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Abstract: Hormone therapy (HT) is an effective treatment for metastatic endometrial carcinoma
(mEC), with limited toxicity and low cost. We focused on molecular analysis of mECs treated by
HT and, for the first time to date, we compared the genomic profiles of paired metastasis and
primary ECs. The main objective was to identify predictive factors of the response to HT as well
as specific altered signaling pathways driving mEC biology. From 1052 patients with EC treated
by HT in two French cancer centers, 32 with endometrioid EC and 6 with high grade serous EC
were included. We evaluated hormone receptors (HR) and mismatch repair proteins expression by
immunohistochemistry and gene alterations by targeted next-generation sequencing and array-based
comparative genomic hybridization. Several variables were tested in univariate and multivariate
analyses to identify potential associations with (i) the clinical benefit of HT (CBHT) and (ii) a longer
response (>18 months) (LRHT) and overall survival (OS). We compared the biological and genomic
profiles of 11 primary/metastatic EC pairs. Thirty tumors (78.9%) were HR-positive and 6 (15.8%)
showed microsatellite instability (MSI). The genomic profiles of 34 tumors showed an average altered
genome of 3.26%, DNA repair homologous recombination deficiency in five tumors (14.7%), and
17 regions significantly targeted by amplification/deletion. Thirty-three tumors had 273 variants
(158 genes, median of 7 mutations/sample), including 112 driver mutations. TP53, PTEN, PPP2R1A,
ARID1A, FGFR2, and PIK3CA were the most frequently mutated. Based on the genomic status, nine
oncogenic pathways were altered in more than 25% of primary EC. Clinically, 22 (57.9%) and 6 (15.8%)
patients presented CBHT and LRHT, respectively. Neither oncogenic pathways alterations nor the
variables tested were associated with CBHT and LRHT. Only patient’s age, mitotic index and the
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presence of at least one HR were associated with OS. Paired analysis of the primary/metastatic
samples showed that among the 22 mutations acquired in the metastatic counterparts, the most
frequently targeted genes were involved in pathways that might confer a selective advantage to
cancer metastasis including hormone resistance. In conclusion, only patient’s age, mitotic index and
the presence of at least one HR were associated with OS. The identification of gene mutations newly
acquired in metastasis might help to better understand the formation of EC metastasis and select the
best actionable candidates for HT-treated patients at the metastatic stage.

Keywords: metastatic endometrial carcinoma; hormone therapy; predictive factors; mutations; copy
number alterations; protein expression

1. Introduction

In 2020, endometrial carcinoma (EC) was the sixth most common malignancy in
women and the second most common gynecological cancer after cervical cancer, with an
incidence of 11.1 cases for 100,000 women and a mortality rate of 2.1 for 100,000 women [1].
ECs are stratified according to the World Health Organization (WHO) classification system
into several pathological subgroups including endometrioid, serous, clear cell, mixed cell
adenocarcinoma, and other relatively rare types such as mucinous adenocarcinoma, neu-
roendocrine tumors, dedifferentiated carcinoma, and undifferentiated carcinoma. Although
overall prognosis is good, EC recurrence is observed in about 20% of patients [2].

The management of metastatic EC (mEC) is not well codified and may include
chemotherapy and hormone therapy (HT). HT should be considered as a first-line treatment
because of its low toxicity in a population of patients with frequent co-morbidities (e.g.,
obesity/overweight, diabetes) [3]. The response rate to progestins (medroxyprogesterone
acetate mainly) in mEC is about 25%, but the clinical benefit rate can reach 56% [4,5]. To
date, there is no predictive factor of the response to HT; the assessment of the hormone
receptor (HR) status is not necessary [6–8] and has been rarely assessed in the literature [9].
Nevertheless, it has been suggested that progesterone receptor (PR) expression in the tumor
could be a predictive factor of the response to HT and should be tested before treatment
initiation [3]. However, to optimize the identification of patients who will benefit from HT,
additional predictive biomarkers of HT response are needed [8].

As illustrated by some studies in ovarian and other cancers [10–12], high-throughput
molecular analyses now allow the rapid and effective evaluation of the tumor profile
to tailor adjuvant therapy and to predict the response to treatments. Concerning EC,
molecular classification, mainly based on whole-exome sequencing, was derived from
associations with pathological features [13], before being recently simplified to be clinically
applicable [14,15] and suggesting the use of emerging targeted therapies [16]. However, to
date, no molecular stratification of EC is currently used in the routine to adapt adjuvant
therapy or to predict the therapeutic response. The objective of this retrospective study
was to identify predictive factors of the response to HT in mEC by applying molecular
and immunohistochemistry (IHC) analyses. We also compared the molecular profiles of
11 paired primary tumor/metastatic samples.

2. Materials and Methods
2.1. Patients

This retrospective study involving two French comprehensive Cancer Centers, the
Institut du Cancer de Montpellier (Montpellier, France) and the Institut Paoli-Calmettes
(Marseille, France), concerned patients treated between January 2000 and January 2016. The
medical files of all patients with mEC treated during this period were reviewed. Inclusion
criteria were: mEC, endometrioid or serous type, treated by HT, and availability of formalin-
fixed paraffin-embedded (FFPE) primary and metastatic tumor samples. Exclusion criteria
were: HT for an associated breast cancer, and HT response not evaluable. The study was
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approved by the local translational research committee (CORT-27062016). Patients gave
their signed informed consent.

2.2. Tumor Samples

FFPE samples of the primary tumor, and of the metastatic tumor if possible, were
analyzed. First, the local expert in gynecologic pathology confirmed the EC pathological
type and selected the tumor areas with at least 30% of cancer cells for genomic analysis after
examination of hematoxylin and eosin-stained tumor sections. Then, estrogen receptor
(ER), progesterone receptor (PR), and microsatellite instability (MSI) status (based on
the expression of the mismatch repair proteins MLH1, MSH2, MSH6, and PMS2) were
assessed by IHC using antibodies and protocols described in Table S1. MSI was also
determined with the fluorescent multiplex PCR-based Microsatellite Instability Analysis
system, v. 1.2 (Promega) with DNA extracted from the FFPE blocks. For all tumors, MSI
status was assessed by both IHC and PCR testing, as usually performed in our centers for
EC due to the possible lack of sensitivity of IHC [17]. Loss of expression was recorded
when the nuclear staining was absent in all cancer cells and preserved in normal epithelial
and stromal cells. A tumor was considered as ER and/or PR positive when ≥10% of tumor
cells were positive. Mitotic count corresponded to the number of mitotic figures observed
in 10 high-power fields (×400). For molecular analyses, tumoral DNA was extracted
from FFPE tumor samples (10 sections of 5 µm per sample; mean percentage of cancer
cells = 60%) using the QIAamp DNA FFPE Tissue Kit from QIAGEN (QIAamp DNA Stool
Mini Kit, QIAGEN, Courtaboeuf, France), according to the manufacturer’s instructions.
Quality was verified on polyacrylamide gel electrophoresis, and concentration assessed by
using Qubit dsDNA BR Assay.

