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An Approach Inspired by Quantum Mechanics for
the Modeling of Large Power Systems.

Pierrick Guichard, Nicolas Retière, Didier Mayou

Abstract—The ever increasing complexity of power systems
mandates a further improvement of the numerical methods used
for their simulation. We propose a new approach that is inspired
by an exact analogy with quantum mechanics, but requires no
specific knowledge of quantum physics. This approach allows in
particular to use local methods commonly applied in quantum
mechanics, such as Lanczos’ algorithm. It is applied to computing
the load flow and extended to simple dynamic studies where the
nodes are described by swing equations. The first set of results are
for an ideal 2D-lattice grid to illustrate the method and its main
features. Then a contingency analysis by the proposed approach
is performed for various realistic power systems, including a
model of the European network. This demonstrates the interest
of the new approach and its efficiency when compared with state-
of-the-art methods, especially for large power system.

Index Terms—Load flow, Local approach, Lanczos algorithm,
Hamiltonian formalism, Contingency analysis.

I. INTRODUCTION

Physics-based simulation has been used for the planning
and analysis of power systems for decades now. Numerous
approaches have been designed and commercialized and al-
ternatives are still under study. They enhance the abilities of
simulation tools in the context of the ever-growing complexity
and vulnerabilities of power systems due to the increasing
share of renewable energy sources, the development of active
distribution networks and DC networks, the reduction of
the security margin ... For steady-state operations, traditional
challenges are improving the convergence rate and decreasing
the computational cost of iterative methods [2] [3], reducing
the dimensionality of the problem by the use of Krylov
spaces [43]–[46] or defining non-iterative methods such as
Holomorphic Embedding Load-flow Methods (HELM) [20].
More recently, some data-driven methods based on Artificial
Intelligence have also been designed, although it remains
delicate to trust such methods entirely [17] [18] [19]. For
dynamic operations described by a set of differential algebraic
equations, speeding up the calculation and extending the time
range of simulators are some issues arising from the increasing
share of non-conventional loads and sources connected to
networks through power electronics converters [4] [5].

To accelerate the computation of the electrical state of
the network, hardware-based approaches are also used. They
take advantage of the development of parallel computing
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and GPU-based strategies. Parallelization through local par-
titioning techniques [8] have been developed and applied to
optimal power flows [9], transient problems [11] [10], and
contingency analysis [12]. Parallelization can be coupled with
probabilistic methods [15] and Newton–Raphson solvers [14].
A GPU-based implementation of parallelized screening of
contingencies is performed in [13]. Nonetheless, such HPC
strategies require an adapted hardware which restricts their
use [16].

We present here a new and original iterative approach in-
spired by quantum mechanics to solve power system equations
in a linear regime. This approach takes advantage of a locality
property. Locality means that under certain circumstances, an
event has little impact on distant parts of the network. A
typical example is the failure of a line of the network. In that
case, the electrical current tends to redistribute to the lines
which are at short distance to the faulty link. This notion of
locality can be further extended to the evolution on small time
intervals. After a local perturbation, the electrical network will
vary continuously from its initial state. Yet after a small time,
only few dynamic states in the vicinity of the initial one are
influenced, as it will be detailed in section (IV). Obviously at
larger times, all the system’s states might be influenced by the
initial perturbation.

Already in the 1980s, methods based on local computation
were proposed for contingency analysis [6] [7]. But in this
paper, we propose an original approach directly inspired by
complex quantum systems which however requires no specific
knowledge of quantum mechanics. The load flow equations are
written in a Hamiltonian formalism which is then extended
to incorporate the dynamics of simple generators at low fre-
quency. It provides an exact mapping of the electrical system
onto a problem of a quantum particle on a grid described by a
Schrödinger-like equation. This exact analogy allows us to use
the very powerful numerical techniques developed in quantum
physics to solve large complex problems where a locality
principle also applies [42]. We expect from this approach to
provide a new viewpoint on phenomena and properties that
arise in power systems.

For a quantum particle on a large grid, well-known ap-
proaches rely on the projection onto a Krylov space and
tridiagonalization techniques such as the Lanczos algorithm.
These methods are designed to exploit the locality principle
and are known to be very efficient for accelerating simulations.
They avoid numerically demanding exact operations such as
matrix diagonalization or inversion for large systems [41].
We propose to apply these efficient tools to the field of
power systems. In particular, a high computational speedup
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is expected for the computation of steady states, opening
to an efficient method for computing LODFs (Line Outage
Distribution Factors) which is tested on the Pantagruel model
of the European network [48] [49]. Note that in addition to
its attractive computational features, the proposed formalism
also provides a new insight into the modeling of power flows,
benefiting from mathematical tools of quantum mechanics and
distinguishing our work from the traditional use of Krylov
space methods such as the conjugate gradient descent.

