
Wrapper Feature Selection with Partially
Labeled Data

Vasilii Feofanov Emilie Devijver
Massih-Reza Amini

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
firstname.lastname@univ-grenoble-alpes.fr

Published in Applied Intelligence *

Abstract

In this paper, we propose a new feature selection approach with par-
tially labeled training examples in the multi-class classification setting. It
is based on a new modification of the genetic algorithm that creates and
evaluates candidate feature subsets during an evolutionary process, tak-
ing into account feature weights and recursively eliminating irrelevant fea-
tures. To increase the variety of data, unlabeled observations are employed
in the feature selection process, namely by pseudo-labeling them using a
self-learning algorithm with a recently proposed transductive policy. Em-
pirical results on different data sets show the effectiveness of our method
compared to several state-of-the-art semi-supervised feature selection ap-
proaches.

1 Introduction

We consider semi-supervised classification problems where observations are
described by a large number of characteristics. In this case, the original set
of features may contain irrelevant or redundant characteristics to the output,
which with the lack of labeled information leads to inefficient learning models.
In practice, the removal of such features has been shown to provide important
keys for the interpretability of results and yield better prediction performance
(Guyon and Elisseeff, 2003; Chandrashekar and Sahin, 2014).

Feature selection techniques have been widely developed and, depending
on the availability of class labels, can be supervised, unsupervised or semi-
supervised. Being agnostic to the target variable, unsupervised approaches
generally ignore the discriminative power of features, so their use may lead

*https://link.springer.com/article/10.1007/s10489-021-03076-w

1

to poor performance. In contrast, supervised feature selection algorithms ben-
efit from abundant labeled examples, so they effectively select the subset of
relevant characteristics. When there is no access to a large number of observa-
tions, performance of supervised approaches degrades, so selection of relevant
features becomes an intricate issue. In semi-supervised learning (Sheikhpour
et al., 2017), in addition to the scarce labeled set, a large collection of unla-
beled data is assumed available, so the aim is to perform feature selection by
exploiting both available labeled and unlabeled examples in order to provide a
solution that preserves important structures of data, reducing significantly the
original dimension and leading to high performance in accuracy. To take bene-
fit from the large number of available unlabeled observations and compensate
the scarcity of labeled examples in the learning process, a common approach
is to increase the diversity of labeled training data by assigning pseudo-labels
to some unlabeled observations using either self-learning or co-training ap-
proaches (Blum and Mitchell, 1998; Tür et al., 2005; Amini et al., 2008). How-
ever, pseudo-labels are prone to error, and their use may degrade performance
as compared to a fully supervised model trained on the initial labeled examples
only.

As searching of the optimal feature subset by exhaustive search would be
computationally infeasible, many classical methods are based on sequential
search algorithms, such as forward or backward selection. However, such
methods are also computationally heavy for large-scale applications. Heuris-
tic search algorithms, like the genetic algorithm (Goldberg and Holland, 1988),
significantly reduce the computational time (Siedlecki and Sklansky, 1993; Xue
et al., 2015). The genetic algorithm is an evolutionary optimization algorithm
inspired by the natural selection process, where a fitness function is optimized
by evolving iteratively a population of candidates (possible feature subsets). Start-
ing from a randomly drawn population, at every generation a new population is
produced by preserving parents from the last generation and creating offspring
from the parents using operation of crossover and mutation. After a predefined
number of generations the algorithm is stopped, and a candidate with the best
fitness score in the last population is returned. The approach can be very ef-
fective when the number of features is very large. However, it has two main
drawbacks: it may have a high variability on large-dimensional data sets, and
the solution that the algorithm outputs is generally not as sparse as it could
be, because any information like feature importance is ignoring during the
crossover.

In this paper, we propose a new semi-supervised feature selection method,
denoted by TSLA-FSGA, that first pseudo-labels unlabeled data using the self-
learning algorithm with the transductive criterion derived by Feofanov et al.
(2019). This allows to minimize the number of label errors produced by self-
learning and to use a diverse augmented data for the feature subset search,
which is performed by a new modification of the genetic algorithm, called Fea-
ture Selection Genetic Algorithm (FSGA) that reduces the variance in selection and
ensures a high level of sparsity. This is achieved by considering feature weights
during the optimization phase and iteratively removing features found to be

2

irrelevant. We guide FSGA by the out-of-bag score of the Random Forest clas-
sifier (Breiman, 2001), and we empirically show that the proposed approach
is fast, accurate on large-scale benchmarks, and it outperforms the supervised
baseline.