2.3. Targeted Next-Generation Sequencing (tNGS)

Mutation profiles were established by using tNGS as previously described [18]. For
each sample, a library of all coding exons and intron–exon boundaries of 495 cancer-
associated genes (custom panel, “TSV9 FFPE”, Agilent Design ID: 27066-1418742171 de-
scribed in Table S2) was constructed using the HaloPlex Target Enrichment System (Agilent
Technologies, Santa Clara, CA, USA) as previously described [18]. The custom-made panel
was built with 495 genes selected for their involvement in cancers including the most
frequently mutated genes in endometrial carcinomas (i.e., ARID1A, ARID5B, CTNNB1,
KRAS, PIK3CA, POLE, PTEN, and TP53) [13,19] as well as ESR1 and DNA repair genes
(MMR, homozygous recombination, etc.). Its design was optimized for FFPE samples
with help of Agilent Technologies. Libraries were qualified and quantified on Bioanalyzer
(Agilent Technologies, Massy, France) and QuBit fluorometer (Thermo Fischer Scientific,
Breda, Netherlands) before being sequenced (2 × 150 bp paired ends reads) using the
Illumina MiSeq platform according to the manufacturer’s instructions (Illumina, San Diego,
CA, USA), as previously described [18].

The sequence data were aligned to the human reference genome (UCSC hg19) using
Burrows–Wheeler Aligner [20]. Tumor samples were sequenced at an average depth of
640× (range, 23 to 1853) for the targeted regions. Bam files were processed as described [18].
Single nucleotide variants (SNVs) calling was performed with Varscan2 version v2.3.8 [21]
with a minimal alternate variant frequency and coverage set at 0.02 and 10, respectively.
Insertions/deletions (indels) calling was performed using GATK haplotypecaller version
3.7 [22] with default parameters and pindel [23]. The variants, i.e., SNVs and indels, were
annotated with the Annotate Variation Software (ANNOVAR, version 2013-11-12). Known
variants found in dbsnp129 and dbsnp137 with a variant allele frequency (VAF) superior to
1% (1000 G or ESP6500) were removed. Finally, low frequency SNVs and indels that were
suspected to be false positives were systematically inspected with IGV version 2.3.32 [24,25].
Mutations were classified as “neutral” or “damaging” using the majority rule of predictor
software (provided by dbnsfp: Sift, Polyphen2, LRT, MutationTaster, MutationAssesor,
FATHMM, RadialSVM, LR) as previously described [26]. A “recurrent” mutation, also
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called “hot spot”, was defined as being found more than 10 times in the Catalogue of
Somatic Mutations in Cancer (COSMIC V68) database (http://cancer.sanger.ac.uk/cosmic,
accessed on 30 May 2017); the other variants were defined as “non-recurrent”. Driver
mutations were established by using Cancer Genome Interpreter (CGI, https://www.
cancergenomeinterpreter.org/home, accessed on 6 May 2021).

2.4. Array Comparative Genomic Hybridization (aCGH)

The genomic profiles were established by using aCGH onto high-resolution 4 × 180 K
CGH microarrays (SurePrint G3 Human CGH Microarray Kit, Agilent Technologies, Massy,
France). For each patient, tumor DNA was co-hybridized with a pool of human normal fe-
male DNAs used as reference (G1471 Promega). Microarrays were scanned with an Agilent
Autofocus Dynamic Scanner (G2565BA, Agilent Technologies, Massy, France). Data were
analyzed and visualized with the CGH Analytics 3.4 software (Agilent Technologies, Massy,
France) as previously described [18,27]. All probes for aCGH were mapped according to
the hg19/NCBI human genome mapping database. For each gene, the DNA copy number
alteration was established using two different threshold values (log2 ratio > |0.5| and |1|)
to distinguish low (gain/loss) from high (amplification/deletion) level copy number alter-
ations (CNA), respectively [27].

The percentage of genome altered was calculated as the sum of altered probes divided
by the total number of probes after removing sexual chromosomes. GISTIC analysis
was performed with alteration threshold set to 1 for both amplifications and deletions.
Copy number profiles of EC samples were categorized into copy number-low and copy
number-high according to the mean value of percentage of genome altered as previously
described [13]. Then, to simplify the statistical analysis due to the low number of included
samples, data were grouped in two categories: gain/amplification and loss/deletion. For
each tumor, a homologous recombination deficiency (HRD) score (HRD aCGH score),
based on losses of heterozygosity (LOH), was calculated [28]. A score ≥10 was considered
as HRD-high.

In addition to the analysis of individual genes, we also analyzed 20 oncogenic path-
ways. These latter are defined in Table S3: DNA damage repair pathway (BER, NER,
MMR, FA, HRD, NHEJ, DR, TLS, NP, OTHER) and pathways related to Cell Cycle, HIPPO,
MYC, NOTCH, NRF2, PI3K, RTK_RAS, TGFβ, TP53, and WNT were assembled from data
previously reported [29,30]. For each gene included in a pathway, we defined its role as
oncogene, tumor suppressor gene (TSG), or undetermined. Based on gene mutation and
CNA targeting oncogenic pathways, potential altered oncogenic pathways were identified.
For an oncogene, the alteration was retained only when it was mutated or amplified. For
a TSG, the alteration was retained only when it was mutated or lost/deleted. For an
undetermined gene, the alteration was retained only when it was mutated, amplified, or
lost/deleted. A pathway was considered altered when at least one gene in this pathway
was altered.

2.5. Statistical Analysis

The primary clinical endpoint was the clinical benefit of HT (CBHT) in the metastatic
setting, defined as a complete or partial response to HT or stable disease for ≥6 months
from the start of HT, according to the RECIST 1.1 criteria. This endpoint was used in
previous studies on HT in mEC [5]. Secondary clinical endpoint was long-lasting response
to HT (LRHT), defined as complete or partial response for ≥18 months from the start of
HT. Overall survival (OS) was defined as the time from the first metastatic relapse to death
from any cause.