This paper is divided into five sections after the present
introduction. Section (II) presents the electrical model of
the power system. We introduce a vector space S and its
basis constituted by node and line states and at any time
the electrical state of the grid is represented by a state ψ
which belongs to this vector space S. We introduce also the
Hamiltonian operator H which acts on this space S and from
which the power equations are derived. The paper focuses
mainly on load flows but we will also indicate how the pro-
posed approach can be easily extended to simplified dynamic
studies. Section (III) presents the Lanczos method and how the
locality principle is expressed in the Hamiltonian formulation.
Section (IV) gives simple static and dynamic applications
on an ideal 2D-lattice grid. Section (V) presents a series
of applications to various realistic power systems including
a network model of the European grid. These applications
focus on the problem of line outage and on the subsequent
redistribution of power transmission in the grid. The rate of
convergence and speed of computation are compared with
state-of-the-art methods before concluding. An appendix is
provided for ease of reading.

II. DERIVATION OF THE HAMILTONIAN FORMALISM

A. The Hamiltonian of the steady load flow equations

A power grid can be modeled by a graph with Nnodes nodes
and Nlines lines. Every line l has two adjacent nodes il and
jl such that il < jl and every pair of adjacent nodes i and j
defines a line l(i, j). Every line l is modeled by a susceptance
Bl. At every node n = 1 . . . Nnodes, a power load or source
Pn is connected. Under DC assumptions [26], the voltage is
a complex number Vn := eiθn (supposed to be unitary and
with a small phase angle θn, so it can be approximated by
Vn := eiθn ≃ 1 + iθn). It is assumed that all the parameters
of the electrical network are known. The steady state of the
system is assumed to be simply described at every node by the
following equations [31], [36], involving the Laplacian matrix
L

P = Lθ, with

{
Lij = −Bl(i,j) if i ̸= j

Lii =
∑
j ̸=iBl(i,j)

(1)

Rather than solving this Laplacian system for θ, we propose
an alternative and original approach by introducing the vector

ψ :=

[
ψN

ψL

]
belonging to a vector space S of dimension

Nnodes+Nlines. Its components are proportional to the differ-
ences between the phases θ and therefore directly related to
the electrical currents (Il)1≤l≤Nlines

through the lines of the
network

∀ l = 1 . . . Nlines, ψL
l :=

√
Bl(θil − θjl) =

1√
Bl
Il (2)

More compactly ψ is given in function of θ by ψ =[
(0)

HLNθ

]
where HLN of dimension Nlines×Nnodes is related

to the Laplacian matrix from Eq. (6) by L = H†
LN ·HLN and

has null coefficients except for

∀l = 1 . . . Nlines,

{
[HLN]l,il =

√
Bl

[HLN]l,jl = −√
Bl

(3)

The new unknowns ψ verify the system of equations

Hψ = P (4)

where H is an Hamiltonian matrix of dimension (Nnodes +
Nlines)× (Nnodes +Nlines) and P is a vector of nodal powers
of dimension (Nnodes +Nlines)× 1 defined by

H :=

[
(0) H†

LN

HLN (0)

]
P :=

[
P
(0)

]
(5)

Eq. (1) was obtained from Ohm’s law I = YV (where
I is the vector of nodal injected currents, Y is the nodal
admittance matrix, and V is the vector of voltages) by left-
hand multiplication with V †, linearization and assumption of
direct current. Consequently, the mathematical structure of Eq.
(1) is exactly the same as the structure of Ohm’s law because Y
and L are both Laplacian matrices corresponding to the same
graph. The Hamiltonian formalism therefore also applies to
this case by replacing P by I , θ by V and L by Y. In this
analogous system, |ψL

l |2 corresponds to the power dissipated
in line l by Joule effect (see equation (2)), so that the total
square modulus of ψL is the total power dissipated in the
circuit. In the particular case where a unit current is injected
at two different nodes of the network, the square of the 2-norm
of ψ is the equivalent resistance of the network between the
two injection points.

B. Generalisation of the Hamiltonian formalism to a simpli-
fied dynamic model

A basic dynamic description of power systems is provided
by the so-called swing equations. It is worth noting that even
if very simplified, this approach is still used for fundamental
works on dynamic issues at low frequency [30], [50]–[52].
The swing equations are expressed by

Mθ̈ + Dθ̇ = P − Lθ (6)

where (Mn)1≤n≤Nnodes
are inertia parameters and

(Dn)1≤n≤Nnodes
are damping values stored respectively

in the matrices M := Diag(M1, . . . ,MNnodes
) and

D := Diag(D1, . . . , DNnodes
). For nodes corresponding

to power loads, the related mass and damping parameters
are approximately zero. Obviously, this model does not
include detailed dynamics of synchronous machines nor
regulators but it is a realistic starting point for a first
extension of the Hamiltonian formalism to low frequency
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dynamic studies. These equations are a system of second
order differential equations with Nnodes nodal variables. This
system is transformed into a system of first order differential
equations using the vectors ψ of the space S that represent
the instantaneous electrical states of the grid

