary, as presented in Fig. 4 for data
dahu-a run-1 and dahu-a run-2. Eventually, even
during the same execution we can observe variations, as can
be seen around 25 s for dahu-a run-1.

Regarding the closed loop results, we observe that a PI
control such as from the state-of-the-art control [14] can lead
to system instability, as illustrated in Fig. 5 (right plot). The
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Fig. 5: A feedback controller with constant parameters is
affected by outliers and can drive the system to instability.
dahu cluster. Reference is set with ϵ = 0.03 (red line).

measured performance signal oscillates around the reference
due to oscillations of the control signal. Note the specificity
of our system for which the experiment stops when the
application finishes its execution: there is no longer a system,
hence no behavior to show after 150 s. The PI also is not
robust to the presence of outlier measures. Figure 5 (left plot)
illustrates a run where the control signal presents peaks and
large oscillations due to the presence of outliers. Note that
those experiments are selected to highlight the worst-case
behavior of the PI.

Those analyses motivate the need for a control robust to
variations of the machines, the run, and at runtime. While
the runtime variation is a classic motivation for adaptive
control, robustness to static environmental conditions are less
usual. The nature of our computing system (finite time and
short executions, largely repetitive) allows us to consider this
renewed contribution of adaptive control.

IV. ADAPTIVE POWER CONTROL

The core idea of adaptive control is to cope with changes
in the system through updates of the controller. An adap-
tation feedback is used—in addition to the control loop—
as illustrated in color in Fig. 6. The adaptation aims to
update the controller parameters to follow a model-reference
online using estimation methods. We use discrete Model-
Reference Adaptive Control [17], presented in Section IV-A
and translated to our use case in Section IV-B. Section IV-C
presents two-runs, a 2-step initialization process for the
adaptation parameters.

PLANT

ADAPTATION

CONTROLLERTRANSDUCER

θ

u y∈ yref

Fig. 6: Adaptive control of HPC application power.



A. Discrete Model-Reference Adaptive Control
We present MRAC where the parameter estimation is

based on a projection algorithm. Proofs of Lyapunov stability
are given in [17]. We consider a single-input, single-output
system represented as follows:

A(q)y(k) = B(q)u(k), (10)

where q is the forward shift operator and A and B are
polynomials defined as

A(q) = qn + a1q
n−1 + . . .+ an

B(q) = b0q
m + b1q

m−1 + . . .+ bm.
(11)

We define the delay d = deg(A)− deg(B) = n−m.
The control law is defined based on model matching:

u(k) =
T (q)

R(q)
uc(k)−

S(q)

R(q)
y(k)

ym(k) =
Bm(q)

Am(q)
uc(k),

(12)

where uc is the command signal; ym is the model reference
to be achieved by the output y; R, S, and T are the control
polynomials; and Am and Bm represent the reference model.
The reference model should be carefully chosen to ensure
stability, controllability, and robustness [18], [19].

The filtered output signal—linear estimation model in
terms of the controller—is defined as

yf (k + d) = b0u(k) + ϕT (k)θ, (13)

where θ is the parameter vector containing the parameters of
R(q) and S(q):

θ = [r1, . . . , rn−1, s0, . . . , sn−1]
T (14)

and ϕ is the regression vector defined as

ϕ(k) = [u(k − 1), . . . , u(k − n+ 1), y(k), . . . , y(k − n+ 1)]
T
.