The patients’ characteristics are described using frequencies (%, n) for qualitative
data, and medians (interquartile range) for quantitative data. Continuous variables were
compared using the Wilcoxon or Kruskal—Wallis test. Categorical data were compared
using the Fisher’s exact test. The median follow-up was calculated with the reverse Kaplan–
Meier method from the start of metastatic event. Survival rates were estimated with the
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Kaplan–Meier method [31], and presented with their 95% confidence intervals (95% CI).
Univariate and multivariate prognostic analyses were conducted using the Cox regression
model. All variables with p < 0.1 in univariate analysis were included in the multivariate
analysis. Variables including clinical and biological features as well as genes mutated in
at least 3 samples were tested for association with CBHT in univariate and multivariate
analyses by using the logistic regression model. All statistical analyses were conducted
with R 3.5.1 (R Development Core Team (2018) R Foundation for Statistical Computing,
Vienna, Austria). The level of significance was set at p < 0.05 and all tests were two-sided.

3. Results
3.1. Patients and Samples Characteristics

A total of 38 patients with mEC and available primary tumor samples were retrospec-
tively selected. Paired samples of both the primary and metastatic tumors were available
for 11 patients. The patients’ characteristics are summarized in Table 1. The median over-
all survival (OS) was 40 months (95% CI: 14–74) (Figure S1). The median follow-up was
155 months from the date of the first metastatic relapse. Twenty-one patients (54%) received
HT as a first-line treatment for the metastatic disease (without any previous chemother-
apy). Progestins were the main HT (71.1%). Other patients received HT in the metastatic
setting in the 2nd, 3rd, 4th, or 5th line. All EC samples were analyzed by our local expert
pathologist in gynecologic oncology. This analysis confirmed that 32 patients (84.2%) had
endometrioid EC and 6 (15.8%) high grade serous EC (HGSEC). IHC analysis showed the
positivity of at least one HR (ER or PR) in 30/38 (78.9%) samples. Moreover, six tumors
(15.8%) displayed an MSI status.

Table 1. Clinicopathological characteristics of patients with endometrial cancer.

Patient Characteristics 38 Patients Included
(Interquantile Range or %)

Age in years old at diagnosis, median
(IQR) 67 (61.25–74.50)

Weight in kg at diagnosis, median (IQR) 64 (56–75)
Patients with high blood pressure n = 33 18 (47.4%)

Patients with diabetes mellitus n = 32 5 (13.2%)
Surgical route of the primary EC

Laparoscopy 3 (7.9%)
Open surgery 31 (81.6%)

Robotic surgery 4 (10.5%)
FIGO stage of the primary EC

1A 7 (18.4%)
1B 8 (21.1%)
2 2 (5.3%)

3A 7 (18.4%)
3B 1 (2.6%)
3C 8 (21.1%)
4A 1 (2.6%)
4B 4 (10.5%)

Pathological grade of the primary EC
1 11 (28.9%)
2 17 (44.7%)
3 10 (26.3%)

Pathological type (centralized review)
HGSEC 6 (15.8%)

EEC 32 (84.2%)
Hormone therapy (metastatic EC)

Progestins 27 (71.1%)
AI 7 (18.4%)
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Table 1. Cont.

Patient Characteristics 38 Patients Included
(Interquantile Range or %)

Sequential
AI—Progestins 2 (5.3%)

SERM 2 (5.3%)
Number of treatments before HT in the

metastatic setting
0 21 (54%)
1 11 (28.9%)
2 4 (10.5%)
3 1 (2.6%)
4 1 (2.6%)

First-line chemotherapy (metastatic EC)
(n = 25)

Carboplatin–
Paclitaxel 18 (72%)

Carboplatin 3 (12%)
Carboplatin + Other

drug 1 (4%)

Other drug 3 (12%)
Footnotes: FIGO: Fédération Internationale de Gynécologie et d’Obstétrique; EC: Endometrial Cancer;
HGSEC: High Grade Serous Endometrial Cancer; EEC: Endometrioid Endometrial Cancer; AI: Aromatase In-
hibitor; HT: hormone therapy.

3.2. Genomic Alterations of Tumor Samples

Among the 38 selected patients, DNA extraction from primary tumor samples failed
for three patients and NGS data of two samples did not meet the quality criteria and were
not interpretable due to low coverage. Thus, aCGH and tNGS data were available for 34 and
33 patients, respectively. Both aCGH and tNGS data were available in 32 patients (Figure 1).
After filtering, we retained 273 variants (248 SNVs and 28 indels) involving 158 genes
(Table S4). Among them, 112 variants (41%) were annotated as driver mutations (TIER1
and TIER2) by the cancer genome interpreter (CGI). The mean number of mutations per
sample was seven. The six most frequently mutated genes were TP53 (36%), PTEN (30%),
PPP2R1A (24%), ARID1A (21%), FGFR2 (18%), and PIK3CA (15%). Two POLE variants
of unknown significance (VUS) were identified in two samples (see Table S4). The mean
percentage of altered genomes observed by aCGH in the 34 tumors was 3.26%. GISTIC
analysis identified 16 regions of amplifications and one region of deletion significantly
altered (FDR < 0.05) (Tables S5 and S6, respectively). Among them, four amplified genes
are known to act as drivers by CGI: ESR1 (6q25.1), MDM2 (12q15), ERBB2 (17q12), and
AKT2 (19q13.2) (Table S7). The HRD profile was observed in five tumors (14.7%).

