High-throughput phenotyping of fruit tree
development, light interception and water-
use related traits: a case study on apple tree
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Tree architecture is genetically highly variable
in fruit species
(b)

Peach tree

Apple tree
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Both tree topology and geometry are varying depending on the variety



Tree architecture is a key feature for fruit production
in the face of climate change
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Context of global change:
Increased risk of water scarcity
& pressure on water resource

In silico modeling achieved optimal combinations of architectural and functional traits

» Resource use efficiencies are important targets, not accounted for in breeding programs

» Their genetic control has rarely been investigated jointly with architecture
» Major bottleneck : phenotyping these traits in field conditions on adult trees



Phenotyping:
overall strategy

1. High-Throughput measurements
Tree architecture, form and vigour
Tree photosynthetic activity and transpiration

Coupel-Ledru et al., 2019
2. Validation

1. Subset of genotypes:
Fine, in planta measurements

3. Genetics

Genetic variability

GWAS Coupel-Ledru et al., 2022

T-LiDAR : Architecture (geometry-topology)
Nb of axes, tree volume, etc.

Airborne imaging:

- Multispectral imagery (Vegetation indices)
- Thermal images (Stress indices)

Response of the canopy water loss to drought

© M. Delalande, INRAe

Production and other variables:
- Yield (fruit number & harvest weight)
- Trunk cross sectional area




Experimental design

INRA Mauguio : Diascope Experimental Unit
(43°36'N, 3°58'E, 10m a.s.l.)

* Apple tree French core collection (Lassois et al., 2015)
* 241 genotvoes x 4 replicates (same M9 rootstock)

. ©.MsDelalande, INRAe

Mediterranean climate (dry summer)
Soil : limited water holding capacity:
irrigation withdrawal = water stress

* Plot 1.2 ha

* 10 rows (ca. 200m)

* Plantation spring 2014
* Micro-irrigation, individual emitters
* Row weeding ; grassed inter-rows

* No pruning, fruitlet thinning,

e Conventional spraying

* 5x2m spacing, compatible with
architecture characterization

Micrometeorology:

Global & PAR 2

radiation,

Air temperature & RH, %1 2 different water regimes during summer
Wind speed & ” « WW = well irrigated

direction WD = water deficit

* WW /WD trees, facing each other (2
pairs)

Soil water status: ©
Sentek capacitive probes (0-90cm)
+Tensiometers (-30 and -60cm)

For 14 tree locations © M. Delalande, INRAe 5




Using T-LiDAR to assess tree architectural variability
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2. Data post-processing (filtering, topological reconstruction, tree segmentation)

Tree segmentation Filtering — contraction Reconstruction
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ComputeTree and RiscanPro
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PlantScan3D, Boudon et al.,62014



Architectural traits estimated from T-Lidar scans
(winter)

Topological variables:
Number of axes according to their types —
T-Lidar vs digitizing data
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medium axes
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Pallas et al. 2018



Architectural traits estimated from T-Lidar scans
(summer)

Geometrical variables

Tree radius R

Tree height H

Convex volume (c_volume)
Alpha volume (a_volume)

Plant leaf area (m?)

Convexity (a_volume/c_volume)

a=0.20

0=0.05 R*=0.73
0=0.10 R*=0.84
a=0.20 R*=0.70
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a_volume (m®)

Coupel-Ledru et al. 2019

Alpha hulls

Convex hull




Architectural traits estimated from T-Lidar scans

Computation of leaf area profile parameters (3 trees)
(summer)
Geometrical variables % =i
- Leafarga profile 234 e A posmi
- STAR (Silhouette to o |/Teer 023 013 oa  \
. Tree 2 0.18 0.48 0.72
total leaf Area Ratio) o |
0.0 0.2 0.4 0.6 0.8 1.0

relative position

From Da Silva et al. 2014
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High-resolution multispectral and thermal-IR imagery

AirPhen® 3 / HiPhen Flir® Tau-2 .]
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Computation of mean pixels values per
individual tree

TSTA = Tsurf — Tair = canopy surface temperature
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Some results on traits retrieved from
T-LIDAR scanner and multispectral imaging

Coupel-Ledru et al., 2022
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Frequency
(Nb of varieties)

A strong genotypic variability on all traits related to
architecture and light interception, and vegetation indices

Frequency
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(or very light)

Likely due to the short duration (1 month)
and period (July) of WD application
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A strong genotypic variability on all traits related to
architecture and light interception, and vegetation indices

Heritability of tree traits

Mixed effect model Y = M+ G+T+X+¢

U : intercept, G: genotypic effect (randon), T: treatment effect
(fixed), X possible other fixed effect (row, date...)

dv1s

Measurement ]
Trait Broad sense H?
type
Multi-spectral NDVI 0.94
imager GNDVI 0.94
Bery MCARI2 0.92
c_volume 0.82
a_volume 0.77
G 0.86
T-LiDAR data STAR 0.79
height 0.81 radius, c_volume
total_length 0.80

nb_axes 0.83



Two different groups of traits within the collection
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Genotype-dependent control of canopy temperature in WW

Wsoil (kPa)

i:i;lxi FF TP TPE Eiiii}}i}}é
TYY 'T TITY
.

A 4

1 month (July)

conditions

TS-TA for well-watered trees:
Significant genotypic effect but variability across dates

Likely due to atmospheric variations
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Large genotypic variations in the response of canopy surface
temperature to intensifying soil drying

TS-TA for WD trees : H>=0.4-0.6
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Different genomic regions control canopy temperature,
vegetative architecture or light interception efficiency
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Multiple allelic combinations exist within the collection for the three groups
of traits <> Possibilities of selecting independently for

architecture, light interception efficiency and water loss
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Take home messages

 The simultaneous assessment of canopy vegetative development and
canopy functioning revealed to be efficient to
1. Classify trees according to their global shape
2. Assess the relevance of indices derived from scans and airborne
imagery as proxies for tree architecture and functionning
3. Capture the genetic variability of those traits in an apple tree core
collection

* GWAS revealed that multiple allelic combinations exist within the
collection for the three groups of traits

& It will be possible to select independently for

architecture, light interception efficiency and water loss

< Find adequate combinations depending on the climatic conditions?

* How to define / evaluate the water-use efficiency on a medium to long
term for perennial crops ?
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Thank you for your attention
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