(15)
Then the control law can be written as

u(k) = − 1

b0

[
ϕT (k)θ̂(k)− q−n+1Bmuc(k)

]
. (16)

The expression of the parameters vector estimate θ̂ is found
by using the projection algorithm to minimize a given cost
function [20]:

θ̂(k) = θ̂(k − 1) +
1

ϕT (k − d)ϕ(k − d)
ϕ(k − d) [yf (k)

− b0u(k − d)− ϕT (k − d)θ̂(k − 1)
]
. (17)

B. Application to Power Regulation
Our power-to-progress system can be expressed from

Eq. (6) as
y(k + 1) = b0u(k) + a0y(k). (18)

We have (n,m, d) = (1, 0, 1). The reference to be followed
is expressed by ym = uc. The parameter vector and the
regressor are

θ = [s0] (19)
ϕ(k) = [y(k)] , (20)

t

θ^

t

θ^θ0
1st

θ∞
1st θ0

2nd=

1st-run 2nd-run

t

θ^

t

θ^θ0
1st

θ∞
1st θ0

2nd=

1st-run 2nd-run

Fig. 7: Schematic representation of the two-runs initial-
ization process.

Which allows one to write Eq. (18) as

y(k + 1) = b0u(k) + ϕ(k)T θ. (21)

The control law along with the parameter update used is

u(k) = − 1

b0

[
ϕT (k)θ̂(k)− bmyref

]
(22)

θ̂(k) = θ̂(k − 1) +
1

ϕT (k − 1)ϕ(k − 1)
[amy(k − 1)

− b0u(k − 1)− ϕT (k − 1)θ̂(k − 1)
]
ϕ(k − 1). (23)

C. two-runs Initialization

The parameter vector estimate θ̂ needs an initialization, de-
noted θ0. We present two-runs—a two-step initialization
process that takes advantage of our computing application:
a run is cheap, and ill-tuned control does not damage the
system. two-runs works as follows. A first run (1st-run)
is launched with the theoretical—yet general and unfitted—
value for θ guessed from the steady-state value. Then (2nd-
run) the converged value of the parameter estimate vector
of 1st-run is used for the subsequent initializations. By
run we mean here an execution of the application on the
experimental platform. We assume that the adaptation has
converged by the end of the first run. This hypothesis is
realistic given the large duration of an application execution
regarding the adaptation’s dynamics. A schematic represen-
tation of two-runs is given in Fig. 7.

θ1st
0 = am − b0

K
(1st-run) (24)

θ2nd
0 = θ1st

∞ (2nd-run) (25)

We find the value of θ1st
0 as the solution of Eq. (23) in

steady state:

θ = θ +
1

ϕTϕ
ϕ
[
amy − b0u− ϕT θ

]
. (26)

From Eq. (20) with a one-dimensional parameter vector, one
has ϕ = y = ϕT , and thus

0 =
1

y
[amy − b0u− yθ]

θ = am − b0
u

y
. (27)

Equation (25) derives from the latter equation combined with
Eq. (4). The regressor vector is initialized by using Eq. (4):

ϕ(0) = Ku(0) +K. (28)



V. EVALUATION

We evaluate the performance of the adaptive control with
respect to two aspects: (i) its robustness with respect to
several sources of variations on different clusters (Sec-
tion V-B), and (ii) the benefit of the two-runs initialization
(Section V-C). The results are consolidated with massive
experimental campaigns (over 700 runs; see Section V-D).
First, we describe our experimental setup. Emphasis in this
evaluation is on representativity of results and experimental
reproducibility.

A. Reproducible Experimental Testbed
The experiments presented in this work were conducted

on the Grid’5000 testbed [21]. The machines used to run
the experiments were selected to contain processors imple-
menting the RAPL mechanism and with varying amounts of
RAM and number of sockets. Table II recapitulates the main
characteristics of the selected machines.

The experiments were run on a deployed environment:
a mechanism offered by Grid’5000 to customize in a repro-
ducible way the whole software stack. A high-level overview
of the software stack has been described in Section II-
A. We conducted the experiments with the same applica-
tion used in the previous work [14]: the STREAM bench-
mark [22]. STREAM was chosen because it is representative
of memory-bound phases of applications and shows a stable
behavior. STREAM is also easy to modify into an iterative
application, which allows computation of the progress metric
by reporting heartbeats. The application is instrumented
to report a heartbeat to NRM each time the main loop
completes an iteration. A thorough description of the whole
setup—from environment deployment to how to reproduce
the experiments—is available in the Figshare repository of
the original work [23].