We then searched for potential correlations between genomic profiles (CNA), patho-
logical type, mutation, and MSI status. HGSEC tended to present a higher percentage
of altered genomes than endometrioid EC (p = 0.103, Wilcoxon test). Profiles with TP53
mutation were associated with a higher percentage of altered genomes (p = 0.005, Wilcoxon
test) than those without TP53 mutation. Conversely, profiles with PTEN mutation were
associated with a lower percentage of altered genomes (p = 0.026, Wilcoxon test) than those
without PTEN mutation. Patients with MSI profile were associated with a higher number
of gene mutations (p = 0.008, Wilcoxon test). TP53 and PTEN mutations were significantly
observed in high and low CNA profiles, respectively (p = 0.006 and p = 0.034, Fisher test,
respectively). This suggests that TP53 and PTEN mutations might be involved in distinct
tumorigenic mechanisms. Based on gene mutations and CNAs, RTK_RAS (75%), OTHER
DNA damage repair (66%), PI3K (62.5%), NOTCH and TP53 (44%), WNT and HRD (31%),
FA (28%), and HIPPO (25%) oncogenic pathways were identified as being altered in more
than 25% of primary EC, whereas the Cell Cycle, BER, NER, and MYC pathways were
altered in more than 10% of cases (Table S8).
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Figure 1. Genomic alterations mainly target oncogenic driver genes in 32 primary ECs. Oncoprints
of the 28 frequently altered genes were analyzed in 32 samples: Somatic alterations (mutations or
high CNAs (amplification, deep deletion)) are color-coded according to the legend (right part). The
genes (rows) are ordered from top to bottom by the decreasing number of altered tumors (right
panel), and tumors (columns) are reordered to visualize the mutual exclusivity between samples.
The total number of molecular alterations is indicated for each sample (top panel). Among them,
a somatic hotspot mutation is defined as a variant with at least 10 occurrences in the COSMIC
database [https://cancer.sanger.ac.uk/cosmic, accessed on 30 May 2017] and VUS is a variant of
unknown significance. Unique and anonymized patient numbers are indicated. For each sample, the
histological type, MSI status, HRD status, pathological grade, and CHBT status are indicated at the
bottom of the figure (see corresponding legend on the right part).

3.3. Clinical Benefit to HT (CBHT)

CBHT was observed in 22 out of 38 patients (58%). The median duration of CBHT was
6 months (range: 3–10). To identify variables associated with CBHT, we tested different
variables including clinical and molecular features: the genes mutated and oncogenic
pathways altered in at least three samples. Results from univariate and multivariate
analyses are shown in Table 2. In univariate analysis, variables including body mass index
>30 (OR = 1.18; p = 0.04), mitotic count (OR = 0.95; p = 0.04), at least one positive HR
(OR = 6; p = 0.05), and percentage of altered genome (OR = 0.61; p = 0.03) were found to
be associated with CBHT, while PTEN mutation as well as NOTCH and HIPPO altered
oncogenic pathways showing a trend (p < 0.1). In multivariate analysis, none of these
variables remained significantly associated with CBHT.

https://cancer.sanger.ac.uk/cosmic
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Table 2. Results of univariate and multivariate analyses for CBHT.

Variables
Univariate Multivariate

OR [95% CI] p-Value OR [95% CI] p-Value

Age. * 0.97 [0.89–1.05] 4.63 × 10−1

BMI > 30 (Yes vs. No) 1.18 [1.03–1.42] 4.31 × 10−2 Inf [0–Inf] 9.97 × 10−1

Mitotic index * 0.95 [0.90–0.99] 4.49 × 10−1 0.72 [0.20–1.02] 3.39 × 10−1

PR (Pos vs. Neg) 3.40 [0.86–14.69] 8.62 × 10−1

RE (Pos vs. Neg) 2.67 [0.70–10.86] 1.57 × 10−1

Hormone receptors (ER or PR) (Pos vs. Neg) 6.00 [1.15–46.35] 4.74 × 10−2 Inf [Inf–Inf] 9.97 × 10−1

Altered genome * 0.61 [0.37–0.89] 3.33 × 10−2 0.77 [NA–1.26] 4.65 × 10−1

MSI (MSS vs. MSI) 1.46 [0.24–9.02] 6.71 × 10−1

Gene mutation (Mut vs. Wild)
PTEN 5.20 [1.03–39.83] 6.56 × 10−2 Inf [0–NA] 9.97 × 10−1

TP53 0.44 [0.10–1.84] 2.65 × 10−1

PPP2R1A 0.40 [0.07–2.00] 2.73 × 10−1

ARID1A 1.14 [0.21–6.79] 8.76 × 10−1

FGFR2 5.38 [0.74–110.60] 1.47 × 10−1

PIK3CA 1.30 [0.19–11.05] 7.91 × 10−1

BCOR 2.80 [0.32–60.38] 3.96 × 10−1

CTNNB1 0.24 [0.01–2.09] 2.34 × 10−1

KMT2D 0.81 [0.09–7.54] 8.46 × 10−1

NOTCH3 Inf [0–Inf] 9.93 × 10−1

USH2A 0.81 [0.09–7.54] 8.46 × 10−1

AKT1 0 [NA–Inf] 9.94 × 10−1

ANK3 0.38 [0.02–4.42] 4.52 × 10−1

APC 1.75 [0.15–40.07] 6.62 × 10−1

ATRX 1.75 [0.15–40.07] 6.62 × 10−1

CUX1 1.75 [0.15–40.07] 6.62 × 10−1

EP300 1.75 [0.15–40.07] 6.62 × 10−1

JAK3 Inf [0–Inf] 9.94 × 10−1

Oncogenic pathways alterations (Alt vs. non Alt)
Cell Cycle 2.00 [0.33–16.30] 4.66 × 10−1

HIPPO 0.20 [0.03–1.08] 7.99 × 10−2 12.23 [0–Inf] 7.33 × 10−1

MYC 0.87 [0.09–8.07] 8.94 × 10−1

NOTCH 3.93 [0.92–19.32] 7.33 × 10−2 19.10
[0.14–3.9E06] 3.96 × 10−1

PI3K 0.71 [0.16–3.01] 6.48 × 10−1

RTK_RAS 1.18 [0.23–6.11] 8.38 × 10−1

TP53 0.48 [0.11–1.95] 3.08 × 10−1

WNT 1.50 [0.33–7.31] 6.00 × 10−1

BER 2.00 [0.33–16.30] 4.66 × 10−1

NER 0.53 [0.06–3.72] 5.26 × 10−1

FA 0.62 [0.12–2.91] 5.40 × 10−1

HRD 0.46 [0.09–2.08] 3.20 × 10−1

Other 0.52 [0.11–2.27] 3.91 × 10−1

Footnotes: * Age, mitotic index, and altered genome are continuous variables. BMI: body mass index;
PR: progesterone receptor; ER: estrogen receptor. All variables with p < 0.1 were in bold.

3.4. Durable Clinical Response to HT (LRHT) and Overall Survival

Six patients (15.8%) presented LRHT. To identify variables associated with LRHT,
we tested variables including clinical and molecular features as well as genes mutated
and oncogenic pathways altered in at least three samples. The results from univariate
analyses are shown in Table 3. In univariate analysis, only PTEN mutations were found to
be associated with LRHT (OR = 7; p = 0.048). The multivariate analysis was irrelevant and
non-informative because PTEN mutation status was the only significant variable.
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Table 3. Results of univariate and multivariate analysis for LRHT.