ψ =

[
ψN

ψL

]
=

[
iM 1

2 θ̇
HLNθ

]
(7)

where M 1
2 := Diag(

√
M1, . . . ,

√
MNnodes

). A state ψ contains
all the information necessary to determine the evolution of the
electrical grid. In this mechanical analogy the square of the 2-
norm of the node state ψN, respectively line state ψL, is twice
the system’s kinetic energy, respectively, potential energy. The
square of the 2-norm of ψ is thus twice the mechanical energy
of the spring-mass system. Incorporating the dynamics in the
Hamiltonian H and the source term P

H :=

[
−iM−1D M− 1

2H†
LN

HLNM− 1
2 (0)

]
P :=

[
M− 1

2P
(0)

]
(8)

leads to a system which is strictly equivalent to the swing
equations

i
∂ψ

∂t
= Hψ − P. (9)

Equation (9) is similar to a Schrödinger equation where
the state ψ is the wave-function of the particle, H is its
Hamiltonian and P is a source term similar to the injection
of a particle in a system. This analogy gives a convenient
starting point for applying concepts and efficient mathematical
formulations of quantum physics. In this article we focus
mainly on the use of a powerful computational tool, the
Lanczos method, which is widely used in quantum physics
and we show its interest in the context of power systems.

III. LANCZOS METHOD AND LOCALITY PRINCIPLE IN THE
HAMILTONIAN FORMULATION

The physical behavior of the static electrical state of the
network obeys Eq (4) which admits an analytical solution
ψ = − limz−→0 [zI−H]

−1 P. From a theoretical point of
view, this expression is simple and solvable. Numerically its
computation requires about (Nlines +Nnodes)

3 operations, as
it involves solving a linear system. Similarly, Eq (9) governing
the dynamical regime admits a simple analytical solution
ψ(t) = exp(−iHt)ψ(0) +

∫ t
0
exp(−iH(t − t′))P(t′) dt′.

Numerically its computation is also cubic in the size of
the system because it involves the computation of a matrix
exponential. For small to medium sized networks, this com-
putational burden remains moderate, but it quickly becomes
prohibitive for larger sizes. Indeed, usual solvers for power
systems do not take advantage of the underlying physical
properties, especially locality. Here, we propose a new solving
method that exploits this locality property as it is usually done
in quantum physics.

A. The Krylov space

The locality principle, which is at the heart of the present
study, translates mathematically in how the Hamiltonian H acts
on vectors by multiplication. The Hamiltonian is an operator
that connects the line and their adjacent node states. Therefore,
when applied to any initial vector q1 localized in some part
of the graph, it produces a vector q2 whose components lie
in the adjacent states of q1. If H is applied again, it gives
the adjacent states of q2. Thus, the surroundings of the initial
state q1 are gradually explored by applying powers of H to q1.
Eq. (4) is a linear system whose solution can be expanded on
a basis involving the first powers of the Hamiltonian matrix.
Therefore, a local approximation of the solutions ψ of Eq.
(4) can be written under the form ψ̃ = f(H)q1, where f is
a polynomial of a sufficiently high degree N̄ and q1 is an
initial state. Similarly, since the solution of Eq. (9) involves the
exponential of the Hamiltonian matrix, it can be approximated
by the first few powers of its series expansion under the same
form. This approximation ψ̃ = f(H)q1 belongs to the Krylov
space KN̄ (H, q1) generated by H and defined as

KN̄ (H, q1) := Span(q1,Hq1, . . . ,HN̄−1q1). (10)

This space is spanned by the images of q1 and the first
N̄ powers of H. Its dimension N̄ must be chosen sufficiently
large to reduce the relative error ϵ of the approximation defined
as:

ϵ(N̄) :=
||ψ̃ − ψ||2
||ψ||2 (11)

Its reciprocal function N̄(ϵ) characterises the number of iter-
ations necessary to achieve an approximation up to the error
ϵ of the exact state ψ.

B. The Lanczos algorithm

The Lanczos algorithm can be used for constructing an
orthonormal basis of the Krylov space [34], [35] which is
convenient to express the solutions of Hamiltonian power
systems equations (4) and (9). The algorithm proceeds by
a tridiagonalization of the Hamiltonian H. In this paper, we
consider the case where the Hamiltonian is Hermitian and the
Lanczos procedure is simplified. This is obvious if we consider
the load flows described by equation (4). If we want to use
the same approach for dynamic issues, the damping should
be assumed to be zero. But even if there is some damping, a
similar approach is possible using the so-called bi-orthonormal
Lanczos method [38] [39]. To initialize the Lanczos algorithm,
a unit state vector q1 is selected. We define α1 := q†1Hq1.
Then for the second step, we build q2 := Hq1−α1q1

β2
with

β2 := ||Hq1 − α1q1||. The next steps generalize the process
by defining

∀i ≥ 3,


αi = q†iHqi
βi+1 = ||Hqi − αiqi − βiqi−1||
qi+1 = Hqi−αiqi−βiqi−1

βi+1

(12)
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Theoretically, the process stops when βN̄+1 = 0 is reached,
but in practice it is advantageous to interrupt it before this.
By definition, the Lanczos vectors (qi)1≤i≤N̄ are normalized
and orthogonal to each other. They form a recursion chain
originating from q1. On this chain, the Hamiltonian can be
written as a tridiagonal matrix T, such that

T =



α1 β2 0 . . . 0

β2 α2 β3
. . .