The remainder of this paper is organized as follows. Section 2 describes
related work. Section 3 introduces the semi-supervised feature selection ap-
proach we propose, which is based on a modification of the genetic algorithm.
Section 4 presents the experiments conducted on several data sets. Lastly, Sec-
tion 5 concludes the paper and discusses the future work.

2 Related Work

Feature selection methods can be classified into three main families. Filter
methods score features following a criterion and perform selection before the
construction of a learning model (Yang et al., 2010; Zhao et al., 2008). Embedded
techniques perform model-based feature selection in order to infer the im-
portance of features during the training process (Chen et al., 2017). Finally,
wrapper approaches use a learner to effectively find a subset of features that are
discriminatively powerful together (Kohavi and John, 1997; Ren et al., 2008). In
the specific case of semi-supervised learning, some works have been initiated
recently according to these three directions.

Most of the semi-supervised feature selection algorithms are extensions of
popular supervised or unsupervised filters. The Semi-Fisher Score (SFS, Yang
et al. (2010)) extends the supervised Fisher score by embedding the graph
Laplacian computed on labeled and unlabeled data. The Semi-supervised Lapla-
cian Score (SSLS, Zhao et al. (2008)) is a graph-based approach that uses unla-
beled examples to identify which features are able to preserve the local struc-
ture of the data, and labeled examples to maximize distance between obser-
vations from different classes. In the binary classification case, Sechidis and
Brown (2018) proposed to use a supervised filter for partially-labeled data by
using a surrogate target variable that is either fully positive or negative for un-
labeled data. The main disadvantage of the filter approaches is that feature
importance is evaluated individually, so there is a risk to discard features that
are strong only in combination with others (Guyon and Elisseeff, 2003).

Recently, embedded approaches have become actively studied. They out-
put feature weights during the training process, but, compared with wrappers,
are inflexible to the objective. The Rescaled Linear Square Regression (RLSR,
Chen et al. (2017)) is one of the approaches that ranks features by learning a
projection matrix using the least square regression with a sparse regulariza-
tion (Chen et al., 2017; Wu et al., 2021) and scaling the regression coefficients
with a set of scale factors. Jiang et al. (2019) use the Bayesian approach to learn
weights both for features and unlabeled examples that could be potentially
irrelevant. In supervised feature selection, a popular embedded approach is
the recursive feature elimination (RFE, Guyon et al. (2002)) that recursively re-
learns a learning algorithm removing a portion of features with the lowest fea-

3

ture weights at each iteration. Although this approach effectively removes ir-
relevant features, it may also remove some informative variables that are weak
individually (Darst et al., 2018). In Section 4, we illustrate the empirical perfor-
mance of its extension to semi-supervised learning.

Ren et al. (2008) proposed a semi-supervised wrapper approach (CoT-FSS),
which incorporates unlabeled data to the training set by means of co-training,
and find the best feature subset using forward sequential search. The approach
performs co-training inside the wrapper, which makes it computationally ex-
pensive. In Han et al. (2011), it was shown that the complexity may be reduced
by pseudo-labeling the unlabeled examples just once and then performing the
wrapper feature selection on the augmented the data set. As the structure of
wrapper methods is more flexible, the choice of the criterion is not necessar-
ily limited to the accuracy score, and other learning-based metrics can be used
(Song et al., 2007). This is particularly attractive for semi-supervised learning
where the criterion may be evaluated using both labeled and unlabeled data.

However, sequential search approaches (Ren et al., 2008; Han et al., 2011)
are time consuming for high-dimensional data, so in recent years attention has
returned to evolutionary algorithms (Xue et al., 2015). The use of the genetic
algorithm for wrapper selection has shown success for different tasks such
as brain imaging data (Szenkovits et al., 2018) or classification of electroen-
cephalograph signals (Buza, 2020), and the approach has been recently applied
for feature selection in the semi-supervised multi-target regression case (Syed
et al., 2021). However, in the high-dimensional setting, the performance of the
classical genetic algorithm may decrease due to the large search space. In this
work, we focus on the semi-supervised multi-class classification framework
and propose a new modification of the genetic algorithm that allows to reduce
variance in output and increase feature selection quality when dimension is
large.

