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Abstract

A general framework for the multi-scale topology optimisation (TO) of lattice structures
(LSs) is presented in this work. The proposed method involves: Non-Uniform Rational
Basis Spline (NURBS) hyper-surfaces to represent the pseudo-density field describing the
LS representative volume element (RVE) topology, the Solid Isotropic Material with Pe-
nalisation (SIMP) approach and the strain energy-based homogenisation method (SEHM)
to perform the scale transition. The main contributions of this work are essentially three.
Firstly, physical responses are defined at different scales and their gradient is evaluated by
exploiting the NURBS local support property and the Dirichlet’s problem properties at the
RVE scale. Secondly, the computational efficiency of the SEHM based on elements strain
energy over that of the SEHM based on elements averaged stresses is rigorously proven.
Finally, to show the effectiveness of the method, numerical analyses are conducted on 2D
and 3D problems. A sensitivity analysis of the optimised topology to the integer parame-
ters of the NURBS hyper-surface is carried out. Moreover, the influence of the initial guess
and of the macroscopic loading condition on the RVE optimised topology is investigated.
The minimum length-scale requirement is also integrated into the problem formulation as
a manufacturing constraint.

Keywords: Topology Optimisation, NURBS Hyper-Surfaces, Lattice Structures,
Homogenisation, Additive Manufacturing, Finite Element Method.

1. Introduction

Multi-functional lattice structures (LSs) are of great interest in different engineering
fields, like aerospace, automotive and biomedical industries or in the energetic and chem-
ical fields, due to the possibility of designing the material architecture at different scales.
In this way it is possible to obtain very specific properties and performances according
to the requirements of the problem at hand, e.g. high stiffness-to-weight and strength-
to-weight ratii, high permeability, energy absorption and thermal insulation. Nowadays,
an increasing amount of research works is devoted to the development of multi-scale de-
sign approaches for LSs. The goal is to develop a general design approach by reducing
the number of (unnecessary) simplifying hypotheses and by integrating into the problem
formulation the design variables involved at different scales. The design variables can be
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either the parameters describing the structure topology at the macroscopic scale or those
describing the Representative Volume Element (RVE) topology of the LS at the lower scale
(i.e. mesoscopic or microscopic scale depending on the problem characteristic size).

Topology optimisation (TO) is, certainly, one of the most promising methods to per-
form multi-scale optimisation of LSs. A rather complete state of the art about the design
methodologies of LSs and of multifunctional metamaterials can be found in [1, 2]. Indeed,
thanks to TO, it is possible to add more freedom in the design process without using
predefined RVE configurations [3–9]. The idea at the basis of the TO is that the material
is iteratively removed from the design domain and redistributed in order to minimise a
prescribed merit function by satisfying the set of imposed design requirements.

In the last three decades, many efforts have been devoted to the development of suitable
algorithms for TO. Since the seminal works making use of the so-called homogenisation
method [10–12] for shape optimization problems in structural mechanics, important steps
forwards have been done. For instance, the Evolutionary Structural Optimisation (ESO)
method is based on the combination of a metaheuristic algorithm and the Finite Element
(FE) method was introduced in [13]. An extension of the ESO method is the well-known Bi-
directional Evolutionary Structural Optimisation (BESO) [14]. Later, the BESO approach
has been reformulated in [15, 16], by adding features to obtain mesh-independent results,
without checker-board pattern and by introducing a sensitivity number averaging method
to speed up convergence. Recently, new evolutionary-based procedures for TO have been
developed in the framework of the level-set method (LSM) to obtain smooth topology
boundary [17]. In the LSM background, the FE model is used only to evaluate the physical
responses involved into the problem formulation. The topology is represented through a
level-set function (LSF), whose sign can be conventionally associated to solid or void zones,
whereas the zero-level describes the structure boundary [18]. A detailed discussion of the
LSM for TO is available in [19]. Often, the LSF is parametrised on the design domain
by using dedicated basis functions, like Radial Basis Functions, Spectral Parametrization
Functions and Non-Uniform Rational Basis Spline (NURBS) entities. A wide discussion
on this topic can be found in [20].

Nevertheless, due to their efficiency and robustness, TO algorithms based on a pseudo-
density field to describe the structure topology [10, 21, 22] constitute the most widespread
technique in both scientific and industrial communities. In a TO algorithm based on a
pseudo-density field, the structure topology is described on the basis of a FE mesh, which
provide a suitable discretisation of the continuum: a fictitious density function, which takes
values in the interval [0, 1], is then affected (through a pertinent penalty scheme) to the
characteristic tensors of each element describing the physical phenomena of the problem
at hand, e.g. elasticity tensor for structural mechanics, conductivity tensor for thermal
problems, etc. Lower and upper bounds of the density function correspond to “void”
and “solid” phases, respectively. Inasmuch as a physically meaningful, solid-void design is
sought, “gray” elements, characterised by intermediate values of the density function, are
allowed but penalised during optimisation. The physical properties of each element are
computed (and penalised) according to the local pseudo-density value. The Solid Isotropic
Material with Penalisation (SIMP) scheme is the most widespread penalty approach used
for TO [21]. The success of the SIMP method is due to its efficiency and compactness [22]:
several applications of this method can be found [21].

As far as the strategies dedicated to the multi-scale design of LSs and of metamaterials
are concerned, different multi-scale TO methods are available in the literature. They are
based on (a) the homogenisation method [23, 24], (b) the LSM [25–30], (c) the SIMP
approach [31–35] or (d) the BESO method [36]. These strategies are often applied at the
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scale of the LS RVE, in order to find the optimal topology satisfying the requirements of
the problem at hand. Typical design requirements are RVE stiffness and relative density
[37], RVE shear stiffness [38], or specific conditions related to auxetic LSs [39, 40].

For example, Gao et al. [27] make use of the LSM to determine the optimal topology
of the LS RVE maximising the bulk modulus and the shear modulus subject to constraints
on the volume of the RVE. Conversely, Guest and Prévost [31] adopt a different approach
in order to maximise the effective elastic stiffness and the fluid permeability of LSs. The
TO problem is formulated in the SIMP framework and the homogenisation is performed
numerically using the FE method, by enforcing periodic boundary conditions (PBCs) on
the RVE.
In [35], the TO of the RVE of metamaterials with extreme properties subject to a single
constraint on the material volume fraction is carried out. The merit function includes
requirements on the components of the equivalent elasticity tensor of the homogenised
material at the macroscopic scale, like prescribed values of the bulk modulus, of the shear
modulus and of the Poisson’s ratio. The TO is conducted in the SIMP framework.
In [41], the lattice infill technique (LIT) is used to post-process the optimised topologies
provided by the SIMP approach. In this background, the optimal pseudo-density field
resulting from the SIMP method, which describes the distribution of the equivalent ho-
mogeneous material at the macroscopic scale, is replaced by a LS (of a given topology)
characterised by a variable relative density, which matches, locally, the optimal pseudo-
density field. The LIT is based on a predefined surrogate mechanical model of the lattice
material, trained via LS unit sampling and polynomial curve fitting.

When dealing with multi-scale TO problems, a fundamental step is the homogenisation
method, which represents the link between the problem scales. Thanks to the homogenisa-
tion phase, the real LS can be replaced by an equivalent homogeneous anisotropic medium
at the macroscopic scale. Of course, the homogenisation technique can be applied only
if (a) the RVE has a periodic distribution within the structure domain and (b) scales
separation occurs.

In the majority of the existing works, the asymptotic homogenisation method (AHM)
is used to perform the scale transition. For example, in [42], the equivalent elastic prop-
erties of the LS at the macroscopic scale are computed by using an approximation of the
displacement field via Taylor expansion. Similarly, in [39, 43, 44] the AHM is coupled
to the Isogeometric analysis (IGA), wherein the physical fields are evaluated by means of
Basis Spline (B-spline) entities and where the boundary conditions (BCs) can be applied
directly to the control points (CPs) of the B-spline entity.
A different homogenisation scheme is the so-called strain energy-based homogenisation
method (SEHM), which is exploited in different works [27, 31, 34, 35, 38, 45]. It represents
a sound alternative to the AHM, due to its straightforward numerical implementation and
direct coupling with the SIMP approach. The SEHM is based on the equivalence between
the strain energy of the heterogeneous LS RVE and that of the corresponding volume of
the equivalent homogenised anisotropic medium. The difference between the variants of
the SEHM available in the literature is in the post-processing of the outcomes of the SEHM
to assess the macroscopic elasticity tensor of the LS. Indeed, one can retrieve either the
averaged elements stresses inside the RVE [31] (in this case the resulting homogenisation
scheme is called volume-averaged stress-based SEHM) or the elements strain energy [27].

As it can be inferred from this non-exhaustive literature survey, current multi-scale
TO approaches for LSs suffer from three main limitations. The first one is related to the
problem formulation, which often includes only requirements on prescribed values of the
macroscopic elastic tensor components of the LS as done in [25–27, 30, 31, 33–40, 46].
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However, in real-world engineering applications the RVE topology at the lower scale must
be optimised in order to satisfy design requirements on macroscopic structural responses,
like compliance, mass, strength, etc.
The second one is related to the choice of the homogenisation scheme establishing the
link between the problem scales. The homogenisation procedure must be as general as
possible to avoid the introduction of unnecessary simplifying hypotheses. Moreover, it
must be efficient to reduce the computational time for assessing the macroscopic elasticity
tensor of the LS, as well as the gradient of the macroscopic responses with respect to the
topological variable defined at the lower scale.
The third limitation is related to the integration of suitable manufacturing constraints of
geometrical nature in the problem formulation. For instance, the minimum length scale
requirement should be considered in order to ensure that small topological branches could
be manufactured by means of the considered process.