...

0 β3 α3
. . . 0

...
. . . . . . . . . βN̄

0 . . . 0 βN̄ αN̄


(13)

T = V†HV where V =
[
q1 . . . qN̄

]
is the matrix of

Lanczos vectors. When the algorithm is initialized with a
vector q1 which is a node (respectively line) state, q2 is a
line (respectively node) state, and q3 a node (respectively line)
state, etc. It follows that ∀i, αi = 0, and hence the matrix T
has a null diagonal.

The recursion chain (or Lanczos basis) is shown in Fig. (1).
It will be used to compute an approximation of the state of the
grid. Its length will be chosen sufficiently large to ensure the
convergence of the quantity of interest. It could be extended
to get better accuracy.

q1 q2 q3 q2k−1 q2k

β2 β3 β2k

α1 = 0 α2 = 0 α3 = 0 α2k−1 = 0 α2k = 0

Fig. 1. Representation of the recursion chain (or Lanczos basis) with N̄ = 2k.
The application of the Hamiltonian to a vector of the basis yields a linear
combination of the adjacent vectors linked by the arrows. The coefficients of
the combination are given by elements of the tridiagonal matrix T. The node
states (yellow) and the line states (orange) alternate.

C. Computation of the static solution

In order to illustrate the efficiency of the new approach we
now focus on the steady state resolution. It consists in comput-
ing the solution ψ from Eq. (4) on the recursion chain of even
length q1 . . . q2k with 2k := N̄ originating from q1 = P

||P|| . The
chain is truncated, which means that the construction of the
Krylov space is not completed. Thus, the calculation yields an
approximation ψ̃ rather than the exact solution ψ. Practically
speaking, truncating the Lanczos iterations is equivalent to
supposing that βN̄+1 is approximately zero, meaning that
HqN̄ decomposes only on qN̄ and qN̄−1. The solution ψ̃
decomposes only on the line states corresponding to the even
Lanczos states

ψ̃ =

k∑
i=1

κ2iq2i (14)

with k := ⌊ N̄2 ⌋. The coefficients of the decomposition (κi)
are obtained by inserting the expression (14) into Eq. (4). The
action of H on the Lanczos states (qi) is then deduced from
Eq. (12), so that each coefficient (κi) can be identified in the
basis (qi). This yields the following recursive formula.

{
κ2β2 = ||P||
κ2i+2 = −κ2i β2i+1

β2i+2
, ∀i = 1 . . . k − 1

(15)

If the recursion is performed until reaching βN̄+1 = 0, then
the exact solution ψ is obtained. Usually it is not the case, and
the error ϵ from Eq (11) between the exact and approximate
truncated solutions can be expressed on the Lanczos basis by

ϵ(N̄) =

∑
i>k κ

2
2i∑

i>0 κ
2
2i

where 2k = N̄ (16)

The numerator is the remainder of a converging series since
||ψ||2 =

∑
i>0 κ

2
2i and therefore it tends to zero as N̄ grows.

From a practical point of view, if a recursion of N̄ iterations
is performed to compute an approximate solution but the user
is not satisfied with the results, the calculation can be resumed
without recomputing all the coefficients (κi)1≤i≤N̄ or the
states (qi)1≤i≤N̄ of the previous approximation (they remain
unchanged). This is an important feature of this computational
approach.

IV. APPLICATION TO STATIC AND DYNAMIC STUDIES ON A
2D SQUARE LATTICE CASE

We present a first application of the Hamiltonian formalism
to an ideal square lattice network with all susceptance parame-
ters (Bl) equal to one. This illustrates the principle of locality
for static and dynamic computations.

A. Static case

As we have seen in the previous section, the Lanczos
vectors spread from the nodes where the source terms have
non-null values. This means that the first amplitudes of the
solution to be calculated with accuracy are near the source.
But as the number of iterations increases the rest of the
network is explored. The Lanczos algorithm can therefore
be an efficient way to solve the problem locally in few
iterations if the value of the solution is not needed in the
whole network. This could for instance be used to accelerate
the screening of contingency impacts. This is illustrated with
the square lattice network shown in Fig. (2). The modulus of
the power flow solution after the injection of power on one
side of the network and its extraction from the other side
is represented on a 3D-plot. It can be clearly seen that the
exact solution is quickly approximated near the source/load
nodes and propagates along the grid with the iterations. After
20 iterations, the calculation might be stopped and a good
approximation of the final solution is obtained locally.