3 Semi-supervised Wrapper Algorithm: TSLA-FSGA

We consider the multi-class classification framework with the output space
Y = {1, . . . , K}, K ≥ 2, and the input space X ⊂ Rd, where d is the to-
tal number of features. We suppose given a set of labeled examples ZL =
{xi, yi}1≤i≤l ∈ (X × Y)l and a set of unlabeled examples XU = {xi}l+1≤i≤l+u,
XU ∈ X u. Given a level of sparsity d′ � d, the goal is to find a feature subset
S∗ ⊆ {1, . . . , d}, |S∗| = d′ based on ZL ∪ XU that leads to the highest classifica-
tion performance among all possible feature subsets of size d′.

Below, we present our semi-supervised framework for wrapper feature se-
lection using both labeled and unlabeled data. Based on random forest as the
base learning algorithm,described in Section 3.1, the approach consists of two
phases: first, we increase variety of the training data by pseudo-labeling the
unlabeled examples using a self-learning algorithm described in Section 3.2;
on this new data set, we perform the feature selection in a wrapper fashion
by a proposed genetic algorithm named Feature Selection Genetic Algorithm,

4

described in Section 3.3.

3.1 Base Classifier

In the literature of wrapper feature selection approaches (Guyon and Elisseeff,
2003; Xue et al., 2015), most of the well known classification methods have been
used as the base classifier, which evaluates the strength of a feature subset. In
this paper, we have chosen a random forest (Breiman, 2001, denoted by RF) of
decision trees due to its ability to output feature weights, versatility for differ-
ent tasks and high accuracy when the labeled set is scarce (Biau and Scornet,
2016).

The main principle of learning decision trees (Breiman et al., 1984) consists
in top-down recursive binary partitioning of the feature space into disjoint re-
gions. At every node, a feature and a split value are chosen from maximization
of the Gini impurity decrease criterion. After growing a tree t, a feature weight
ωt

j is derived for a feature j by computing the total impurity decrease the fea-
ture yields. The main advantage of the decision tree is its versatility, since it can
be applied for both numerical and categorical features being a scale-invariant
non-linear learning algorithm.

As a single decision tree is prone to overfit, we consider the random forest
classifier denoted by H, a majority vote ensemble of decision trees, where each
tree ht, t ∈ {1, . . . , T} is trained on a bootstrap sample Bt (Efron, 1992) of size l
drawn with replacement from the training set ZL. RF has been proposed along
with the out-of-bag error, which has been shown to be an unbiased estimator
of the generalization error (Breiman, 2001). For every training example x ∈ ZL
and a class c ∈ Y , the out-of-bag vote is evaluated as the proportion of trees
that did not contain the example x in their respective bootstrap sample and that
output for x the class c :

vL(x, c) =
1

|{t :x 6∈ Bt}| ∑
t: x 6∈Bt

I(ht(x) = c).

Then, the out-of-bag error is defined as follows:

FL =
1
l

l

∑
i=1

I(yi 6= argmax
c∈Y

vL(xi, c)). (1)

In addition, the random forest outputs feature weights by averaging them over
the trees: for a feature j,

wj =
1
T

T

∑
t=1

ωt
j .

3.2 Pseudo-labeling via Self-learning Algorithm

In semi-supervised learning, the self-learning algorithm (SLA) is one of the
most common approaches to benefit from unlabeled data. The main idea is

5

to iteratively re-learn a supervised base classifier (e.g., the random forest) by
expanding the labeled set. At each iteration, it assigns pseudo-labels (i.e.,
predicted labels) to those unlabeled examples that have prediction confidence
above a threshold. The pseudo-labeled examples are then included in the train-
ing set, and the classifier is retrained. The process is repeated until no exam-
ples for pseudo-labeling are left. At the end, a new augmented data set with
an increased diversity of training examples is hence obtained. The algorithm
is illustrated in Figure 1.