Variables
Univariate Multivariate

OR [95% CI] p-Value OR [95% CI] p-Value

Age. * 0.92 [0.79–1.03] 1.62 × 10−1

BMI > 30 (Yes vs. No) 0.51 [0.02–4.01] 5.74 × 10−1

Mitotic index * 0.99 [0.92–1.04] 6.43 × 10−1

PR (Pos vs. Neg) Inf [0.00–NA] 9.95 × 10−1

RE (Pos vs. Neg) 1.20 [0.20–9.61] 8.46 × 10−1

Hormone receptors (ER or PR) (Pos vs. Neg) Inf [0.00–NA] 9.94 × 10−1

Altered genome * 0.62 [0.19–1.03] 2.52 × 10−1

MSI (MSS vs. MSI) Inf [0.00–NA] 9.95 × 10−1

Gene mutation (Mut vs. Wild)
PTEN 7.00 [1.10–60.51] 4.75 × 10−2

TP53 2.00 [0.31–12.85] 4.48 × 10−1

PPP2R1A 1.75 [0.21–11.57] 5.69 × 10−1

ARID1A 0.00 [NA–Inf] 9.94 × 10−1

FGFR2 0.88 [0.04–7.32] 9.15 × 10−1

PIK3CA 1.15 [0.05–10.20] 9.09 × 10−1

BCOR 0.00 [NA–Inf] 9.96 × 10−1

CTNNB1 0.00 [NA–Inf] 9.96 × 10−1

KMT2D 1.60 [0.07–15.90] 7.08 × 10−1

NOTCH3 1.60 [0.07–15.90] 7.08 × 10−1

USH2A 1.60 [0.07–15.90] 7.08 × 10−1

AKT1 0.00 [NA–Inf] 9.94 × 10−1

ANK3 0.00 [NA–Inf] 9.94 × 10−1

APC 2.50 [0.10–31.67] 4.87 × 10−1

ATRX 0.00 [NA–Inf] 9.94 × 10−1

CUX1 2.50 [0.10–31.67] 4.87 × 10−1

EP300 0.00 [NA–Inf] 9.94 × 10−1

JAK3 2.50 [0.10–31.67] 4.87 × 10−1

Oncogenic pathways alterations (Alt vs. non Alt)
Cell Cycle 0.00 [NA–Inf] 9.95 × 10−1

HIPPO 0.71 [0.03–5.95] 7.79 × 10−1

MYC 0.00 [NA–Inf] 9.96 × 10−1

NOTCH 2.18 [0.31–18.73] 4.32 × 10−1

PI3K Inf [0.00–NA] 9.95 × 10−1

RTK_RAS 0.43 [0.06–3.82] 4.08 × 10−1

TP53 2.18 [0.31–18.73] 4.32 × 10−1

WNT 0.50 [0.02–4.04] 5.60 × 10−1

BER 1.10 [0.05–9.77] 9.38 × 10−1

NER 1.44 [0.06–13.57] 7.70 × 10−1

FA 0.59 [0.03–4.86] 6.63 × 10−1

HRD 0.50 [0.02–4.04] 5.60 × 10−1

Other 2.35 [0.29–49.50] 4.71 × 10−1

Footnotes: *Age, mitotic index, and altered genome are continuous variables. BMI: body mass index;
PR: progesterone receptor; ER: estrogen receptor. All variables with p < 0.1 were in bold.

With a median follow-up of 155 months, 32 patients (84%) died. The median overall
survival (OS) was 40 months (95% CI: 14–74). To identify variables associated with OS, we
tested variables including clinical and molecular features as well as genes mutated and
oncogenic pathways altered in at least three samples. The prognostic factors for OS retained
after univariate analysis (Table 4) were age (HR = 1.10; p = 0.002), mitotic index (HR = 1;
p = 0.006), PR expression status (HR = 0.38; p = 0.01), presence of at least one positive HR
(HR = 0.29; p = 0.004), and percentage of altered genome (HR = 1.1; p = 0.029). In multivari-
ate analysis, patient’s age (HR = 1.08; p = 0.008), mitotic index (HR = 1.04; p = 0.037), and
the presence of at least one hormone receptor (HR = 0.21; p = 0.003) remained significant.
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Table 4. Results of univariate and multivariate analyses for OS.

Variables
Univariate Multivariate

OR [95% CI] p-Value OR [95% CI] p-Value

Age. * 1.09 (1.03–1.15) 1.50 × 10−3 1.09 [1.02–1.15] 8.47× 10−3

BMI > 30 (Yes vs. No) 0.86 (0.34–2.17) 7.50 × 10−1

Mitotic index * 1.04 (1.01–1.06) 5.80 × 10−3 1.04 [1.00–1.08] 3.73× 10−2

PR (Pos vs. Neg) 0.38 (0.18–0.80) 1.00 × 10−2

RE (Pos vs. Neg) 0.79 (0.39–1.63) 5.30 × 10−1

Hormone receptors (ER or PR) (Pos vs. Neg) 0.29 (0.13–0.67) 3.60 × 10−3 0.21 [0.07–0.58] 2.67× 10−3

Altered genome * 1.07 (1.01–1.14) 2.90 × 10−2 0.98 [0.90–1.07] 6.42 × 10−1

MSI (MSS vs. MSI) 0.53 (0.21–1.34) 1.80 × 10−1

Gene mutation (Mut vs. Wild)
PTEN 0.70 (0.30–1.60) 3.90 × 10−1

TP53 1.08 (0.49–2.39) 8.40 × 10−1

PPP2R1A 0.83 (0.33–2.10) 7.00 × 10−1

ARID1A 2.16 (0.86–5.43) 1.00 × 10−1

FGFR2 1.19 (0.45–3.16) 7.30 × 10−1

PIK3CA 0.91 (0.31–2.67) 8.70 × 10−1

BCOR 1.30 (0.44–3.82) 6.40 × 10−1

CTNNB1 1.17 (0.40–3.44) 7.70 × 10−1

KMT2D 0.59 (0.14–2.49) 4.70 × 10−1

NOTCH3 0.78 (0.23–2.61) 6.80 × 10−1

USH2A 0.73 (0.22–2.45) 6.10 × 10−1

AKT1 1.21 (0.36–4.04) 7.60 × 10−1

ANK3 1.15 (0.27–4.97) 8.50 × 10−1

APC 1.40 (0.42–4.72) 5.80 × 10−1

ATRX 1.50 (0.44–5.19) 5.20 × 10−1

CUX1 0.72 (0.17–3.06) 6.60 × 10−1

EP300 2.12 (0.60–7.49) 2.40 × 10−1

JAK3 0.59 (0.14–2.53) 4.80 × 10−1

Oncogenic pathways alterations (Alt vs. non Alt)
Cell Cycle 1.33 (0.44–4.00) 6.10 × 10−1