The above aspects have been addressed in this study. The proposed multi-scale TO ap-
proach makes use of: (a) the SIMP method reformulated in the framework of the NURBS
hyper-surfaces [47, 48] and (b) the SEHM to set the link between the problem scales. Un-
like the classical SIMP approach, the NURBS-based SIMP method separates the pseudo-
density field, describing the topology of the continuum, from the mesh of the FE model.
More precisely, for general 3D TO problems, a 4D NURBS hyper-surface is used as a topol-
ogy descriptor, whilst for 2D problems a standard 3D NURBS surface is employed. In this
way, the topology descriptor relies on a purely CAD-compatible geometric entity. More-
over, during the FE analysis the NURBS hyper-surface describing the pseudo-density field
is projected on the mesh of the FE model in order to penalise the element stiffness matrix
according to the SIMP method. In this background, the optimisation variables are the den-
sity at each CP and the associated weight. In the framework of the NURBS-based SIMP
method, the CAD reconstruction phase becomes a trivial task [47, 48]. Moreover, thanks
to the remarkable properties of the NURBS basis functions, the design requirements are
satisfied on the reassembled optimised geometry [49, 50]. As discussed in [51, 52], NURBS
entities allow for handling in the most efficient way the design requirements of geometrical
nature during the optimisation process.

Furthermore, in this study the following question has been addressed: what is the most
efficient (in terms of computational costs) variant of the SEHM approach when coupled
to a TO algorithm? In particular, a rigorous proof about the computational efficiency
of the SEHM based on the elements strain energy when compared to the SEHM based
on elements averaged stresses is provided. Moreover, the Dirichlet’s problem properties
together with the geometrical properties of the NURBS entities are exploited in deriving
the analytical expression of the gradient of the macroscopic physical responses with respect
to the topological variable defined at the RVE scale. To this end, the analytical formula
of the gradient of the macroscopic requirements takes advantage from the local support
property of the NURBS blending functions [53], which establishes an implicit relationship
among the pseudo-densities of adjacent elements. Thanks to this property there is no
need of introducing complicated filtering schemes, unlike the classical SIMP method. The
effectiveness of the proposed approach is tested on 2D and 3D benchmark problems. In
this background, a sensitivity analysis of the optimised topology to the integer parameters,
involved in the definition of the NURBS hyper-surface, is carried out. Moreover, the
influence of the initial guess and of the macroscopic loading condition on the optimised
topology of the RVE is also investigated.

The paper is articulated as follows. In Section 2, the theoretical background of NURBS
hyper-surfaces is briey recalled. The fundamentals of the SEHM are briefly recalled in
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Section 3, while the formulation of the multi-scale TO problem in the NURBS-based
SIMP framework is presented in Section 4. The numerical results on 2D and 3D test cases
are illustrated in Section 5. Finally, Section 6 ends the paper with some conclusions and
prospects.

Notation. Upper-case bold letters are used to indicate tensors and matrices, while lower-
case bold letters indicate column vectors. ]v denotes the cardinality of the generic vector
v, while superscripts m and M denote quantities evaluated at RVE and macroscopic scales,
respectively.

2. NURBS hyper-surfaces

A NURBS hyper-surface is a polynomial-based function, defined over a parametric
space (domain), taking values in the NURBS space (co-domain). Therefore, if N is the
dimension of the parametric space and M is the dimension of the NURBS space, a NURBS
entity is defined as h : RN −→ RM . The mathematical formula of a generic NURBS hyper-
surface is

h(u1, . . . , uN ) =

n1∑
i1=0

· · ·
nN∑
iN=0

Ri1,...,iN (ζ1, . . . , ζN )Pi1,...,iN , (1)

where Ri1,...,iN (ζ1, . . . , ζN ) are the piece-wise rational basis functions, which are related
to the standard NURBS blending functions Nik,pk(ζk), k = 1, . . . , N by means of the
relationship

Ri1,...,iN =
ωi1,...,iN

∏N
k=1Nik,pk(ζk)∑n1

j1=0 · · ·
∑nN

jN=0

[
ωj1,...,jN

∏N
k=1Njk,pk(ζk)

] . (2)

In Eqs. (1) and (2) , h(ζ1, . . . , ζN ) is a M -dimension vector-valued rational function, ζk is
the k-th dimensionless coordinate (or parametric coordinate) defined in the interval [0, 1],

whilst Pi1,...,iN are the CPs. The j-th CP coordinate (X
(j)
i1,...,iN

) is stored in the array

X(j) ∈ R(n1+1)×···×(nN+1). The explicit expression of CPs coordinates in RM is:

Pi1,...,iN = {X(1)
i1,...,iN

, . . . , X
(M)
i1,...,iN

},

X(j) ∈ R(n1+1)×···×(nN+1), j = 1, . . . ,M.

(3)

Curves and surfaces formulæ can be easily deduced from Eq. (1). For example, one scalar
parameter (N = 1) can describe both a plane curve (M = 2) and a 3D curve (M = 3). In
the case of a surface, two scalar parameters are needed (N = 2) together with, of course,

three coordinatesM = 3. Furthermore, for NURBS surfaces, PT
i1,i2

= {X(1)
i1,i2

, X
(2)
i1,i2

, X
(3)
i1,i2
}

and each coordinate is arranged in a matrix defined in R(n1+1)×(n2+1). The CPs layout is
referred as control polygon for NURBS curves, control net for surfaces and control hyper-
net otherwise [53]. The generic CP does not actually belong to the NURBS entity but it
affects its shape by means of its coordinates. A weight ωi1,...,iN is associated to the generic
CP. The higher the weight ωi1,...,iN , the more the NURBS entity is attracted towards
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the CP Pi1,...,iN . For each parametric direction ζk, k = 1, . . . , N , the NURBS blending
functions are of degree pk and can be defined in a recursive way as

Nik,0(ζk) =

{
1, if v

(k)
ik
≤ ζk < v

(k)
ik+1,

0, otherwise,
(4)

Nik,q(ζk) =
ζk−v

(k)
ik

v
(k)
ik+q−v

(k)
ik

Nik,q−1(ζk) +
v
(k)
ik+q+1−ζk

v
(k)
ik+q+1−v

(k)
ik+1

Nik+1,q−1(ζk),

q = 1, ..., pk,
(5)

where each constitutive blending function is defined on the knot vector

v(k)
T = {0, . . . , 0︸ ︷︷ ︸

pk+1

, v
(k)
pk+1, . . . , v

(k)
mk−pk−1, 1, . . . , 1︸ ︷︷ ︸

pk+1

}, (6)

whose dimension is mk + 1, with

mk = nk + pk + 1. (7)

Each knot vector v(k) is a non-decreasing sequence of real numbers that can be interpreted
as a discrete collection of values of the related dimensionless parameter ζk. The NURBS
blending functions are characterised by several interesting properties: the interested reader
is addressed to [53] for a deeper insight into the matter. Here, only the local support
property is recalled because it is of paramount importance for the NURBS-based SIMP
method for TO [47, 48]:

Ri1,...,iN (ζ1, . . . , ζN ) 6= 0,

if (ζ1, . . . , ζN ) ∈
[
v
(1)
i1
, v

(1)
i1+p1+1

[
× · · · ×

[
v
(N)
iN

, v
(N)
iN+pN+1

[
.

(8)

Eq. (8) means that each CP (and the respective weight) affects only a precise zone of the
parametric space, which is denoted as local support.

3. The strain energy homogenisation method

At the mesoscopic scale, the RVE of the LS can be interpreted, from a mechanical
point of view, as an heterogeneous medium composed of two phases, i.e. the bulk material
and the void. Conversely, at the macroscopic scale it can be modelled as an equivalent
homogeneous anisotropic continuum whose mechanical response is described by a set of
effective (or equivalent) material properties.

This work focuses only of the elastic behaviour of the LS at the macroscopic scale,
thus, the macroscopic elasticity tensor (represented as a matrix CM ∈ R6×6 through the
Voigt’s notation) of the LS is determined by means of the SEHM. This technique makes
use of the repetitive unit of the periodic structure to evaluate the resulting properties at
the macroscopic scale. The basic assumption of the SEHM is that the strain energy of the
RVE is equal to the counterpart of the corresponding “envelope volume” of the homoge-
neous anisotropic medium replacing the LS at the macroscopic scale. This homogenisation
scheme has proven to be an efficient numerical procedure able to determine the equivalent
properties of different heterogeneous materials characterised by complex RVE topologies
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[54, 55].
In order to evaluate CM , three further hypotheses have to be considered: (a) the bulk
material of the LS is characterised by a linear, elastic behaviour; (b) small displacements
and strains occurs when the RVE is subject to given BCs; (c) the buckling of the RVE thin
topological branches (that could appear during the optimisation process) is neglected.