B. Dynamic case

Short time range simulations of the network may also
benefit from locality. Without power injections (P = 0) and
without damping (D = 0), the analytical expression of the
solution ψ(t) simplifies to ψ(t) = exp(−iHt)ψ(0). It is
the solution of the homogeneous linear differential equation
induced in Eq. (9). Fig. (3) shows the repartition of the state
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Fig. 2. Illustration of the progressive construction of the solution by
considering recursion chains (Fig. (1)) of increasing length. The absolute value
of current crossing a line is plotted on the vertical axis. A source and a load
are placed at both sides of the network. The approximate solutions obtained
from recursion chains of lengths equal to 20, 30 and 40 are shown from left
to right and up to down. The exact solution is shown in the bottom right
panel. The absolute value of the difference between ψ and ψ̃ on each line l
is plotted in a color scale.

ψ(t = 4) on the recursion chain, i.e., the projection of the
state on the Lanczos basis. It clearly shows that beyond some
range (here on the order of 10) the amplitude of the wave
function decreases very sharply. This strong localization of
ψ(t = 4) in a finite part of the recursion chain is essential
for the high precision of the Lanczos approach. It means that
beyond a given length of the recursion chain, the precision
of the computation of ψ(t = 4) will increase exponentially
or even more steeply. The approximation is computed on the
Lanczos chain starting from the initial vector q1 = ψ(0)

||ψ(0)|| by
ψ̃(t) = V exp(−iTt)V†ψ(0). When P is not zero the addi-
tional term

∫ t
0
exp(−iH(t − t′))P(t′) dt′ needs to be added.

It is done once again by approximating exp(−iH(t − t′))
by V exp(−iT(t − t′))V†. The matrix T of small size N̄ is
then diagonalised exactly to compute the exponential. Only
the diagonal scalar coefficients of the exponential matrix need
then to be integrated, which can be achieved at low cost by
any stantard integration scheme. Again the locality principle is
the central reason for the good behavior of this approach. One
sees clearly that in this type of situation the Lanczos-based
approach is well-adapted and this is why it is commonly used
for analyzing time evolution and wave-function propagation
in the context of condensed matter physics or in quantum

chemistry.

0 10 20 30 40 50
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ith Lanczos state
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ei
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† q
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0 5 10 15
10−5

10−3

10−1

Fig. 3. This figure shows how the exact solution ψ decomposes on the
Lanczos states. The weights |ψ†qi|2 of the projection of the solution ψ on
the Lanczos state qi are decreasing rapidly as the index i grows.

V. APPLICATION TO THE EFFICIENT COMPUTATION OF
LODFS ON REALISTIC NETWORKS

The benefits of the proposed method are now illustrated by
calculating the Line Outage Distribution Factor (LODF) [29],
[33]. The LODF coefficient LODFl(l′) :=

∆Il′
Il

describes the
change in current ∆Il′ on a line l′ after the removal of a
line l relatively to the previous current Il on the line l. These
numerical factors describe how a power system reacts to a line
loss and are therefore employed by grid operators to assess the
safety and robustness of the network in contingency analysis.

A. Computation of the approximated LODF by the Lanczos
algorithm

Breaking a line l is equivalent to adding a dipole between
the nodes il and jl. The dipole is made by a pair of opposite
power injections whose values are directly linked to the initial
value of the current, chosen such that they create an opposite
current in the line l. For this reason, the LODF is a static
solution of Eq. (4) with a specific power injection (a dipole)
and can therefore be calculated using the formula (14). For
computing the LODF related to the faulty link l, the expression
(14) involves an approximated solution ψ̃ we rather denote
ψ̃(l) to emphasize on its dependence on the broken line l.
As the number of iterations increases, the approximation ψ̃(l)
tends to the exact solution ψ(l) with a speed characterised
by the metrics ϵl(N̄) and its reciprocal N̄l(ϵ) (defined in Eq.
(11) and renamed to emphasize on the dependence on l).
However, these metrics characterise the convergence of the
solution related to the specific broken line l and are thus
not representative of the overall convergence performance of
the method on a given network. That is why their definitions
are extended by averaging on the set L of lines that can be
broken without losing the connectivity of the network. The
global convergence is assessed by computing the average error
ϵavg(N̄) defined by

ϵavg(N̄) :=
1

|L|
∑
l∈L

ϵl(N̄) (17)
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where |L| is the number of elements in L. We also define
N̄avg(ϵ) the reciprocal function of ϵavg(N̄). It characterises the
number of Lanczos steps needed to achieve a given precision
ϵ.

Fig. 4. Mean error ϵavg(N̄) for the calculation of the LODF as a function
of the number of Lanczos iterations for various IEEE networks and for the
European network model called Pantagruel.

Fig. (4) shows the mean error defined in Eq. (17) for various
networks. The convergence appears to be at least exponential
and resolution can be achieved with a good precision in less
than 300 iterations, even for large networks.