HIPPO 1.29 (0.51–3.25) 5.90 × 10−1

MYC 2.10 (0.71–6.23) 1.80 × 10−1

NOTCH 0.72 (0.32–1.59) 4.20 × 10−1

PI3K 0.63 (0.28–1.42) 2.60 × 10−1

RTK_RAS 1.73 (0.68–4.42) 2.50 × 10−1

TP53 1.05 (0.48–2.31) 9.00 × 10−1

WNT 1.11 (0.49–2.50) 8.00 × 10−1

BER 0.97 (0.36–2.60) 9.60 × 10−1

NER 1.23 (0.42–3.60) 7.10 × 10−1

FA 1.37 (0.60–3.17) 4.60 × 10−1

HRD 1.07 (0.46–2.46) 8.80 × 10−1

Other 1.51 (0.65–3.49) 3.40 × 10−1

Footnotes: * Age, mitotic index, and altered genome are continuous variables. BMI: body mass index;
PR: progesterone receptor; ER: estrogen receptor. All variables with p < 0.1 were in bold.

3.5. Comparison of Paired Primary and Metastatic EC Samples

Eleven, seven, and eleven pairs of primary tumor and metastatic samples were profiled
by IHC, aCGH, and tNGS, respectively. The results of IHC data are summarized in Figure 2.
Only 54.5% of concordance for ER expression was observed, with 5/11 discordant pairs.
From primary tumors to paired metastasis, one and four pairs changed from positive
to negative and from negative to positive ER status, respectively. Eighty-two percent of
concordance was observed for PR expression, with 2/11 discordant pairs. From primary
tumors to paired metastasis, both changed from positive to negative PR status. In these
two mEC samples, PR expression slightly decreased (from 10% to 5%) compared with the
matched primary tumor, but this was sufficient to change the PR status (threshold 10%).
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Overall, 73% of concordance for HR expression was observed with 3/11 discordant pairs.
From primary tumors to paired metastasis, two and one pairs changed from positive to
negative and from negative to positive HR status, respectively. Concordance was 100%
between the primary tumor and metastasis for the MMR status.
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thyltransferase (KMT2D), the cell cycle regulator (CDC27), and WNT/β-catenin pathway 
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part. This suggests that such mutations might have been included in another or others 
clones lost under treatment and that they were probably not drivers of the metastatic pro-
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Figure 2. Matched primary and mEC show a high concordance level for HR and MMR. Hormone
receptor expression was considered positive if ≥10% of cells were positive. Red: positive im-
munohistochemistry or amplification; dark blue: MSI. IHC: immunohistochemistry; ER, estrogen
receptor; PR, progesterone receptor; HR: expression of at least one hormone receptor; MMR, mismatch
repair proteins.

The genomic profiles of the seven pairs of primary and metastatic samples established
by aCGH were compared (data not shown). Save for one TP53 deletion observed in
metastatic sample 16 M, no other relevant CNA was acquired in the metastatic counterparts.
By contrast, the comparison of tNGS data showed 29 mutational changes in 8/11 pairs
(Figure 3). MSI IHC status as well as TP53, PIK3CA, PTEN, ARID1A, PPP2R1A, FGFR2,
ATRX, and JAK3 mutations were mainly found maintained in the metastatic counterparts.
In seven pairs (n◦ 2, 7, 16, 19, 20, 33, and 40), 22 mutations targeting 17 genes were acquired
in the metastatic counterparts. Among them, somatic mutations affecting genes involved
in PIK3/AKT/MTOR signaling (PIK3CA, AKT1, and MTOR), histone methyltransferase
(KMT2D), the cell cycle regulator (CDC27), and WNT/β-catenin pathway (CTNNB1) were
the most frequent, suggesting they might confer a selective advantage to cancer metastasis.
In five pairs (n◦7, 13, 16, 21, and 33), seven mutations targeting six genes (BCOR, BRIP1,
CDC27, CUX1, EP300, and NOTCH3) were lost in the metastatic counterpart. This suggests
that such mutations might have been included in another or others clones lost under
treatment and that they were probably not drivers of the metastatic process.

Based on gene mutations and CNAs, PI3K, RTK_RAS, OTHER DNA damage repair
pathways, HIPPO, NOTCH, WNT, NER, HRD, MYC, TP53, BER, FA, and NHEJ oncogenic
pathways were identified as being altered in more than 25% of metastatic samples (n = 7)
(Table S8). In a first global comparison of the frequencies of altered oncogenic pathways
with primary EC tumors (n = 32), the only difference was a trend towards more frequent
PI3K pathway alteration in metastatic samples (100% versus 75%; p = 0.077; Table S8).
A second comparison was performed only on the seven pairs of primary and metastatic
samples (Table S9). Through the 14 samples, a pathway was altered 51 times. Of these, in
31 alterations, the pathway was altered in both primary tumors and paired metastases, and
the PI3K pathway was the most frequent pathway altered in all 14 samples; in 19 times,
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the pathway was altered in the metastasis but not in the paired primary tumor, and the
NER pathway was the most frequently diverging (3/7 pairs); in one alteration, a pathway
was altered in the primary tumor but not in the paired metastasis. Overall, in 4/7 pairs,
additional pathways appeared to be altered in the metastasis.
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Figure 3. Matched primary and mEC show 22 and 7 mutations acquired and lost in metastatic
counterparts, respectively. Legend: green, variant of unknown signification (VUS); orange, hotspot;
black, truncating mutation; grey, wild. The right column highlights the difference between the
matched samples. Changes over time are coded by: red, mutation gain; green, mutation loss; grey,
result not available. Only the 29 most mutated genes are represented.