To assess the components of CM , the RVE is submitted to a uniform strain field εmij,0,
with i, j = 1, 2, 3 (tensor notation). The six independent components of the strain tensor
are applied one at time by considering the following set of PBCs [56]:

umi (am1 , x
m
2 , x

m
3 )− ui(−am1 , xm2 , xm3 ) = 2am1 ε

m
i1,0,

umi (xm1 , a
m
2 , x

m
3 )− umi (xm1 ,−am2 , xm3 ) = 2am2 ε

m
i2,0,

umi (xm1 , x
m
2 , a

m
3 )− umi (xm1 , x

m
2 ,−am3 ) = 2am3 ε

m
i3,0,

∀xmi ∈ [−ami , ami ], i = 1, 2, 3.

(9)

In the above formula, ami is the characteristic length of the RVE along the xmi axis, while
umi is the component of the displacement field along the same axis. Consider now the
equilibrium equation of the FE model of the RVE. In the most general case it reads:

K̂mûm = f̂m; ûm, f̂m ∈ RN̂
m
DOF , K̂m ∈ RN̂

m
DOF×N̂

m
DOF , (10)

where N̂m
DOF is the overall number of degrees of freedom (DOFs) of the structure before

the application of the BCs, while K̂m is the non-reduced (singular) stiffness matrix of the
RVE. ûm is the non-reduced vector of generalised displacements containing both imposed
and unknown DOFs of the FE model and f̂m is the non-reduced vector of generalised
nodal forces (both known and unknown quantities). The expression of the above vectors
and matrix is:

K̂m :=

[
Km Km

BC

KmT
BC K̃m

]
, ûm :=

{
um

umBC

}
, f̂m :=

{
fm

rm

}
,

um, fm ∈ RNm
DOF , uBCm , rm ∈ RNm

BC , Km ∈ RNm
DOF×N

m
DOF ,

Km
BC ∈ RNm

DOF×N
m
BC , K̃m ∈ RNm

BC×N
m
BC .

(11)

In Eq. (11), Nm
DOF is the number of unknown DOFs, while Nm

BC represents the number

of DOFs where BCs on generalised displacements are applied (of course N̂m
DOF = Nm

DOF +
Nm

BC). um and umBC are the unknown and known vectors of generalised displacements,
respectively. fm is the vector of generalised external nodal forces, whilst rm is the vector
of generalised nodal reactions where BCs on generalised displacements are imposed. Km,
Km

BC and K̃m are the stiffness matrices of the FE model of the RVE after applying BCs.
Inasmuch as the PBCs of Eq. (9) are imposed in terms of displacements and no external
forces are applied to the FE model of the RVE, i.e. fm = 0, the equilibrium problem of
Eq. (11) is of the Dirichlet’s type.

The difference between the SEHM based on elements averaged stresses and the SEHM
based on elements strain energy is in the post-processing of the results of the FE analyses.
For both techniques, six static analyses, corresponding to the application of elementary
uni-axial strain fields in Eq. (9), are required to uniquely assess the components of the
macroscopic elasticity tensor CM of the LS.
As far as the SEHM based on elements averaged stresses is concerned, for each static
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analysis, the volume-averaged value of the stress vector (Voigt’s notation) σm(εmβ,0) ∈ R6

can be easily computed and the stiffness matrix of the equivalent homogeneous material
can be calculated one column at time as:

cMβ =
1

VRVEεmβ,0

∫
VRVE

σm(εmβ,0) dV ≈
1

VRVEεmβ,0

Nm
e∑

e=1

σme (εmβ,0)V
m
e ,

εmβ,0 6= 0, εmγ,0 = 0, β, γ = 1, · · · , 6, γ 6= β, cMβ ∈ R6,

(12)

where cMβ represents the β column of matrix CM . In Eq. (12), Nm
e is the number of

elements composing the FE model of the RVE, V m
e is the volume of the generic element,

whilst VRVE = 8am1 a
m
2 a

m
3 is the “envelope” volume of the 3D domain wherein the RVE is

defined.
Regarding the SEHM based on elements strain energy, the compliance (i.e. the work of
internal forces) of the RVE can be easily retrieved for each static analysis as:

Wm := fmTum + rmTumBC. (13)

Then, by considering both uni-axial and bi-axial strain fields in Eq. (9) and by imposing
the equivalence between the strain energy of the equivalent homogeneous anisotropic con-
tinuum and that of the RVE of the LS, the components of matrix CM can be computed
as:

CMkk =
Wm

(
εmk,0

)
VRVE

(
εmk,0

)2 , k = 1, . . . , 6, (14)

CMij =
Wm

(
εmi,0, ε

m
j,0

)
2VRVEεmi,0ε

m
j,0

− CMii
εmi,0
2εmj,0

− CMjj
εmj,0
2εmi,0

, i, j = 1, . . . , 6. (15)

Eq. (14) is used to assess the terms belonging to the main diagonal of tensor CM , whilst

Eq. (15) allows for determining the terms outside the main diagonal. Wm
(
εmk,0

)
and

Wm
(
εmi,0, ε

m
j,0

)
represent the compliance, evaluated for uni-axial and bi-axial strain fields,

respectively. Of course, Eq. (14) must be solved before Eq. (15); moreover the compliance
of the RVE for a bi-axial strain field can be obtained from the results (displacements and
forces) of the analyses wherein uni-axial strain fields are considered as follows:

Wm
(
εmi,0, ε

m
j,0

)
=
(
fmT
i + fmT

j

) (
umi + umj

)
+
(
rmT
i + rmT

j

) (
umBCi + umBCj

)
, (16)

where subscripts i and j refer to the FE analyses where uni-axial strain fields εmi,0 and εmj,0
are imposed in the PBCs of Eq. (9).
Finally, the density of the equivalent homogeneous anisotropic medium at the macroscopic
is defined as:

τM := τm
V m

VRVE
, (17)
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where τm is the density of the bulk material composing the RVE, whilst V m is the actual
volume of the RVE.

4. The multi-scale NURBS-based SIMP method

A detailed description of the mathematical background of the NURBS-based SIMP
method is available in [47, 48]. The main features of the approach are briefly described
here only for 3D multi-scale TO problems.
The goal of the multi-scale TO approach presented in this study is to determine the
optimum topology of the LS RVE by considering design requirements involved at both
lower (i.e. microscopic or mesoscopic) and upper (macroscopic) scales. The characteristic
problem scales (and the relative geometrical features) are illustrated in Fig. 1.

Figure 1: Characteristic scales of the multi-scale topology optimisation problem: (a) the macroscopic
(upper) scale of the structure and (b) the lower (i.e. mesoscopic or microscopic) scale of the lattice RVE

Consider the compact Euclidean space Dm ⊂ R3 (defining the RVE domain at the
lower scale) in a Cartesian orthogonal frame O(ym1 , y

m
2 , y

m
3 ):

Dm := {ymT = (ym1 , y
m
2 , y

m
3 ) ∈ R3 : ymj ∈ [0, 2amj ], j = 1, 2, 3}, (18)

where aj , is the characteristic length of the domain defined along xj axis, as shown in
Fig. 1. In the SIMP approach the material domain Ωm ⊆ Dm of the RVE is identified
by means of the pseudo-density function ρ(ym) ∈ [0, 1] for ym ∈ Dm: ρ(ym) = 0 means
absence of material, whilst ρ(ym) = 1 implies completely dense bulk material.

In the framework of the NURBS-based SIMP method, a NURBS entity of dimension
D + 1 is used to describe the topology of a problem of dimension D. Therefore, if a
3D TO problem is considered, a 4D NURBS hyper-surface is needed to describe the RVE
topology. In particular, the first three coordinates of the NURBS hyper-surface correspond
to the Cartesian coordinates defining the 3D domain of the lattice RVE, while the fourth
coordinate corresponds to the RVE pseudo-density field and reads:

ρ(ζm1 , ζ
m
2 , ζ

m
3 ) =

n1∑
i1=0

n2∑
i2=0

n3∑
i3=0

Ri1,i2,i3(ζm1 , ζ
m
2 , ζ

m
3 )ρi1,i2,i3 . (19)

In Eq. (19), nCP = (n1 + 1)(n2 + 1)(n3 + 1) is the total number of CPs, while the
dimensionless parameters ζmj (j = 1, 2, 3) can be related to the Cartesian coordinates ymj
of the 3D domain (see Fig. 1) as follows:

ζmj =
ymj
2amj

, j = 1, 2, 3. (20)
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There are many parameters affecting the shape of a NURBS entity. Among them, the
pseudo-density at CPs and the associated weights are identified as design variables and
are collected in the vectors ξ1 and ξ2, respectively, defined as:

ξT1 := (ρ0,0,0, · · · , ρn1,n2,n3) , ξT2 := (ω0,0,0, · · · , ωn1,n2,n3) . (21)

The cardinality of these arrays is ]ξ1 = ]ξ2 = nCP. Accordingly, in the most general case,
the overall number of design variables is nvar = 2nCP.