ZL
Supervised

Classifier

XU

Confidence Prediction

Policy

0

1
θ

(XP , ŶP)
XP ⊂ XU

XU ← XU \ XP
ZL ← ZL ∪ (XP , ŶP)

Figure 1: Self-Learning Algorithm SLA.

A common approach is to set the pseudo-labeling threshold to a fixed value
(Tür et al., 2005; Han et al., 2011), which practically may degrade the classifica-
tion performance comparing to the base classifier learned on the labeled exam-
ples only. To overcome this issue, Feofanov et al. (2019) have proposed to find
this threshold dynamically in the context of multi-class majority vote classifiers
(including random forests) based on an upper-bound of the majority vote’s er-
ror in the transductive case (Vapnik, 1998). The class votes for the unlabeled
examples, defined for the RF classifier H as

v(x, c) =
1
T

T

∑
t=1

I(ht(x) = c), ∀x ∈ XU , c ∈ Y ,

are considered as indicators of prediction confidence. Thus, the self-learning
algorithm with transductive policy, further called TSLA, considers a majority
vote as the base classifier and dynamically learns at each iteration a threshold
vector θ = (θ1, . . . , θK), one threshold per class, by minimizing the following
criterion:

min
θ∈(0,1]K

∑x∈XU I(y 6= H(x))I(v(x, H(x)) ≥ θH(x))

∑x∈XU I(v(x, H(x)) ≥ θH(x))
. (2)

Following this criterion, we choose a threshold as a trade-off between the pro-
portion of examples going to be pseudo-labeled (numerator) and the error they

6

induce (denominator). The numerator is upper bounded using the transduc-
tive bound proposed by Feofanov et al. (2019).

Among the existing approaches for pseudo-labeling of unlabeled data, we
have chosen TSLA due to the following reasons. Firstly, the approach does not
require fixing any hyperparameter, since the confidence threshold is found au-
tomatically. Secondly, Feofanov et al. (2019) has experimentally shown that the
performance of TSLA does not practically degrade compared to the supervised
baseline thereby providing a safe solution. In Section 4.2, we experimentally
show that the quality of pseudo-labels can indeed influence the feature selec-
tion quality by comparing TSLA with another version of self-learning.

In contrast to Ren et al. (2008) and Syed et al. (2021), who used a semi-
supervised base classifier to evaluate the strength of feature subsets, we assign
pseudo-labels to unlabeled examples prior to the feature selection step and
then perform a subset search on the expanded training set, which drastically
reduce the algorithm’s complexity.

3.3 FSGA: Feature Selection Genetic Algorithm

After obtaining an augmented data set via TSLA, we perform a heuristic search
using a genetic algorithm (Goldberg and Holland, 1988). The classical genetic
algorithm, CGA, ignores during the crossover any information like feature im-
portance, since a child inherits features from its parents at random. Moreover,
the larger is the number of features, the larger is the search space, so the algo-
rithm becomes highly variable which affects the performance (Xue et al., 2015).

In this connection, we propose a new genetic algorithm for feature selec-
tion that tackles these two problems: 1) the algorithm takes into account the
importance of features during the generation of a new population by using a
weighted crossover, 2) it iteratively removes variables that are found to be ir-
relevant, which accelerates the convergence and reduces the search space. The
main steps of this algorithm are summarized in Fig. 2 and are described as
follows.

Initialization: the population P0 is initialized by randomly generating fea-
ture subsets of a fixed length d′. Each candidate S ∈ P0 corresponds to a feature
subset.