Given that the system variation caused by the different
clusters is well known and mastered, it is dealt with by
performing reidentification rather than adaptation. Model
parameters per cluster are presented in Table I. In the
adaptive control formulation we use (computed from Eqs. (6)
and (18))

b0 =
K∆t

∆t + τ
. (29)

The adaptive approach will allow one to refine the control
to the node, run, and runtime variation, as motivated in
Section III-B. We use constant reference signals, with values
ranging from 0% up to 50% performance degradation (ϵ ∈
[0, 0.5]) [14]. Note that in our HPC context a degradation
over 10% (ϵ > 0.1) is hardly conceivable; and higher values
are used to test extreme behavior of our system.

Cluster CPU Cores/CPU Sockets RAM

gros Intel Xeon Gold 5220 18 1 96
chifflot Intel Xeon Gold 6126 12 2 192
dahu Intel Xeon Gold 6130 16 2 192

TABLE II: Grid’5000 clusters hardware characteristics.
RAM quantity is expressed in GiB.
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Fig. 8: Adaptive controller performance on the gros cluster,
for several nodes and runs. Reference is set with ϵ = 0.15
(red continuous line).

B. Robustness Evaluation

We present the performance of our adaptive control for
different clusters, nodes, and runs. Comparison can be done
with the state-of-the-art PI control (Fig. 5).

Figure 8 presents the output reference tracking of our
adaptive controller with two-runs initialization for the
gros cluster. Three experiments are presented, showing
results on various nodes and various runs. Figure 8 shows
that the control is stable, converging to the reference without
static error in about 200 s and without any oscillations. Note
that noise is still present in the measure, with no impact on
the stability or the performance. To conclude, the controller is
(i) efficient in tracking the reference, (ii) robust to noise, and
(iii) robust to node- or run-induced variations. Eventually we
evaluate the controlled system w.r.t. our objectives of energy
savings; however, graphical representation are omitted due to
page limitations. Varying the reference allows one to leverage
the energy gains and performance degradation, reducing up
to 25% of the energy consumption with only 6% increase in
the application execution time.

Figure 9 depicts two runs of the adaptive controller on
the dahu cluster, chosen to highlight our control evaluation.
With respect to the state-of-the-art PI, the adaptive controller
is robust to the progress drops and provides a smoother
powercap actuation (right plot). We also observe less noise
on the progress signal in steady state (left plot). Most
important, the system remained stable within the degradation
levels of interest (i.e., ϵ < 0.1), which was not the case for
all runs of the PI (see Fig. 5, right plot).

Although the system is more stable and robust, such
advantages come at the cost of a slower settling time and the
presence of an overshoot during the transient state. The PI
controller is roughly one order of magnitude faster than the
adaptive controller. The progress of the application during the
transient state drops about 40% with the adaptive controller.



C. Sensitivity to Initialization

We now analyze the benefit of our two-runs initializa-
tion technique. Performance of the control is presented in
Fig. 10 for 1st-run (left) and 2nd-run (right). The output
reference tracking is plotted, as well as the control signal
and adaptive parameter estimate.

Results show that both controllers are stable and converge
close to the reference. We note that the initial control action
is significantly different in the two cases. For 1st-run, the
control action is initially very low and climbs up until
convergence. For 2nd-run, the control is better initialized,
resulting in a smaller performance gap at the execution
beginning. The response time with 1st-run is larger than with
a proper initialization (2nd-run). Note also that the initial
value of progress above the reference is not detrimental for
the application performance in our use case; even though it
allows for less energy savings.

The parameter estimate θ̂ is adapted throughout the exper-
iments. In 1st-run, we observe variation until convergence in
less than 100 s. The converged value θ1st

∞ is a fair estimate,
for the rest of the 1st-run experiment as well as for 2nd-run.