The multi-scale TO problem presented here deals with the minimisation of the macro-
scopic compliance WM subject to an inequality constraint on the macroscopic mass mM .
Of course, the structure responses at the macroscopic scale are influenced by the topolog-
ical variable defined at the lower scale as a result of the homogenisation process of the
lattice RVE. As discussed in Section 3, the equilibrium of the RVE is described by Eq. (10)
subject to the PBCs of Eq. (9), i.e. the RVE equilibrium problem is of Dirichlet’s type.
At the lower scale, the density field affects the element stiffness matrix and, accordingly,
the global stiffness matrix of the FE model of the RVE as follows:

K̂m =

Nm
e∑

e=1

ραe L̂
mT
e Km

e L̂
m
e , Km

e ∈ RN
m
DOF,e×N

m
DOF,e , L̂me ∈ RN

m
DOF,e×N̂

m
DOF , (22)

where ρe is the fictitious density of Eq. (19) computed at the centroid of the generic element
e and Nm

e is the total number of elements composing the FE model of the RVE. L̂me is
the connectivity matrix of element e (before applying the BCs), Km

e is the non-penalised
element stiffness matrix expressed in the global reference frame of the model and Nm

DOF,e

is the number of DOFs for element e. In Eq. (22), α ≥ 1 is a suitable parameter that aims
at penalising all the meaningless densities between 0 and 1, in agreement with the classic
SIMP approach (usually α = 3).
Conversely, the volume of the RVE is penalised as:

V m =

Nm
e∑

e=1

ρeV
m
e , (23)

where V m
e is the volume of the generic element composing the RVE FE model.

At the macroscopic scale the equilibrium equation of the FE model of the structure
reads:

K̂M ûM = f̂M ; ûM , f̂M ∈ RN̂
M
DOF , K̂M ∈ RN̂

M
DOF×N̂

M
DOF , (24)

where N̂M
DOF is the number of DOFs of the structure before the application of the BCs,

while K̂M is the non-reduced stiffness matrix of the structure. ûM is the non-reduced
vector of generalised displacements containing both imposed and unknown DOFs of the
FE model and f̂m is the non-reduced vector of generalised nodal forces (both known and
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unknown quantities). In analogy with Eq. (11) the following arrays can be introduced:

K̂M :=

[
KM KM

BC

KMT
BC K̃M

]
, ûM :=

{
uM

uMBC

}
, f̂M :=

{
fM

rM

}
,

uM , fM ∈ RNM
DOF , uBCM , rM ∈ RNM

BC , KM ∈ RNM
DOF×N

M
DOF ,

KM
BC ∈ RNM

DOF×N
M
BC , K̃M ∈ RNM

BC×N
M
BC ,

(25)

whose physical meaning is the same as the counterparts defined at the lower scale, see
Section 3. Without loss of generality, in this work only non-null external nodal forces are
applied at the macroscopic scale, whilst the imposed generalised displacements are null,
i.e. uMBC = 0. Therefore, the equilibrium equation at the macroscopic scale simplifies to:

KMuM = fM . (26)

As stated above, the pseudo-density field, defined at the RVE scale, affects also the
macroscopic responses WM and mM through the macroscopic elasticity tensor CM and
the macroscopic density τM of the equivalent homogeneous anisotropic material, see Eq.
(12) (or Eqs. (14) and (15)) and Eq. (17), respectively. Indeed, the reduced (i.e. non-
singular) stiffness matrix KM of the macroscopic FE model depends upon the tensor CM

as follows:

KM =

NM
e∑

e=1

LMT
e

∫
VM
e

BMT
e CMBM

e dΩLMe , BM
e ∈ R6×NM

DOF,e , LMe ∈ RN
M
DOF,e×N

M
DOF .

(27)

In Eq. (27), NM
e is the number of elements constituting the FE model at the macroscopic

scale, whilst NM
DOF,e is the number of DOFs of the generic element. LMe is the connectivity

matrix of element e, BM
e is the matrix representing the product between the linear dif-

ferential operator and the shape function matrices of the generic element and VM
e is the

volume of element e.
Moreover, the mass mM of the macroscopic FE model reads:

mM = τMVM = τM
NM

e∑
e=1

VM
e . (28)

where VM is the overall volume of the FE model at the macroscopic scale. Therefore, the
multi-scale TO problem focusing on the minimisation of the macroscopic compliance sub-
ject to an inequality constraint on the macroscopic mass can be formulated as a constrained
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non-linear programming problem (CNLPP) as:

min
ξ1,ξ2

WM

WM
ref

, s.t. :



KMuM = fM , K̂mûm = f̂m,

g :=
mM

mM
ref

− γ ≤ 0,

ξ1k ∈ [ρmin, ρmax], ξ2k ∈ [ωmmin, ω
m
max],

∀k = 1, ..., nCP.

(29)

In Eq. (29), mM
ref and WM

ref are reference values for the mass and the compliance of the
structure at the macroscopic scale, respectively, whilst γ is the imposed mass fraction.
ρmin and ρmax are the bounds on the density at each CP. In particular, the lower bound
is imposed to the density field in order to prevent any singularity for the solution of the
equilibrium problem at the lower scale. ωmmin and ωmmax are suitable lower and upper bounds
on weights. Moreover, in Eq. (29), the linear index k has been introduced for the sake of
compactness. The relationship between k and ij , (j = 1, 2, 3) is:

k := 1 + i1 + i2(n1 + 1) + i3(n1 + 1)(n2 + 1). (30)

The other NURBS parameters (i.e. degrees, knot-vector components and number of CPs)
can be identified as design parameters, i.e. their value is set a-priori at the beginning of
the TO and is not optimised: the interested reader is addressed to [48] for a deeper insight
in the matter.

Remark 4.1. As discussed in [51], one of the main advantages of the NURBS-based
SIMP method is that the minimum length-scale manufacturing requirement can be easily
integrated in the optimisation process without adding an explicit constraint function
in the CNLPP formulation of Eq. (29). As explained in [51], the minimum length-scale
constraint can be automatically satisfied by properly setting the integer parameters involved
in the definition of the NURBS hyper-surface, i.e. the number of CPs and the degrees of
the blending functions along each parametric direction, i.e. nj and pj, respectively. A
meaningful example integrating this requirement is presented in Section 5.2.

The computation of the derivatives of the objective function and the constraint function
with respect to the design variables ξ1 and ξ2 is needed in order to solve problem (29)
through a suitable deterministic algorithm. The gradient of g can be immediately inferred
by considering Eqs. (17), (23) and (28):

∂g

∂ξik
= τm

VM

VRVE

∑
e∈Sk

V m
j

∂ρe
∂ξik

, i = 1, 2, k = 1, · · · , nCP, (31)

where Sk is the discretised version of the local support of Eq. (8), while
∂ρe
∂ξik

reads

∂ρe
∂ξik

=


Rek, if i = 1,

Rek
ξ2k

(ξ1k − ρe) , if i = 2.
(32)

The scalar quantity Rek, appearing in Eq. (32), is the NURBS rational basis function of
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Eq. (2) evaluated at the element centroid.
Conversely, the gradient of WM requires a special attention. In order to derive its

analytical expression, the NURBS local support property of Eq. (8) and the adjoint
method [57] will be exploited. To this end, consider the following proposition.

Proposition 4.1. Consider a deformable homogeneous anisotropic medium subject to
fM 6= 0 and uMBC = 0. If body forces are identically null, the gradient of the macroscopic
compliance WM with respect to the topological variable defined at the lower scale reads:

∂WM

∂ξik
= −

NM
e∑

e=1

6∑
q=1

6∑
r=1

∂CMqr
∂ξik

εMeq ε
M
erV

M
e ,

i = 1, 2, k = 1, · · · , nCP,

(33)

with

∂CMqr
∂ξik

=



1

VRVE

(
εmq,0

)2 ∑
e∈Sk

α

ρe

∂ρe
∂ξik

wme
(
εmq,0
)
, if q = r,

1

2VRVEεmq,0ε
m
r,0

∑
e∈Sk

α

ρe

∂ρe
∂ξik

wme
(
εmq,0, ε

m
r,0

)
+

−
εmq,0
2εmr,0

∂CMqq
∂ξik

−
εmr,0
2εmq,0

∂CMrr
∂ξik

, if q 6= r.

(34)

The proof of proposition 4.1 and the pseudo-code of the algorithm used to compute
the gradient of WM are provided in Appendix A.

Remark 4.2. The quantity εMeq appearing in Eq. (33) is the generic component of the
macroscopic strain vector of element e defined as

εMe := BM
e LMe uM , (35)

while the quantity wme appearing in Eq. (34) is the compliance of the generic element of
the FE model of the RVE at the lower scale.

Remark 4.3. As it can be inferred from Eq. (34), the SEHM based on elements strain
energy has been used to assess the components of the macroscopic elasticity tensor of the
LS. Indeed this technique reveals to be the most efficient choice (from a computational
costs perspective) minimising the number of FE analyses required to assess matrix CM as
well as its gradient with respect to the topological variable at the RVE scale. In particu-
lar, as discussed in Appendix A, the SEHM based on elements strain energy needs
only seven static analyses per iteration to compute the gradient of the macroscopic
compliance: at the lower scale Eq. (10) must be solved six times (i.e. for each elementary
strain field), while at the upper scale only one analysis is needed to solve Eq. (26). Con-
versely, as discussed in Appendix B, the SEHM based on elements averaged stresses
needs, at each iteration of the optimisation process, the resolution of 43 linear
systems: seven analyses at the lower scale, i.e. one for Eq. (10) and six for Eq. (B.21),
which must be repeated six times (for each elementary strain field), plus one analysis at
the macroscopic scale to solve Eq. (26).
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5. Numerical results

In this section, the effectiveness of the proposed method is tested on 2D and 3D bench-
mark problems. The results presented in this Section are obtained by means of the code
SANTO (SIMP And NURBS for Topology Optimisation) developed at the I2M laboratory
in Bordeaux [47, 48]. SANTO is coded in Python and it has been interfaced with ANSYS R©

software, which is used to build the FE models and assess the mechanical responses of the
structure, at each pertinent scale. Moreover, the Method of Moving Asymptotes (MMA)
algorithm [58] has been used to perform the solution search for CNLPP of Eq. (29).
The parameters tuning the behaviour of the MMA algorithm as well as the user-defined
convergence criteria are listed in Table 1.