Evaluation of Fitness and Feature Weights: for the generation g ≥ 0 and
for each candidate S ∈ Pg, a random forest model is learned on the labeled
and the pseudo-labeled examples. Feature weights {wS

j }j∈S are derived from
the Random Forest classifier restricted to the feature subset S. To evaluate the
strength of the subset S, the out-of-bag score OOB is considered as a fitness
score. It evaluates the generalization error without subsampling (compared to
the cross-validation for example), reducing the computational cost. The intro-
duced fitness criterion is computed on labeled and pseudo-labeled data with

7

Initialize
population

Compute
fitness

Compute
feature
weights

last
generation? done

Select
parents

Test feature
relevance

Perform
crossover

Perform
mutation

yes

nonew population

Figure 2: Feature Selection Genetic Algorithm (FSGA) in a nutshell.

projection on a feature subset S as follows:

FL∪L̂(S) :=
1

l + l̃

l+l̃

∑
i=1

I(ŷi 6= argmax
c∈Y

vL(x
[S]
i , c)), (3)

where l̃ ≤ u corresponds to the number of examples that have been pseudo-
labeled, ŷi = yi for i = {1, . . . , l}, ŷi corresponds to the pseudo-labels for
i = {l + 1, . . . , l + l̃}, and x[S]i denotes projection of xi on the set of features
S. Note that this fitness criterion considers pseudo-labels that might be erro-
neous, but Dietterich (2000) has empirically shown that the underlying random
forest bagging procedure is robust in the presence of noise in the output, which
additionally validates our choice of the fitness criterion.

Parent Selection: among the population Pg, p candidates with the best fit-
ness scores are selected, used for the next population Pg+1 and for producing
a new offspring. There exists various policies in the literature of genetic algo-
rithms to select parents (Goldberg and Deb, 1991) such as tournament selection
or proportionate reproduction. However, we have experimentally observed no
benefit from such additional randomness, so we stick to the simplest policy of
choosing candidates with the best fitness score (which corresponds to the tour-
nament of maximal size).

Relevance Test: a test is performed to eliminate irrelevant to response vari-
ables. We embed an approach of Tuv et al. (2009) to compare variables with
their copies using randomly permuted values. At first, we consider the fea-
tures that appear at least in one of the candidates: Sg = {j ∈ {1, . . . , d} : ∃S ∈
Pg s.t. j ∈ S}. We compute their average weights as:

w̄j =
∑S :[S∈Pg]∧[j∈S] wS

j

∑S∈Pg I(j ∈ S)
, j ∈ Sg.

8

We define the set of suspicious features Sout as a percentage1 of features that
have the smallest average weight. The principle of the test is to learn a classifier
on a new data set, composed by: the features detected by the best parent, sus-
picious irrelevant features and their randomly permuted copies. We construct
R times the data set with permuted copies and learn the classifier. For each
r ∈ {1, . . . , R}, we look at the feature weights of the noisy counterparts and
evaluate a high percentile from their distribution, denoted by τr, which serves
as a threshold to distinguish informative variables from noisy ones. Thus, for
each feature j ∈ Sout we have a sample of R feature weights retrieved from the
R classifiers. This sample is compared with the sample of thresholds (τr)R

r=1
using the one-sided Mann-Whitney U test with a suitably small p-value. The
hypothesis rejection for a feature j implies that its feature weight is statistically
close to feature weights of the noisy counterparts, so this feature is called irrel-
evant, removed and will not be further considered by the algorithm. Since the
size of selected parents may be less than the initial d′ after this test, we perform
backfilling by randomly including (all but irrelevant) features into the subset
to reach the size d′. We set the weights of these features to be 10−10 so they
have little chance to participate in the next crossover.
The test requires to set such parameters as the percentile and the p-value. The
higher percentile is taken, the higher thresholds (τr)R

r=1 are set, while high p-
values suggest a more drastic assessment of irrelevance. We have noticed that
the relevance test becomes more qualitative with the increase of classes2 as in
this case the difference between informative and irrelevant variables become
more evident, so the test is not very sensitive to the choice of the percentile and
the p-value, and the number of experiments R can be even reduced. Originally,
this test has been proposed for supervised feature selection, and it was per-
formed just once on the whole feature set (Tuv et al., 2009). In semi-supervised
learning, the number of labeled examples is often much smaller than the num-
ber of features, so the features weights may be biased leading to not correct
relevance estimation. Although incorporation of the pseudo-labeled unlabeled
examples may help to reduce the bias, we have observed that using the rele-
vance test iteratively at each generation improves the performance results (see
more details in Appendix, Section A).