4. Discussion

In this retrospective study, clinical and biological variables were simultaneously as-
sessed to identify predictive factors of the response to HT in patients with metastatic EC.
The place of HT in EC is not consensual but represents an effective and safe oral therapy
for these patients. In our study, 58% of patients reported a clinical benefit from HT, a rate
similar to the 54.1% reported in a prospective trial studying megestrol acetate as a control
in advanced EC. Thus, despite a high proportion of endometrioid ECs being ER and/or
PR positive, endocrine therapy is only effective in a minority of women with EC, and,
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ultimately, patients progress with resistant disease. Several studies using endocrine therapy
in EC have been reported [32–35]. While some potential biomarkers were suggested, none
are currently used in routine clinical pratice. The genomic profiling of tumor samples might
identify new potential therapeutic targets and contribute to optimizing endocrine therapy
in EC. To our knowledge, our series is the first to assess the prognostic/predictive value of
tNGS and aCGH in patients with EC treated with HT in the metastatic setting.

Genomic profiling. Genomic data established on our EC sample series were globally
consistent with those observed in larger studies on EC biology [13,19,36–38]. We reported
(i) TP53, PTEN, PPP2R1A, ARID1A, FGFR2, and PIK3CA as the most frequently mutated
genes, (ii) 16 regions were significantly amplified, including ESR1 (6q25.1), MDM2 (12q15),
ERBB2 (17q12), and AKT2 (19q13.2), all known as oncogene drivers, (iii) an HRD profile
in five tumors (14.7%), and (iv) HGSEC with a tendency to present a higher percentage
of altered genomes than endometrioid EC. We noted that the comparison with MSKCC
genomic data showed some significant frequency differences among commonly altered
genes (Tables S10 and S11) [36]. This could be explained by the proportions of histological
types present in the two EC cohorts. Indeed, the highest frequency of PPP2R1A mutations
(6 and 2 hot spot variants, P179R and R183W, respectively) observed in our study might
suggest that our cohort is more enriched in serous histology in which PPP2R1A mutations
are more common. Moreover, we cannot exclude that such results might also be explained
in part by the ethnic diversity related to the pathogenesis of cancer [39].

Genomic alterations in primary EC might explain endocrine failures. Among gene
alterations, ESR1 amplification and other targeted genes involved in signaling pathways
(PI3K/AKT/MTOR, ERBB2, FGFR, CDK4/CDK6, MDM2–TP53, histone deacetylases)
are known to cross-talk with the ER pathway in breast cancer [40]. Their alteration in
EC suggests that they are responsible for endocrine failure in both BC and EC cancers.
Encoded by the ESR1 gene, the ERα protein is expressed in 80% of ECs [41]. ERα-binding
sites are highly conserved between tamoxifen-associated EC and BC but differ in non-
tamoxifen-induced EC [41]. Phosphorylated ERα was previously investigated as a marker
of transcriptional activation in the EC and BC of TCGA data sets [41]. Transcriptomic
pathway analysis suggested that non-classical Erα signaling may be more important in
EC and that the estrogen-associated transcriptome is tissue specific. Hence, exploration of
ERα accompanied by transcriptional signaling data may help in the identification of a more
appropriate biomarker signature in EC. In the TCGA dataset, around 16% of ECs have an
amplification encompassing or overlapping ESR1, which results in ligand-binding domain
(LBD) truncation in approximately 20% of cases [42].

In our study, no ESR1 mutation was identified. ESR1 LBD mutations are found in
5.8% of primary ECs with endometrioid histology [15,43,44]. ESR1 LBD mutations are
mainly located at residues D538 and Y537 in a region essential for ligand binding and
interactions with coregulatory proteins. The presence of ESR1 mutations is associated with
obesity-independent EC, and patients with ESR1 LBD mutations tend to have a worse
prognosis than patients with wild-type ESR1 tumors [43]. Interestingly, D538G mutant
ESR1 confers estrogen-independent activity while causing additional regulatory changes in
EC cells that are distinct from breast cancer cells [45]. This is relevant because ECs that are
unable to bind estradiol may show estrogen-independent growth, making downstream
elements of the ER pathway, alone or in combination with conventional endocrine therapy,
a potentially attractive therapeutic strategy.

Interest to establish genomic profiles of mEC. While EC is a highly curable malignancy
when uterine-confined, the prognosis for recurrent or metastatic disease is poor [46]. As
shown in breast cancers, there is evidence that genomic alterations are also acquired during
the evolution of cancers from their early to late stages and that the genomic landscape of
early cancers is not representative of that of lethal cancers [47,48]. To date, the number
of studies reporting genomic data in EC metastases is still not sufficient to understand
the molecular mechanisms driving them. Genomic profiling of advanced EC might thus
identify new potential therapeutic targets and contribute to optimizing endocrine therapy.
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In our study, TP53, PIK3CA, PTEN, ARID1A, PPP2R1A, FGFR2, ATRX, and JAK3 mutations
were mainly found to be maintained in the metastatic counterparts. This suggests that such
alterations might be drivers of the primary tumor and necessary during evolution in an HT-
resistance context. Among the gene mutations acquired in the metastatic counterparts, the
most frequently affected pathways (PIK3/AKT/MTOR, epigenetic, cell cycle, and WNT/β-
catenin) might confer a selective advantage to cancer metastasis formation including
hormone resistance. Alterations targeting TP53, MTOR, and KMT2D, could be involved in
hormone resistance and ne potentially targeted by recent therapies [49,50].

Various therapeutic strategies were previously reported to improve endocrine therapy
efficiency in EC. To increase the efficacy of HT in endometrial cancer, various therapeutic
strategies have been followed based on biological knowledge of ECs. They target mech-
anisms associated with certain pathways (i.e., epigenetic modulation (HDACs, DNMT,
histone methylation), PI3K/AKT/MTOR, cell cycle, androgens, insulin/metabolic factors,
and the immune microenvironment) [34].

There are still no effective treatments for EC and no agents to enhance sensitivity to
progestin therapy. Among the markers of poor response, survivin (also called BIRC5),
NRF2 (also called NFE2L2), and AKR1C1 appeared to be involved in the same pathway
supporting the resistance to progestogens [51–54]. They were proposed as potential targets
for new therapies against progestogen-resistant cases.

Recently LASS2 (also called CERS2, ceramide synthase 2) has been identified as
a novel NRF2 target gene. In type I ECs, a feedback loop involves estrogen and the
high expression of NRF2, which results in a low response to progestin and ultimately
progestin resistance [55]. This provides in vitro proof-of-concept evidence that targeting
NRF2/LASS2 may be a promising approach to inhibiting EC development and improving
the efficacy of progestin therapy. Thus, as predictive biomarkers in EC, evaluating the
overexpression of NRF2/LASS2 may also be useful to estimate cancer stage and potential
resistance to progestin [55].