Table 1: MMA algorithm parameters

Parameter Value

move 0.2
albefa 0.1

asyntinit 0.5
asyincr 1.2
asydecr 0.7

Stop Criterion Value

Maximum n. of function evaluations 100× nvar
Maximum n. of iterations 10000

Tolerance on objective function 1× 10−6

Tolerance on constraints 1× 10−6

Tolerance on input variables change 10−6

Tolerance on Karush–Kuhn–Tucker norm 10−4

Post-processing operations are performed in ParaView R© environment. As far as nu-
merical tests are concerned, the following aspects are considered:

1. The influence of the NURBS entity integer parameters, i.e. blending functions de-
gree and CPs number, on the RVE optimised topology is investigated (only for 2D
problems);

2. The influence of the geometric entity, i.e. B-spline or NURBS used to describe the
pseudo-density field of the RVE, on the optimised topology is studied (both 2D and
3D problems);

3. The influence of the starting guess on the RVE optimised topology (only for 2D
problems);

4. The influence of the macroscopic loads on the optimised topology of the RVE (both
2D and 3D problems).

Lower and upper bounds of design variables are set as: ρmin = 10−3, ρmax = 1;
ωmin = 0.5, ωmax = 10. Moreover, the non-trivial knot vectors components in Eq. (6) have
been evenly distributed in the interval [0, 1] for both 2D and 3D cases. For all benchmarks,
the mass fraction at the macroscopic scale is γ = 0.4, while an aluminium alloy is used
as a bulk material of the RVE with the following properties: Em = 71 GPa, νm = 0.33,
τm = 2700 Kgm-3. The reference mass of the structure is defined as mM

ref = τmV m, which
corresponds to impose a unit pseudo-density field at the RVE scale in Eq. (23), while WM

ref

is the macroscopic compliance evaluated for the starting solution.
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Furthermore, symmetry constraints on the pseudo-density field describing the RVE
topology are imposed during optimisation: double symmetry for 2D problems (with respect

to planes ymj =
amj
2 , j = 1, 2) and three planes of symmetry (ymj =

amj
2 , j = 1, 2, 3) for 3D

problems in order to have an optimised topology characterised, at most, by an orthotropic
behaviour. Of course, the presence of a symmetry constraints imply a reduction in the
amount of design variables as follows:

nvar =


∏N
i=1 θi, for B− spline entity,

2
∏N
i=1 θi, for NURBS entity,

(36)

with N = 2 and N = 3 for 2D and 3D problems, respectively and

θi =


ni + 1

2
, if ni is even,

ni + 1

2
+ 1, otherwise.

(37)

5.1. 2D benchmark problem

The geometry, loads and BCs of the 2D benchmark problem (indicated as 2D-BK in
the following) considered in this study are illustrated in Fig. 2. It is a quarter of a square

plate (aM1 = aM2 = 100 mm) with a hole of radius R =
aM1
3 . Uniform loads per unit length

FM1 and FM2 are applied along sides AE and AB, respectively. The plate is subject to
symmetric BCs on edges BC and DE. At the lower scale the RVE domain is a square of
side 2am1 = 2am2 = 10 mm. The RVE size has been chosen in order to have, at least, ten
repetitive units along edges AB and AE.

The FE models at both upper and lower scales are made of PLANE182 elements (plane
strain hypothesis, four nodes, two DOFs per node). The overall number of (quadrangular)
elements composing the FE models at the macroscopic scale and at the RVE scale are
NM
e = 1566 and Nm

e = 1600, respectively.

Figure 2: Geometry and boundary conditions of the benchmark problem 2D-BK
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5.1.1. Sensitivity of the RVE topology to the NURBS entity integer parameters

Problem (29) is solved for 2D-BK by considering the following combinations of blending
functions degrees and CPs numbers: (a) pj = 2, 3, (j = 1, 2); (b) nCP = 20 × 20, 27 ×
27, 35 × 35. For this sensitivity analysis, the applied loads have been set as FM1 = 0 and
FM2 = 10 Nmm-1. An initial guess characterised by a uniform density field ρ(ζm1 , ζ

m
2 ) = γ

and WM
ref = 288.95 Nmm has been considered for each analysis.

Results are provided in terms of macroscopic compliance WM and number of iterations
Niter for B-spline and NURBS entities in Figs. 3 and 4, respectively. For each solution
the requirement on the mass fraction is always satisfied and the solution is located on the
boundary of the feasible domain.

(a) p1 = p2 = 2, nCP = 400,
WM = 110.41 Nmm, Niter = 70

(b) p1 = p2 = 2, nCP = 729,
WM = 99.12 Nmm, Niter = 97

(c) p1 = p2 = 2, nCP = 1225,
WM = 92.11 Nmm, Niter = 76

(d) p1 = p2 = 3, nCP = 400,
WM = 101.96 Nmm, Niter = 32

(e) p1 = p2 = 3, nCP = 729,
WM = 89.63 Nmm, Niter = 69

(f) p1 = p2 = 3, nCP = 1225,
WM = 83.16 Nmm, Niter = 179

Figure 3: Benchmark problem 2D-BK: sensitivity of the optimised topology to CP numbers and basis
functions degrees, B-spline solutions

A synthesis of the obtained results is illustrated in Fig. 5 in terms of the macroscopic
compliance vs. CPs number and blending functions degrees.

The following remarks can be inferred from the results of the sensitivity analysis.

1. For B-spline solutions, the greater the number of control points the smaller the
objective function value. However, unlike results presented in [47, 48] for the
classical problem of the compliance minimisation subject to an inequality constraint
of the volume fraction involving a single scale (i.e. the macroscopic one), the bigger
the degree the smaller the objective function value.

2. Conversely, for NURBS solutions, a clear trend cannot be identified, unlike results
presented in [47, 48]. In particular, as a general rule one can assert that the smaller
the degree (or the higher the CPs number) the smaller the objective function value in
agreement with the results for single-scale problems presented in [47, 48]. However,
for some combinations of CPs number and degrees, the optimised solutions do not
follow this general trend: this is probably due to the strong non-convexity of the
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(a) p1 = p2 = 2, nCP = 400,
WM = 82.48 Nmm, Niter = 43

(b) p1 = p2 = 2, nCP = 729,
WM = 78.64 Nmm, Niter = 95

(c) p1 = p2 = 2, nCP = 1225,
WM = 88.37 Nmm, Niter = 161

(d) p1 = p2 = 3, nCP = 400,
WM = 87.30 Nmm, Niter = 100

(e) p1 = p2 = 3, nCP = 729,
WM = 80.78 Nmm, Niter = 90

(f) p1 = p2 = 3, nCP = 1225,
WM = 76.90 Nmm, Niter = 250

Figure 4: Benchmark problem 2D-BK: sensitivity of the optimised topology to CP numbers and basis
functions degrees, NURBS solutions

Figure 5: Benchmark problem 2D-BK: compliance vs. CPs number and degrees for B-spline and NURBS
solutions

multi-scale TO problem of Eq. (29), which show several local feasible minimiser as
discussed in the next subsection.

3. The CPs number and basis functions degree along each direction affect the size of
the local support, see Eq. (8), which enforces a minimum member size requirement
in the optimised topology, as discussed in [51]. As far as this point is concerned,
the same remarks as in [51] can be made: the higher the degree (or the smaller the
CPs number) the greater the local support, thus each CP affects a wider region of
the mesh during optimisation. Moreover, the higher the degree the smoother the
topology boundary after CAD reconstruction. Conversely, small degrees (or a high
CP number) produce optimised topologies characterised by thin branches. Therefore,
as a general rule, a high number of CPs and small degrees should be considered if
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minimum member size does not constitute a restriction for the problem at hand.
High degrees and/or small CPs number should be considered otherwise.

4. Optimised topologies obtained using NURBS surfaces are characterised by values
of the objective function lower or equal than those resulting from B-spline surfaces
when considering the same number of CPs and the same degrees, as shown in Fig. 5.
In particular, from the analysis of Figs. 3 and 4, it appears that NURBS topologies
have a boundary smoother than that of B-spline solutions, for each case.

5. Fig. 6 illustrates the outstanding advantages provided by the NURBS-based SIMP
method. On the one hand the topology is unrelated from the mesh of the FE model
and it is represented by a purely geometrical entity, i.e. a 3D NURBS surface. On
the other hand, the NURBS surface is a CAD-compatible entity which can be easily
exported into any CAD software to rebuild in a straightforward way the boundary
of the optimised 2D structure. This task can be achieved by evaluating a threshold
value for the density function meeting the optimisation constraint (this operation is
automatically done by the SANTO algorithm at the end of the optimisation process).