Crossover and Mutation: A new child is generated by mating two parents.
In contrast to CGA, we inherit variables according to their weights: for each
parent, its features are sorted by their weights in the decreasing order. The
crossover point that characterizes the proportion of features inherited from the
first parent is taken randomly, and we fill the child by its sorted features until
we reach the quota. The rest of the features are taken from the second parent,
ensuring no repetitions. This type of crossover suggests to increase exploita-
tion of informative features with large feature weights.
To increase the diversity of candidates and prevent ”deadlocks”, mutation is
used: for each child, a random number of features (not greater than a parame-

1In our experiments, we fix it to 30%.
2Assuming we are not dealing with a high class-imbalance.

9

ter mutmax) from the subset S are replaced by the same number of features out
of S. Since the proposed weighted crossover operator is highly exploitative,
an aggressive mutation (i.e., large values of mutmax) is a reasonable choice to
balance exploration.

Those steps are repeated to generate new populations for several genera-
tions, and a candidate with the best fitness in the final population is output.

3.4 Time Complexity

In this section, we discuss the time complexity of our method and compare it
with the other semi-supervised feature selection approaches discussed in Sec-
tion 2. The conclusion of this section is empirically illustrated in Section 4.4.

Selecting d′ =
√

d variables, for each candidate feature subset, FSGA evalu-
ates the fitness based on the random forest classifier that has the average time
complexity O(

√
dTn log2 n), where n ≈ 0.632 · (l + l̃) corresponds to the num-

ber of labeled and pseudo-labeled examples that are used in a bootstrap sam-
ple, T is the number of trees (Louppe, 2014). Then, the complexity of FSGA is
O(
√

dTNg(Nc + 2R)n log2 n), where Ng is the number of generations, Nc is the
population size, R is the number of experiments in the relevance test. In our
experimental setup, we have set fixed T, Ng, Nc, R, so the complexity can be
written as O(

√
dn log2 n), which indicates a good scalability of the algorithm.

Note also that the trees of RF as well as the learning models for fitness evalua-
tion are naturally parallelized, which can significantly speed up the algorithm.

Compared to FSGA, the wrapper algorithms like Ren et al. (2008); Han et al.
(2011) are time consuming for high-dimensional data, because they are based
on sequential feature subset searching, which yields a complexity cubic in
the dimension and quasilinear in the sample size 3. The complexity of semi-
supervised filter approaches like SFS (Yang et al., 2010) and SSLS (Zhao et al.,
2008) are linear with respect to the dimension, but quadratic with respect to
the sample size because of the Laplacian matrix’s evaluation. In a large-scale
setting, the complexity of RLSR (Chen et al., 2017) is high, being cubic in the
dimension (or linear in the dimension and quadratic in the sample size when
the sample size is large).

4 Experimental Results

The benefit of our approach is illustrated on a simulated data set as well as
10 publicly available data sets (Chang and Lin, 2011; Guyon, 2003; Xiao et al.,
2017; LeCun et al., 1998; Li et al., 2018; Dua and Graff, 2017).

The synthetic data is generated based on the algorithm4 that was used to
create the Madelon data set (Guyon, 2003). The size of training labeled and

3In the case of using a decision-tree based classifier inside the wrapper.
4We use the implementation of Pedregosa et al. (2011).

10

training unlabeled sets are set respectively to 100 and 900. We fixed the num-
ber of classes to 3; the number of features to 20 wherein 8 features (No. 1-8) are
informative, 6 redundant features (No. 9-14) are exact copies of the first infor-
mative variable, and 6 features (No. 15-20) are irrelevant to the target. We have
observed that the first informative variable is individually strong, whereas the
second one is weak, so the redundant features may be more attractive for se-
lection rather than the second variable.

The characteristics of 10 benchmark data sets are summarized in Table 1.
The associated applications are text classification with PCMAC, Relathe and
Basehock databases; image classification with Fashion, MNIST, Coil20 and
Gisette data sets; bioinformatics with Protein data set; feature selection with
Madelon; and speech recognition with Isolet. MNIST and Fashion data sets
have been restricted to a subset of 10000 observations. To imitate the semi-
supervised setting, we do not use the train / test splits that are proposed by
data sources, but we use our own splits such that l � u.

Table 1: Characteristics of data sets used in our experiments ordered by dimen-
sion d.