B. Comparison of Lanczos method with state-of-the art results

We compare now the performance of the Lanczos algorithm
for the fast computation of LODF factors with one of the most
efficient methods in the state of the art: the dual approach.
For one Lanczos step i such that 1 ≤ i ≤ N̄ , the operation
with the biggest cost is the dot product of the Lanczos
state qi and the Hamiltonian H. The Hamiltonian is sparse
and each block HLN and H†

LN has only 2Nlines nonzero
coefficients. As a state qi is located on the lines or nodes only,
the dot product can be performed in approximately 2Nlines

elementary operations if the Hamiltonian is stored in a sparse
structure. This results in the total cost being approximately
Cost(Lanczos) := 2NlinesN̄ elementary operations for N̄
Lanczos steps. The dual approach, detailed in [31] can also
be conveniently derived from the Hamiltonian formalism (see
the appendix). It is a method based on the flows in closed
cycles of the network that uses the network’s sparsity to its
advantage. It has been shown to be faster than conventional
nodal techniques for contingency analysis by a factor of up to
4.5. It has a cost of Cost(Dual) = 2

3N
3
loops.

The speedup is defined as being the ratio between the cost
of the dual approach and the cost of the Lanczos iterations for
a number of iterations N̄avg(ϵ) necessary to achieve an error
of magnitude ϵ

Speedup(ϵ) :=
Cost(Dual)

Cost(Lanczos)
≈

N3
loops

3NlinesN̄avg(ϵ)
. (18)

Table (I) presents the speedup for a threshold value of 5%
for various IEEE test networks [53] [40] and the network

called Pantagruel which is an open source model of the
European network [48] [49].

TABLE I
COMPARISON OF THE COSTS OF THE LANCZOS AND DUAL METHODS FOR

VARIOUS NETWORKS.

Network Nlines Nloops N̄avg(5%) Speedup(5%)
case30 41 12 21 0.7
case39 46 8 27 0.14
case57 80 24 41 1.4
case89 210 122 61 47

case118 186 69 55 11
case145 453 309 63 344
case300 411 112 111 10
case1354 1991 638 191 227
case1888 2531 644 343 102
case1951 2596 646 353 98

pantagruel3809 7343 3535 177 11314

As shown in Table (I), for most networks (characterised
by their number of loops Nloops = Nlines − Nnodes + 1),
the Lanczos method appears to run much faster than the
dual approach for the calculation of the LODF. This method
involves the computation of a projector (see the appendix)
which requires a relatively high initial cost, but this cost is
compensated for by the possibility of calculating all the LODF
values of the network once the projector has been calculated.
On the other hand, the Lanczos method demands a relatively
small cost to perform the computation of the LODF for a
specific line contingency, however the calculations must be
restarted for each line of the network. If the purpose is to
screen all the contingencies, then the cost is multiplied by
the number of lines of the network. As such, the Lanczos
method should be used in the case of an estimation of LODF
required on some specific lines. It may therefore be adopted
for a quick screening strategy performed in real-time by the
network operator on the most vulnerable lines of the network.

C. On how the network’s topology affects the number of
iteration N̄

For a given line l the LODF computed with the Lanczos
algorithm converges with a speed that depends on the decrease
of the coefficients κ2i (see equation (14)). Therefore this
convergence reflects the range of influence of the broken
line l and depends on its relative position in the graph
representing the network. This dependence is discussed here
for the Pantagruel model of the European network and reveals
remarkable patterns.

Fig. (5) is composed of two panels. The left panel indicates
the number of contingency scenarios which could be solved
for a given number of iterations (each scenario corresponding
to a broken line). The number of converged scenarios with a
ϵ = 5% precision is plotted against the number of iterations
N̄l. For more than half of the lines the scenarios could be
solved in less than 250 iterations and many require less
than 100 iterations. However, some lines need around 1500
iterations (≈ 15 times more steps) to converge. A graphical
illustration of the convergence results is given in the right
panel of Figure (5). The lines with a high convergence rate
are located inside densely meshed areas whereas the lines



7

0 250 500 750 1000 1250 1500 1750

Number of iterations N̄l

100

101

102

103

N
um

b
er

of
co
nv
er
ge
d
ve
ct
or
s
L
O
D
F
l(
·)

N̄l = 1633

N̄l = 1687

N̄l = 1657

N̄l = 1519

N̄l = 1515

1

Fig. 5. Pantagruel model of the European transport network. Left panel: number of lines l needing a N̄l number of iterations to achieve a ϵ = 5% convergence
for the computation of the vector LODFl(·). This histogram is plotted using 50 intervals of the same size. Right panel: Each line l is plotted with a given
color depending on the number of iterations N̄l to achieve a ϵ = 5% convergence for the computation of LODFl(·). The five lines demanding the highest
number of iteration N̄l > 1500 are indicated by arrows.

with poor convergence are situated in sparse areas. It is again
an effect of locality. In dense areas, the broken lines have
only a local impact, their current being redistributed in the
neighbouring lines. Therefore the Lanczos approach converges
quickly. In sparse area, the line loss may impact larger areas
and the effect of a line outage is less local. So more iterations
are required before convergence to a good approximation of
the redistribution of the currents. This tendency was evaluated
by carrying out the Spearman correlation test between the
number of iterations N̄l and the range R(l) of the redistribution
of the currents defined by

R(l) :=

[
Nlines∑
l′=1

||x(l′)− x(l)||2
(

LODFl(l′)
||LODFl||

)2
] 1

2

(19)

where x(·) gives the geographical coordinates of the center
of each line. This test yields a value of 0.85 indicating
a fairly high monotonic correlation between N̄l and R(l).
This confirms that the lines corresponding to the slowest
convergence are also those for which the outage has an impact
with the largest range in the network. It is worth noting that
some of these lines are known as being critical, especially at
the border between France and Spain. These lines were indeed
involved in recent large scale incident as mentioned in [54],
[55]. In a way, the convergence rate gives an indicator of how a
line is critical or not, meaning how it may impact the system’s
behavior locally or at system-level.