(a) NURBS surface and cutting plane (b) The 2D optimised topology

Figure 6: Benchmark problem 2D-BK: CAD model of the RVE optimised topology for a NURBS surface
with p1 = p2 = 2 and nCP = 1225

5.1.2. Sensitivity of the RVE topology to the initial guess

Unlike the standard CNLPP dealing with the compliance minimisation subject to a
constraint on the volume fraction involving a single-scale analysis [47, 48], the CNLPP of
Eq. (29) shows a highly non-convex behaviour. To (numerically) prove its non-convexity,
the influence of the starting point on the optimised topology is discussed here. The anal-
ysis is carried out for both B-spline and NURBS solutions characterised by the following
parameters: p1 = p2 = 2, nCP = 35 × 35. The applied loads are set as FM1 = 0 and
FM2 = 10 Nmm-1.
For each B-spline/NURBS solution, two feasible starting points have been considered. The
first one consists of a topology having one hole (where the pseudo-density is equal to ρmin)
satisfying the constraint on the mass ratio and characterised by WM

ref = 271.47 Nmm.
The second starting point is characterised by two holes and by a reference macroscopic
compliance WM

ref = 271.16 Nmm.
Results are provided in terms of macroscopic compliance WM and number of iterations
Niter for B-spline and NURBS entities in Fig. 7. For each solution the requirement on the
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mass fraction is always satisfied and the solution is located on the boundary of the feasible
domain.

(a) one hole, WM = 87.35 Nmm,
Niter = 45

(b) two holes, WM = 96.32 Nmm,
Niter = 170

(c) one hole, WM = 79.79 Nmm,
Niter = 147

(d) two holes, WM = 82.87 Nmm,
Niter = 110

Figure 7: Benchmark problem 2D-BK: influence of the initial guess on the optimised topology for (a)-(b)
B-spline and (c)-(d) NURBS solutions with p1 = p2 = 2 and nCP = 1225

As it can been inferred from Fig. 7, the choice of the initial guess has a strong impact
on the optimised topology. On the one hand, for the same number of CPs and the same
degrees and under the considered loads and BCs, choosing an initial guess with one hole
allows finding results better (in terms of WM ) than those characterising the optimised
solutions shown in Figs. 3c and 4c (obtained by starting from a uniform pseudo-density
field). On the other hand, for the same values of the NURBS entity integer parameters,
the choice of a different starting point has a strong impact on the convergence rate of the
MMA algorithm, which converges towards the nearest local (feasible) minimiser.

5.1.3. Sensitivity of the RVE topology to the macroscopic loading condition

Problem (29) is solved for 2D-BK by considering different combinations of the applied

loads: (a)
FM
1

FM
2

= 0 and FM2 = 10 Nmm-1 (presented in the above subsections); (b)
FM
1

FM
2

=

0.5 and FM2 = 10 Nmm-1; (c)
FM
1

FM
2

= 1 and FM2 = 10 Nmm-1; (d)
FM
1

FM
2
→∞ and FM1 = 10

Nmm-1. The goal of these analyses is to highlight the effect of the macroscopic loading
condition on the optimised topology of the RVE at the lower scale.
Problem (29) has been solved using both B-spline and NURBS entities having degrees
p1 = p2 = 3 and an overall number of CPs nCP = 35× 35. An initial guess characterised
by a uniform density field ρ(ζm1 , ζ

m
2 ) = γ and WM

ref = 288.95 Nmm has been considered for
each analysis.

The numerical results regarding the case
FM
1

FM
2

= 0 are illustrated in Figs. 3f and 4f. As far

as the other cases are concerned, results are provided in terms of macroscopic compliance
WM for B-spline and NURBS entities in Fig. 8. For each solution the requirement on the
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mass fraction is always satisfied and the solution is located on the boundary of the feasible
domain.

(a)
FM
1

FM
2

= 0.5, FM
2 = 10 Nmm-1,

WM = 58.09 Nmm, Niter = 62

(b)
FM
1

FM
2

= 1, FM
2 = 10 Nmm-1,

WM = 159.71 Nmm, Niter = 20

(c)
FM
1

FM
2

→∞, FM
1 = 10 Nmm-1,

WM = 92.63 Nmm, , Niter = 94

(d)
FM
1

FM
2

= 0.5, FM
2 = 10 Nmm-1,

WM = 42.30 Nmm, Niter = 46

(e)
FM
1

FM
2

= 1, FM
2 = 10 Nmm-1,

WM = 145.37 Nmm, Niter = 153

(f)
FM
1

FM
2

→∞, FM
1 = 10 Nmm-1,

WM = 78.20 Nmm, Niter = 116

Figure 8: Benchmark problem 2D-BK: influence of the macroscopic loading condition on the RVE optimised
topology for (a)-(c) B-spline and (d)-(e) NURBS solutions with p1 = p2 = 3 and nCP = 1225

As it can been inferred from Fig. 8, the macroscopic loading condition has a strong
influence on the RVE optimised topology at the lower scale. In particular, in order to
properly withstand the applied loads at the macroscopic scale and to minimise WM , the
RVE topology evolves in such a way to optimise the macroscopic elastic response of the
continuum. In particular, for each considered loading condition, the matrix CM related to
the optimised topology is characterised by the most efficient elastic symmetry with respect
to the applied loads. Indeed, the elastic constants for each topology are reported in Table

2. As expected, the optimised topologies of the RVE for cases
FM
1

FM
2

= 0 and
FM
1

FM
2
→∞ show

Table 2: 2D-BK: elastic constants for the optimised topologies in the case p1 = p2 = 3, nCP = 1225 for
each loading condition

Elastic constant
FM
1

FM
2

= 0
FM
1

FM
2

= 0.5
FM
1

FM
2

= 1
FM
1

FM
2

→∞
B-spline NURBS B-spline NURBS B-spline NURBS B-spline NURBS

EM
1 [MPa] 6258.90 6487.57 5976.94 6163.72 10214.03 8352.45 17514.38 19468.20

EM
2 [MPa] 18246.18 16515.65 15610.41 15544.38 10273.89 8643.90 2808.68 2781.78

GM
12 [MPa] 1348.89 1411.84 2410.54 2776.16 2365.72 2299.19 2713.64 2599.40
νM12 0.29 0.27 0.44 0.48 0.41 0.44 0.14 0.12

a macroscopic orthotropic behaviour with the main orthotropy axis oriented along axis xM2
and xM1 , respectively. The macroscopic elasticity tensor of the optimised topologies of the

RVE for the case
FM
1

FM
2

= 1 is characterised by a square symmetry, i.e. EM1 ≈ EM2 (but the
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RVE has not a macroscopic isotropic behaviour because GM12 6=
EM

1

2(1+νM12 )
) for both B-spline

and NURBS solutions (although the optimised topologies are really different). Finally,

the RVE topologies for the case
FM
1

FM
2

= 0.5 are characterised by a macroscopic orthotropic

behaviour with a higher value of the Young’s modulus along the xM2 axis. Finally, for each
loading condition, NURBS solutions are characterised by a value of the merit function
lower than that of the B-spline counterpart.

5.2. 3D benchmark problem

The geometry, loads and BCs of the 3D benchmark problem (indicated as 3D-BK in
the following) considered in this study are illustrated in Fig. 9. As shown in this figure, the
optimisation domain at the macroscopic scale is a cube of side aMi = 300 mm (i = 1, 2, 3),
which is meshed with SOLID185 elements (eight nodes, three DOFs per node, reduced
integration): the element size is 10 mm for an overall number of NM

e = 27000 elements.
Moreover, the cube is clamped at the nodes A, B, C and D corresponding to the vertices
of the bottom face.
As illustrated in Fig. 9, problem (29) is solved for 3D-BK by considering two load cases
(LCs): in the first one (LC1) only traction loads P along xM2 axis are applied on nodes
E, F, G, H and I belonging to the top face, whilst in the second one (LC2) shear forces P
are applied on nodes E, F, G, H (in order to generate a non-zero torque) and a traction
load P is still applied on node I. The idea is to investigate the influence of the macroscopic
loading condition on the optimised RVE topology at the lower scale. The value of the
force applied on the generic node is P = 300 N.

At the lower scale the RVE domain is a cube of side 2am1 = 2am2 = 2am3 = 10 mm. The
RVE size has been chosen in order to have, at least, 30 repetitive units along the generic
axis xMi at the macroscopic scale. The RVE model has been meshed with Nm

e = 8000
SOLID185 elements.

(a) (b)

Figure 9: Geometry and boundary conditions of the benchmark problem 3D-BK: (a) only axial forces are
applied at the macroscopic scale, (b) axial and shear forces are applied at the macroscopic scale

For both LCs, the CNLPP of Eq. (29) has been enhanced by considering a constraint on
the minimum length scale requirement: the minimum dimension of the optimised topology
should be greater than or equal to dmmin = 0.5 mm. To automatically satisfy the minimum
length scale requirement without introducing an explicit constraint in the problem formu-
lation, according to the methodology presented in [51], B-spline and NURBS entities with
pj = 3 (j = 1, 2, 3) and nCP = 18 × 18 × 18 are used for these analyses. Moreover, an

21



initial guess characterised by a uniform density field ρ(ζm1 , ζ
m
2 , ζ

m
3 ) = γ has been selected.