In patients with metastatic EC, MTOR inhibitors, such as temsirolimus, have been
tested (in association or not with HT) [56]. However, temsirolimus efficacy and toxicity
were disappointing, and the drug is not currently used in clinical practice. The MAPK
pathway was also investigated due to its role in HR expression. Although promising results
were obtained in vitro, these findings have not been tested in pre-clinical/clinical settings
yet [57].

Therefore, without new treatments, better selection of the patients who might benefit
from an old but effective, safe, and economic treatment, such as HT, represents an effective
progress in EC management.

Better stratify patients with advanced EC. As we previously showed in advanced BC
and other solid cancers, it is important in the future to systematically biopsy EC metastases
to identify actionable genetic alterations (AGAs) and feed the literature to improve the
knowledge on the molecular mechanisms driving them [47,58].

Because molecular alterations identify potential targeted therapies, to better stratify
women with EC who will derive clinical benefit from new therapeutic options or who
will exhibit resistance, it is crucial to develop precision medicine using extensive high-
throughput molecular profiling. Additional predictive biomarkers/molecular signatures,
and a better understanding of the ER/PR pathway biology should improve the responses
to established endocrine therapies or their optimization, and favor the design of new
therapeutic approaches. Additionally, in this stratification, the identification of patients
with actionable genetic alterations (AGAs) that could be candidates for targeted therapies
currently in development is paramount (e.g., prexasertib for EC harboring TP53 muta-
tions; targeting the PI3K/AKT/MTOR pathways for EC harboring, for instance, PTEN
and PIK3CA mutations; PARP inhibitors for homologous recombination-deficient EC;
immune checkpoint inhibitors for EC with MSI; HER2 targeting EC harboring ERBB2 am-
plification/overexpression; EZH2 inhibitor or PARP inhibitors for EC harboring ARID1A
mutations) [11,16,49,59]. Several clinical trials using HT alone or in combination with other
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drugs in advanced EC are already opened. Among them, NCT03643510, in which cancer re-
sponse is evaluated in a prospective, single arm phase II study of the combination of CDK4
and CDK6 dual inhibitor abemaciclib and selective estrogen receptor degrader fulvestrant
in hormone receptor positive recurrent endometrial carcinomas. Likewise, NCT04188548,
a Phase 1a/1b study in which LY3484356, an oral selective estrogen receptor degrader
(SERD), is administered as a monotherapy and in combination with anticancer therapies
(aromatase inhibitor, abemaciclib, alpelisib, everolimus, trastuzumab, and pertuzumab)
for patients with ER positive locally advanced or metastatic breast cancer or endometrial
cancer (EMBER, phase 1a/1b).

Moreover, although ESR1 alterations have a low penetrance in primary EC, this
incidence may increase during disease evolution due to clonal selection by treatment
pressure generating advanced EC/endocrine resistant tumors. Thus, the determination of
ESR1 mutation/amplification status in primary EC and in advanced EC with a non-invasive
approach by using genomic profiling (at best on circulating DNA) may be relevant in the
context of the response to endocrine therapy as well as in the follow-up of residual disease.

CBHT and LRHT. In our study, we reported 22 (57.9%) and 6 (15.8%) patients with
CBHT and LRHT, respectively. While univariate analyses showed that PTEN mutations
exhibited a trend for association with CBHT and an association with LRHT, neither onco-
genic pathway alterations, including mutations and CNA, nor all variables tested were
associated with CBHT and LRHT in multivariate analysis.

Multiple small studies have demonstrated the clinical benefit of progestins, but vari-
able response rates have been documented depending on the route of administration (IM
versus oral), tumor grade, histology, PR expression status, and the line of therapy (i.e.,
first or subsequent exposure to endocrine therapy) [34]. Unfortunately, progestins have
proven disappointing when evaluated in unselected EC populations in the adjuvant setting,
with no clear benefit emerging for their use [60]. A variety of treatment approaches with
progestins, selective ER modulators (SERMs), and aromatase inhibitors are available. The
clinical efficacy of endocrine therapy and its optimization in EC was recently reviewed [34].

In our study, only patient’s age, mitotic index, and the presence of at least one HR
(ER or PR) were considered to be prognostic factors for OS by multivariate analysis, while
PTEN mutation was recently reported to be correlated with favorable prognosis in EC
patients and found to be associated with immune infiltrating cells, such as Tregs and M1
macrophages, in the tumor microenvironment [61].

Study limitations. First, the retrospective nature of the study implies a selection bias
based on a first selection of patients by clinicians for HT and a second selection based on
the availability and exploitability of samples for molecular analysis. Second, the number
of patients was low, although comparable with previous studies on HT for EC. Clearly,
multicentric studies gathering more annotated samples and public data sharing are crucial
to allow meta-analyses that will enhance our current knowledge of mEC genomics.

5. Conclusions

In conclusion, in this retrospective study, clinical and biological variables were simul-
taneously assessed to identify predictive factors of the response to HT in patients with
metastatic EC. Unfortunately, no predictive factor was identified to stratify EC patients who
will present CBHT and/or LRHT. Only patient’s age, mitotic index, and the presence of at
least one HR (ER or PR) were considered to be prognostic factors for OS. The identification
of gene mutations newly acquired in metastasis might help researchers to understand
the formation of EC metastasis and define a personalized treatment for each patient with
advanced EC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12050655/s1, Table S1: Antibodies used for immunohisto-
chemistry analyses; Table S2: Gene panel “TSV9 FFPE” (Agilent Design ID: 27066-1418742171) used
in tNGS to identify mutation in 495 genes; Table S3: Genes involved in oncogenic pathways; Table
S4: List of mutated genes; Table S5: Gistic analysis: amplified regions; Table S6: Gistic analysis:
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deleted regions; Table S7: Gistic analysis: amplified driver genes defined by CGI; Table S8: Oncogenic
pathways altered in EC primary tumors and metastases samples; Table S9: Oncogenic pathways
altered in the seven primary EC tumors and metastases pairs; Table S10: Comparison between gene
mutations observed in our cohort and 103 mEC samples from MSKCC [36]; Table S11: Comparison
between gene CNA observed in our cohort and in 103 mEC samples from MSKCC [36]. Figure S1:
Kaplan–Meier overall survival of 38 patients with endometrial carcinoma.
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