Discontinuities in the estimate—large drops—are visible,
however, in both experiments. They correspond to the pres-
ence of outlier measures of progress. The estimation quickly
reacts to this newly observed system behavior, while the
adaptation of the control action is soundly limited. Despite
the presence of outliers and noise, the adaptive control
maintains the system stable. Once outlier measures disappear,
the estimate quickly converges back to the adequate value
(close to θ1st

∞). Note that this estimate could be used in this
application to detect the presence of outliers—whose exact
cause remains uncertain.

Our global objective of energy savings is also visible
in Fig. 10. Power around 90W is sufficient to run the
application with a limited degradation of 15%. Compared
with the nominal cluster power of 120W, it represents 25%
savings.
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Fig. 9: Adaptive controller performance on the dahu cluster,
for several runs.
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Fig. 10: two-runs evaluation: adaptive controller perfor-
mance y, control signal u, and adaptation parameter estimate
θ for the chifflot cluster. Reference is set with ϵ = 0.15
(red line). Initialization: 1st-run (left), 2nd-run (right).

D. Consolidating Results on Multiple Runs

Results presented so far were illustrated with selected
executions of the controller. To provide greater confidence
in the results, we have carried out massive campaigns of
evaluation—735 runs in total. We present in this section
aggregated results. While aggregated representations are not
common in the control community, we advocate that they
promote the realization of solid evaluations and strengthen
the results.

Figure 11 shows the distribution of the tracking error per
cluster. We first note that all the distributions are centered
on 0, reflecting zero static error. For the gros cluster, the
distribution is narrow since the convergence time is short
and the progress measure has little noise. For the dahu
cluster, we observe a wider distribution since the measure
is subject to much more noise. This representation is also
interesting because it allows one to quantify the noise—
here of 5Hz when referring to quartiles. The asymmetry of
the distribution reveals the presence of overshoot (around

dahu

chifflot

gros

−50 −25 0 25
Tracking error (in Hz)

cl
us

te
r

Fig. 11: Aggregation of tracking error over multiple adaptive
control repetitions on different nodes for each cluster (735
runs in total), 2nd-run.



10Hz) and exhibits outliers (spread around 25Hz). The
chifflot cluster has an error distribution close to that
of dahu, since they are both dual-socket clusters. The static
noise is smaller (narrower distribution) and the overshoot
limited (almost symmetrical distribution). The large tails for
dahu and chifflot may be tackled by a better parameter
estimation. Initialization using more runs is considered as
future work.

VI. CONCLUSION

In this work we aimed at minimizing energy consumption
while maximizing the performance of applications in HPC
systems. We motivated the problem of power regulation in
computing systems along with the use of control theory
in this domain. We formulated the problem to be tackled
based on existing work using a PI controller design. We
then discussed the limitations of this approach on the model
and control sides. Our aim was to use a controller that
is robust to different clusters and that does not rely on
numerous parameters computed offline. We proposed using
a new controller based on adaptive control. In terms of
controller design, this allows one not to model the nonlinear
behaviors of the system and reduces the number of model
parameters from six down to one. The adaptation relies on
Model-Reference Adaptive Control for which we designed
two-runs, a novel initialization process. We evaluated the
controller on a real system, namely, various clusters of the
Grid’5000 testbed. The experimental results show significant
improvements over the previous PI controller on stability and
robustness. In addition to the classical advantages of adaptive
control, our solution is robust to variations of the machines
(from one node to another) and of the runs (from one
execution of the application to another). These dimensions
of robustness are less usual advantages of adaptive control.
Such a controller design improves reusability and simplicity:
two important attributes from a computer science point of
view. Overall, we were able to further reduce the energy
consumption, up to 25% savings for the single-socket cluster.
The results of the adaptive control are better than those of
existing PI control, and present interesting possibilities for
future work:

• Adaptive control speed: We noticed that the controller
needs 200 s to converge to the required level, which
could be improved.

• Evaluation of the approach for different applications:
Here we evaluated only for STREAM, which is a
memory-bound application.

• Addition of sensor: A sensor such as a temperature
sensor might be useful in trying to identify the source
of disturbances.
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