The reference macroscopic compliance is WM
ref = 692.29 Nmm for the first load case and

WM
ref = 504.94 for the second one.

Numerical results are provided in terms of macroscopic compliance WM , number of itera-
tions Niter and measured minimum member size, i.e. dmmin−meas, for B-spline and NURBS
entities in Fig. 10 (the topology illustrated in Fig. 10d has been cut with the plane

ym1 =
am1
2 in order to show the internal structure of the RVE). For each solution the

requirement on the mass fraction is always satisfied and the solution is located on the
boundary of the feasible domain.

(a) LC1, WM = 360.05 Nmm,
Niter = 73, dmmin−meas = 1.17 mm

(b) LC2, WM = 207.07 Nmm,
Niter = 100, dmmin−meas = 1.60 mm

(c) LC1, WM = 301.05 Nmm,
Niter = 77, dmmin−meas = 1.0 mm

(d) LC2, WM = 164.58 Nmm,
Niter = 100, dmmin−meas = 0.5 mm

Figure 10: Benchmark problem 3D-BK: influence of the loading condition at the macroscopic scale on the
RVE optimised topology for (a)-(b) B-spline and (c)-(d) NURBS solutions with p1 = p2 = p3 = 3 and
nCP = 5832

As it can been inferred from Fig. 10, the macroscopic loading condition has a strong
influence on the RVE optimised topology at the lower scale.
Firstly, it must be pointed out that NURBS solutions show better performances than the B-
spline counterparts, regardless of the considered LC. Moreover, thanks to the geometrical
properties of the NURBS blending functions, the requirement on the minimum length
scale is always satisfied. In particular, it is noteworthy that the minimum length scale
constraint is active for the NURBS solution illustrated in Fig. 10d.
Secondly, in order to properly withstand the applied loads at the macroscopic scale and
to minimise WM , the RVE topology evolves in such a way to optimise the macroscopic
elastic response of the continuum. As a consequence, for each LC, the matrix CM related
to the optimised topology is characterised by the most efficient elastic symmetry for that
case. The elastic constants for each topology are reported in Table 3.

As expected, the optimised RVE topologies (B-spline and NURBS solutions) for LC1

22



Table 3: 3D-BK: elastic constants for the optimised topologies in the case p1 = p2 = p3 = 3 and nCP = 5832
for each load case

Elastic constant LC1 LC2

B-spline NURBS B-spline NURBS

EM1 [MPa] 12375.13 13575.96 15648.95 19134.29
EM2 [MPa] 21792.07 25179.94 14704.77 14268.34
EM3 [MPa] 12375.23 13599.33 15648.95 19134.34
GM12 [MPa] 4895.14 5829.61 3161.04 3083.47
GM13 [MPa] 610.23 773.16 3466.19 5176.82
GM23 [MPa] 4895.17 5840.89 3161.04 3083.43

νM12 0.19 0.18 0.19 0.20
νM13 0.11 0.19 0.20 0.24
νM23 0.33 0.33 0.18 0.15

show a macroscopic orthotropic behaviour with the main orthotropy axis aligned with the
load direction, i.e. xM2 axis. The Young’s moduli EM1 and EM3 , the shear moduli GM12 and

GM23 as well as the Poisson’s coefficients νM12 and νM32 = νM23
EM

3

EM
2

are equal but the material

does not show a transverse isotropic behaviour because GM13 6=
EM

1

2(νM13+1)
. The macroscopic

elasticity tensor of B-spline and NURBS solutions for LC2 are still orthotropic, but
with a value of the Young’s moduli EM1 and EM3 higher than EM2 (which implies that
the main orthotropy direction is no longer aligned with the xM2 axis) and with a higher
value of the shear modulusGM13 in order to withstand shear loads (and the resulting torque).

6. Conclusion

In this work, multi-scale TO problems of LSs have been formulated in an innovative
SIMP algorithm based on NURBS entities. In particular, the proposed approach consider
the topological variable defined only at the lattice RVE scale, while physical responses can
be defined at each pertinent scale of the LS, depending on the requirements of the problem
at hand. The proposed approach is based on NURBS hyper-surfaces, on the standard FE
method and on the SEHM involving elements strain energy to perform the scale transition.

Some features of the proposed framework need to be highlighted.

• Three main advantages of the NURBS formalism can be clearly identified: (a) unlike
the classical SIMP approach, there is no need to define a further filter zone, as the
NURBS local support establishes an implicit relationship among contiguous mesh
elements, (b) when compared to the classical SIMP approach, the number of design
variables is reduced and (c) the CAD reconstruction phase is straightforward.

• A sensitivity analysis of the optimised topology of the RVE to the NURBS inte-
ger parameters has been performed. Unlike the classical problem of the compliance
minimisation subject to a constraint on the volume fraction stated on a single scale,
when B-spline entities are employed to describe the pseudo-density field of the RVE,
the greater the number of CPs (for a given degree) or the bigger the degree (for a
given number of CPs) the smaller the objective function value. Conversely, when
NURBS entities are used to describe the RVE topological variable, no general rules
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can be defined and the results seem to approximately satisfy the global trend ob-
served in previous works (i.e. the smaller the degree or the higher the CPs number
the lower the objective function value). Moreover, an excellent trade-off between
computational costs and performances of the final solution can be achieved by using
a CPs number equal to three-quarters of the number of mesh elements.

• The role of NURBS weights has been assessed. In particular, by considering same
number of CPs and degrees, the objective function of the NURBS solution is lower
than the B-spline counterpart, and the boundary of the NURBS solution is smoother
than that of the B-spline solution.

• The influence of the initial guess has been taken into account. Particularly, multi-
scale TO problems are strongly non-convex and are characterised by several local
minima. Therefore, a particular care must be put in the choice of the (feasible) ini-
tial guess and multiple optimisation calculations (by using different starting points)
should be performed in order to find an efficient local minimiser.

• The macroscopic loading condition strongly influences the optimised topology of the
RVE. In particular, in order to satisfy the requirements of the problem at hand and
to withstand the applied loads, the RVE topology evolves towards a configuration
optimising the macroscopic elastic response of the continuum.

• The minimum-length scale requirement is correctly taken into account, without intro-
ducing an explicit optimisation constraint, by properly setting the integer parameters
of the NURBS entity.

• The better performances, in terms of computational costs when used in the frame-
work of multi-scale TO, of the SEHM based on elements strain energy over the
SEHM based on elements averaged stresses have been rigorously proven.

As far as prospects are concerned, this paper is far from being exhaustive on the topic
of multi-scale analyses and LS design by means of TO. Firstly, the proposed methodology
should be extended to the case of multi-scale TO problems where topological variables
are defined at different scales. To this end, in the framework of the NURBS-based SIMP
method, the number of NURBS entities should be equal, at least, to the number of scales,
involved into the problem formulation, wherein the definition of a topological variable
makes sense. The relationships occurring among these entities (i.e. the topological vari-
ables defined at different scales) should be carefully determined in order to correctly state
the optimisation problem and to satisfy the hypotheses at the basis of the SEHM.
Secondly, pertinent manufacturing requirements, related to the additive manufacturing
process, should be integrated into the multi-scale TO problem formulation, especially in
terms of the RVE geometrical features, e.g. overhang angle, admissible curvature, etc.
Finally, suitable failure criteria should be formulated for the homogeneous anisotropic ma-
terial at the macroscopic scale and integrated in the multi-scale TO problem formulation.
Furthermore, in order to identify the most critical regions at the macroscopic scale and
to transfer the local stress/strain field to the lattice RVE a modified SEHM with a strong
coupling between scales should be developed and integrated in the optimisation process.
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T. Roiné is grateful to Nouvelle-Aquitaine through the OCEAN-ALM project.

24



Data availability

The raw/processed data required to reproduce these findings cannot be shared at this
time as the data also forms part of an ongoing study.

A. Compliance gradient for multi-scale problems

The proof of Proposition 4.1 is given here below.

Proof. Inasmuch as body forces are identically null, the derivative of the right-hand side
of Eq. (26) is

∂fM

∂ξik
= 0, i = 1, 2, k = 1, ..., nCP, (A.1)

which implies the following equality

∂
(
KMuM

)
∂ξik

= 0 ⇒ ∂uM

∂ξik
= −(KM )−1

∂KM

∂ξik
uM . (A.2)

The macroscopic compliance is defined as:

WM := fMTuM . (A.3)

By taking into account for Eqs. (A.1) and (A.2), the derivative of WM reads

∂WM

∂ξik
= fMT∂u

M

∂ξik
= −uMT∂K

M

∂ξik
uM . (A.4)

By injecting the expression of KM of Eq. (27) in the above formula and by considering
the expression of εMe of Eq. (35) one gets:

∂WM

∂ξik
= −

NM
e∑

e=1

∫
VM
e

εMT
e

∂CM

∂ξik
εMe dΩ

≈ −
NM

e∑
e=1

6∑
q=1

6∑
r=1

∂CMqr
∂ξik

εMeq ε
M
erV

M
e .