VI. CONCLUSION

This article has provided a new approach for modeling
power systems which is based on a Hamiltonian formalism
and an exact analogy with quantum mechanics. This analogy
allows to apply mathematical methods and efficient computa-
tional techniques which are well known in quantum physics
but we emphasize that it requires no a priori knowledge of
quantum mechanics. The proposed approach is driven by the
locality principle and the Lanczos algorithm that is used for
computation is built by-design on this locality effect. It has
appeared to be very efficient and able to reach speed per-
formances beyond the state-of-the-art methods. In particular
contingency analysis of various realistic power systems were
performed to demonstrate some of the numerical possibilities
of the method. The example of the so-called Pantagruel
model of the European network shows in particular the high
interest of this approach especially for large power systems.
Most of the results were given for steady-state operations.
Yet the Hamiltonian formalism is also suitable for dynamic
simulations. We have shown how the method can be extended
to dynamic modeling of power systems at low frequencies for
fundamental studies of inter-area oscillations. Therefore we
believe that the present analogy between quantum mechanics
and power systems can be fruitful for the future modeling
works performed by electrical engineering scientists and en-
gineers.

Finally, at a more mathematical and formal level we expect
that the standard tools of quantum physics such as Green’s
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functions (see the appendix) could be useful for power system
analysis. Obviously, the dynamical model of power systems
used in this paper is very basic. Yet, the proposed approach
could be generalized to more advanced description of electrical
networks. For example, in the case of differential evolution
equations of higher order introduced by control loops or
detailed description of synchronous machines, one can still
get a first order differential equation analogous to Eq. (9) but
with a different definition of the Hamiltonian.
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APPENDIX

A. Eigenelements and Kernel of H
Here we consider first the case where there is no damping,

so that the Hamiltonian H defined by Eq. (8) is Hermitian.

Let us consider an eigenvector ϕ+ =

[
ϕN

ϕL

]
corresponding

to a nonzero eigenvalue λ of H. Then ||ϕN||2 = ||ϕL||2

and additionally ϕ− :=

[
−ϕN
ϕL

]
is an eigenvector for the

eigenvalue −λ. Moreover, ϕN is an eigenvector of M− 1
2LM− 1

2

corresponding to the eigenvalue λ2.
We focus now more specifically on the kernel of H. The

kernel of HLN is given by

ker(HLN) =
{[
µ . . . µ

]†
, µ ∈ R

}
(20)

which is a one-dimensional subspace of RNnodes . It is the space
orthogonal to all the nodal vectors which have a null sum (i.e.,
all the sources P verifying Boucherot’s theorem). The kernel
of the Hamiltonian H is deduced from the kernel of HLN

by multiplication with the operator M 1
2 . Note that this kernel

exists only if there is no damping term.
The kernel of H†

LN is

ker(H†
LN) =

{[
ϕL1 . . . ϕLNlines

]†
such that

∀n = 1 . . . Nnodes,

Nlines∑
l=1

sl(n)
√
Blϕ

L
l = 0

}
(21)

where sl(n) ∈ {−1, 1, 0} gives the position of the node n
relative to the orientation of the line l,

sl(n) :=


−1 if n = jl

1 if n = il

0 if n /∈ {il, jl}
(22)

The kernel is constituted by the line states ϕL such that the
currents Il =

√
Blϕ

L
l follow Kirchoff’s current law. This

kernel is not modified when there is a damping term in the
Hamiltonian and is also independent of the inertia terms. The
dimension of this kernel is Nloops = Nlines − Nnodes + 1.
Indeed, H†

LN is a mapping from the line subspace of dimension
Nlines to the node subspace of dimension Nnodes and the latter

contains a subspace of dimension one (the kernel of HLN) that
is decoupled from the line space.

To get a basis of the line states of the kernel of H, we
examine all the loops (Lk)1≤k≤Nloops

of the network and apply
a unit current to each loop. Let Lk be one such loop, and let
us denote by l1 . . . lq the lines composing the loop. Let us
also define, for each line lp joining the nodes ilp and jlp , the
first node reached in the loop Lk as being np ∈

{
ilp , jlp

}
and

kp := Nnodes+ lp be the index of lp in the Hamiltonian. Then
the vector family (Yk)1≤k≤Nloops

defined as

∀k = 1 . . . Nloops, Yk =

q∑
p=1

slp(np)√
Blp

ekp (23)

is a basis of the kernel of H. Note that slp(np) is defined by
Eq. (22).