(A.5)

Inasmuch as the SEHM based on elements strain energy is used in this work, the derivatives
of the components CMqr of the macroscopic elasticity tensor can be easily calculated from
Eqs. (14) and (15):

∂CMqr
∂ξik

=



1

VRVE

(
εmq,0

)2 ∂Wm
(
εmq,0
)

∂ξik
, if q = r,

1

2VRVEεmq,0ε
m
r,0

∂Wm
(
εmq,0, ε

m
r,0

)
∂ξik

+

−
εmq,0
2εmr,0

∂CMqq
∂ξik

−
εmr,0
2εmq,0

∂CMrr
∂ξik

, if q 6= r.

(A.6)
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The next passage consists of expressing the derivative of the compliance at the lower scale,
i.e. ∂Wm

∂ξik
. Since Eqs. (10) and (11) hold, the compliance of the RVE can be expressed as:

Wm =fmTum + umT
BC rm + ηT (Kmum + Km

BCu
m
BC − fm) +

+ λT
(
KmT

BCum + K̃mumBC − rm
)
,

(A.7)

where ηm ∈ RNm
DOF and λm ∈ RNm

BC are two arbitrary vectors. Under the hypothesis that
vectors fm and umBC do not depend on the topological variable, i.e.

∂fm

∂ξik
= 0,

∂umBC

∂ξik
= 0, (A.8)

the derivative of Eq. (A.7) reads:

∂Wm

∂ξik
=fmT∂u

m

∂ξik
+ umT

BC

∂rm

∂ξik
+

+ ηT
(
∂Km

∂ξik
um + Km∂u

m

∂ξik
+
∂Km

BC

∂ξik
umBC

)
+

+ λT

(
∂KmT

BC

∂ξik
um + KmT

BC

∂um

∂ξik
+
∂K̃m

∂ξik
umBC −

∂rm

∂ξik

)
.

(A.9)

In Eq. (A.9), vectors η and λ can be chosen such that the terms multiplying
∂um

∂ξik
and

∂rm

∂ξik
vanish, i.e.

λ = umBC,

Kmη = −fm −Km
BCλ = −fm −Km

BCu
m
BC = Kmum − 2fm.

(A.10)

By injecting Eq. (A.10) in Eq. (A.9) one obtains:

∂Wm

∂ξik
=umT∂K

m

∂ξik
um + 2umT∂K

m
BC

∂ξik
umBC + umT

BC

∂K̃m

∂ξik
umBC+

− 2fmT(Km)−1
(
∂Km

∂ξik
um +

∂Km
BC

∂ξik
umBC

)
.

(A.11)

Inasmuch as the PBCs of Eq. (9) are imposed in terms of displacements and no external
forces are applied to the FE model of the RVE, i.e. fm = 0, and since Eqs. (10) and (11)
hold, Eq. (A.11) simplifies to:

∂Wm

∂ξik
= ûmT∂K̂

m

∂ξik
ûm. (A.12)

By considering the expression of the non-reduced stiffness matrix of the FE model of the
RVE of Eq. (22) and by taking advantage from the local support property of Eq. (8), the
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above formula becomes:

∂Wm

∂ξik
=
∑
e∈Sk

α

ρe

∂ρe
∂ξik

ραe û
mTL̂mT

e Km
e L̂

m
e û

m

=
∑
e∈Sk

α

ρe

∂ρe
∂ξik

ûmT
e f̂me =

∑
e∈Sk

α

ρe

∂ρe
∂ξik

wme ,

(A.13)

where ûme , f̂me ∈ RN
m
DOF,e are the generalised nodal displacements and forces of element e,

while wme is the compliance of element e. Finally, by injecting Eq. (A.13), evaluated for
each elementary strain field, into Eq. (A.6), one can easily retrieve Eq. (34) and this last
passage concludes the proof. �

It is noteworthy that, when the SEHM based on elements strain energy is used, the
assessment of the gradient of the macroscopic compliance requires the resolution of seven
static analyses, i.e. six static analyses to get the macroscopic elasticity tensor CM , by
solving Eq. (10) for each elementary strain field εmr,0, (r = 1, · · · , 6), and one static
analysis at the macroscopic scale by solving Eq. (26). Therefore, for each iteration of
the optimisation process, Algorithm 1 is invoked to carry out all the necessary steps for
computing the gradient of WM .

Algorithm 1 Computation of the gradient of WM .

1: Set εmr,0 = 0, ∀r = 1, · · · , 6
2: for r = 1, · · · , 6 do
3: Set εmr,0 6= 0

4: Solve Eq. (10) and get ûme
(
εmr,0
)
, f̂me

(
εmr,0
)
, wme

(
εmr,0
)
, ∀e = 1, · · · , Nm

e

5: Calculate CMrr from Eq. (14)

6: Calculate
∂CMrr
∂ξik

from the first of Eq. (34)

7: end for
8: for q = 1, · · · , 6 do
9: for r = q, · · · , 6, do

10: Calculate Wm
(
εmq,0, ε

m
r,0

)
from Eq. (16)

11: Calculate CMqr from Eq. (15), set CMrq = CMqr

12: Calculate wme
(
εmq,0, ε

m
r,0

)
=
[
ûmT
e

(
εmq,0
)

+ ûmT
e

(
εmr,0
)] [

f̂me
(
εmq,0
)

+ f̂me
(
εmr,0
)]

, ∀e

13: Calculate
∂CMqr
∂ξik

from the second of Eq. (34)

14: end for
15: end for
16: Solve Eq. (26) and get εMe , ∀e = 1, · · · , NM

e

17: Calculate
∂WM

∂ξik
from Eq. (33)

B. On the computational costs of the strain energy homogenisation method

As stated in Appendix A, the SEHM based on elements strain energy needs only seven

static analyses per iteration to compute the gradient of the macroscopic compliance
∂WM

∂ξik
.
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Conversely, the SEHM based on elements averaged stresses needs a higher computational
effort. In order to understand this point, consider the r-th column of the macroscopic
elasticity tensor of Eq. (12). It can be rewritten as

cMr =
1

VRVEεmr,0

Nm
e∑

e=1

σme (εmr,0)V
m
e +

+ µT
(
Kmum(εmr,0) + Km

BCu
m
BC(εmr,0)

)
,

(B.14)

because the second term of the right-hand side of the above formula is identically zero
(recall that the equilibrium problem of the RVE is of the Dirichlet’s type, i.e. fm = 0). In
Eq. (B.14), µ ∈ RNm

DOF×6 is the arbitrary adjoint matrix. The derivative of Eq. (B.14) is:

∂cMr
∂ξik

=
1

VRVEεmr,0

Nm
e∑

e=1

∂σme
∂ξik

V m
e +

+ µT
(
∂Km

∂ξik
um + Km∂u

m

∂ξik
+
∂Km

BC

∂ξik
umBC

)
.

(B.15)

The derivative of σme can be assessed by considering its expression:

σme := ραeC
mBm

e L̂
m
e û

m, (B.16)

where Cm is the elasticity matrix of the bulk material composing the RVE. The derivative
of Eq. (B.16) reads:

∂σme
∂ξik

=
α

ρe

∂ρe
∂ξik

σme + ραeC
mBm

e L̂
m
e

∂ûm

∂ξik
, (B.17)

which, due to Eq. (A.8), can be simplified to:

∂σme
∂ξik

=
α

ρe

∂ρe
∂ξik

σme + ραeC
mBm

e L
m
e

∂um

∂ξik
, (B.18)

where Lme ∈ RN
m
DOF,e×N

m
DOF is the connectivity matrix obtained by suppressing NBC

columns, corresponding to the imposed displacements, from matrix L̂me . By injecting
Eq. (B.18) in Eq. (B.15) and by taking into account for the local support property of Eq.
(8) one obtains:

∂cMr
∂ξik

=
1

VRVEεmr,0

∑
e∈Sk

∂ρe
∂ξik

σme V
m
e + ι

∂um

∂ξik
+

+ µT
(
∂Km

∂ξik
um + Km∂u

m

∂ξik
+
∂Km

BC

∂ξik
umBC

)
,

(B.19)

where ι is defined as

ι :=
1

VRVEεmr,0

Nm
e∑

e=1

V m
e ραeC

mBm
e L

m
e , ι ∈ R6×Nm

DOF . (B.20)
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In Eq. (B.19), the matrix µ can be chosen such that the term multiplying
∂um

∂ξik
vanishes,

i.e.

Kmµ = −ιT, (B.21)

which corresponds to six linear systems where the unknowns are the column vectors com-
posing the matrix µ, i.e µ = {µ1, · · · ,µ6}, with µi ∈ RNm

DOF . Finally, by injecting Eq.
(B.21) into Eq. (B.19), one obtains:

∂cMr
∂ξik

=
1

VRVEεmr,0

∑
e∈Sk

∂ρe
∂ξik

σme V
m
e + µT

(
∂Km

∂ξik
um +

∂Km
BC

∂ξik
umBC

)
. (B.22)

It is noteworthy that the computation of the macroscopic compliance derivative
∂WM

∂ξik
when using the SEHM based on elements averaged stresses requires, at each iteration of
the optimisation process, the resolution of 43 linear systems: seven analyses, consisting of
Eqs. (10) and (B.21), for each one of the six elementary strain fields plus the macroscopic
FE analysis to solve Eq. (26).
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