B. Calculation of the exact LODF in the Hamiltonian formal-
ism using Green functions

For two lines l1 and l2 of the graph such that the loss of l1
does not give an islanded network, the LODF is exactly given
by

LODFl1(l2) = −
√
Bl2√
Bl1

P 0
k2k1

P 0
k1k1

(24)

where k1 := Nnodes + l1 and k2 := Nnodes + l2 are the
indices of the two lines in the Hamiltonian matrix and P 0

is the projector on the kernel of the Hamiltonian H we will
discuss later. A simple demonstration of this formula can be
provided by the formalism of quantum physics, as we show
now. This formalism is based on the Green’s function (or
resolvant operator)

G(z) = [zI−H]
−1 (25)

where I is the identity matrix. This operator is usually used
for analysis in the frequency domain with z := ω + iϵ where
ω ∈ R is the frequency and the infinitesimal imaginary part
iϵ ensures the convergence of Fourier integrals. It also gives
the steady-state response ψ of the equation Eq. (4) to a given
power injection P

ψ = − lim
z−→0

G(z)P (26)

It is now possible to give a proof of (24) using Green’s
functions. We define the vector ek1 which is composed of
zeros, except at position k1, where its component is 1. Let
G(l1)(z) be the Green’s function after the line l1 is broken.
The value of the state of the grid ψ(l1) on line k2 after the
outage of line l1 is given by

ψk2(l1) = − lim
z−→0

[G(l1)(z)P]k2 (27)

In addition, G(l1) can be expressed using the Woodbury
matrix identity [37] by

G(l1)(z) = G(z) +G(z)T (z)G(z) (28)

with T (z) := − 1
Gk1k1

(z)ek1e
†
k1

. This equation is also well-
known in the context of multiple scattering theory in quantum
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physics and T (z) is known as the T -matrix. Therefore, one
has

ψk2(l1) = ψk2 − lim
z−→0

Gk2k1(z)

Gk1k1(z)
ψk1 . (29)

At the same time, we have

G(z) = [zI−H]
−1

=
∑
k≥1

1

z − λk
ϕkϕ

†
k (30)

where (λk) are the eigenvalues of H and (ϕk) is an orthonor-
mal basis of the eigenvectors of H. Thus, when z tends to
zero, all terms of the sum tends to finite quantities, except for
the terms with λk = 0 (corresponding to the kernel of H).
Therefore

Gk2k1(z)

Gk1k1(z)
−→
z−→0

P 0
k2k1

P 0
k1k1

(31)

where P 0 is the projector on the kernel in the line subspace
of S and P 0

k2k1
is its matrix element. Finally, we obtain

ψk2(l1) = ψk2 −
P 0
k2k1

P 0
k1k1

ψk1 (32)

Obtaining Eq. (24) is straightforward. The projector P 0 is
the operator given by

P 0 :=

Nloops∑
k=1

XkX
†
k (33)

where the family (Xk) is an orthonormal basis of the kernel
of H. It can also be computed from any basis (Yk) (not
necessarily orthonormal) of ker(H) (obtained by the formula
(23) for example) by the formula

P 0 =

Nloops∑
k,l=1

[
Gram−1(Y1 . . . YNloops

)
]
kl
YkY

†
l (34)

where the Gram matrix of the family Y1, . . . YNloops
is the

matrix of the scalar products, i.e., for all indices k, l =
1 . . . Nloops, [

Gram(Y1, . . . YNloops
)
]
kl

= Y †
k Yl. (35)

The computation of the projector (34) needs therefore the
inversion of a linear system of dimension Nloops × Nloops

where Nloops = Nlines − Nnodes + 1 and that is why its
approximate computational cost is Cost(Dual) = 2

3N
3
loops for

performing Gauss–Jordan elimination. This method can also
be used for multiple line outages (as in [29] [31]).
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[38] M. Grüning, A. Marini, and X. Gonze, (2011). “Implementation and
testing of Lanczos-based algorithms for random-phase approximation
eigenproblems,” Comput. Mater. Sci., vol. 50. no. 7, pp. 2148–2156, 2011.

[39] Y. F. Jing, B. Carpentieri, and T. Z. Huang, “Experiments with Lanczos
biconjugate A-orthonormalization methods for MoM discretizations of
Maxwell’s equations,” Progr. Electromagnetics Research, vol. 99, pp.
427–451, 2009.

[40] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MAT-
POWER: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Trans. Power Syst., vol. 26, no.
1, pp. 12–19, Jun. 2010.

[41] H. R. Fang, and Y. Saad, “A filtered Lanczos procedure for extreme and
interior eigenvalue problems,” SIAM J. Scientific Computing, vol. 34, no.
4, pp. A2220–A2246, 2012.

[42] A. Weiße and H. Fehske, “Exact diagonalization techniques,” in Compu-
tational Many-Particle Physics, Berlin: Springer-Verlag, 2008, pp. 529–
544.

[43] N. Garcia, M. L. Romero, and E. Acha, “Jacobian-Free Poincaré–Krylov
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