Data set # of lab. examples, # of unlab. examples, Dimension, # of classes,
l u d K

Protein 108 972 77 8
Madelon 260 2340 500 2
Isolet 156 1404 617 26
Fashion 100 9900 784 10
MNIST 100 9900 784 10
Coil20 144 1296 1024 20
PCMAC 195 1748 3289 2
Relathe 143 1284 4322 2
Basehock 200 1793 4862 2
Gisette 70 6930 5000 2

We use the scikit-learn implementation of the random forest with 100 trees
of maximal depth (Pedregosa et al., 2011). The latter is used as the majority vote
classifier for TSLA, whose implementation is provided by Feofanov et al. (2019).
The code we have developed is available at https://github.com/vfeofanov/
TSLA-FSGA.

To perform comparison with state-of-the-art approaches, for all feature se-
lection algorithms, we first find a feature subset using a feature selection method,
where the number of selected features d′ is fixed to b

√
dc. Then, we train TSLA

on the selected features and compute its performance, the classification accu-
racy on the unlabeled set (ACC-U).

For all experimental results, we perform 20 random labeled / unlabeled
splits of the initial collection and report the average classification accuracy over
the 20 trials on the unlabeled training set. We set a time limit to 1 hour per split
and terminate an algorithm if the limit is exceeded. These cases are indicated

11

as NA. All experiments were performed on a cluster with an Intel(R) Xeon(R)

CPU E5-2640 v3 at 2.60GHz, 32 cores, 256GB of RAM, the Debian 4.9.110-3

x86 64 OS.
The experiments are organized as follows. First, we validate the Feature

Selection Genetic Algorithm (FSGA) through an ablation study showing benefit
of each step of the algorithm for finding an optimal feature subset. Then, we
study how the choice of a learning model and the use of pseudo-labels have
an impact on the selection criterion’s strength. Finally, a comparison of the full
method TSLA-FSGA with state-of-the-art methods is performed.

4.1 Validation of the Feature Selection Genetic Algorithm

In this section, we want to demonstrate the benefit of the proposed FSGA by
showing that the weighted crossover and the relevance test provides clear im-
provement over the classical genetic algorithm (CGA). All versions of the ge-
netic algorithm considered in this section use TSLA for pseudo-labeling and the
pseudo-supervised out-of-bag score given in Eq. (3) as the fitness criterion.

In the implementation of the genetic algorithms, the number of generations
is fixed to 25, the population size to 40 and the number of parents to 8. The
maximum number of mutations is set to b

√
d/2c. In the relevance test, we con-

sider the 30% worst variables as suspicious, learn 10 classifiers with randomly
permuted values, use the 95-th percentile to find the threshold, and set the p-
value for the hypothesis test to 0.05. To highlight the benefit of the weighted
crossover, we first run the genetic algorithm without mutation. Then, we re-
fine the algorithm by successively adding mutation and relevance test, which
finally leads to FSGA.

First, the algorithms are compared on the synthetic data set, and the results
are illustrated in Fig. 3a. By looking at the irrelevant variables (15-20), we can
observe that the weighted crossover is less prone to select these variables com-
pared to the standard one. At the same time, when the weighted crossover is
used alone, the subset search has little exploration concentrating on the indi-
vidually strong features, as illustrated on variables 2 (weak feature) or 9 to 14
(strong features). This is solved by activating the mutation step, which helps
to generate more diverse subsets. However, with mutation, the output vari-
ance increases, so the irrelevant variables are again become selected more of-
ten. Then, this variance is reduced by activating the relevance test, which re-
moves from consideration features found to be irrelevant to the target. Thus,
we also reduce the search space, so the selection quality is generally improved
(variables 2, 3 and 8 are selected more often, whereas variables 9-14 less often).

Then, the algorithms are compared on the benchmark data sets, and the
experimental results are depicted in Fig. 3b. For most of data sets, more refine-
ments yield better performance, which particularly leads to a high difference
between the first and the last columns on PCMAC, Relathe and Basehock with
an improvement of around 10%. According to the Mann and Whitney U test on
level 0.01, the weighted crossover significantly outperforms the standard one

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Feature Number

standard
 no mutation

 no relevance test

weighted
 no mutation

 no relevance test

weighted
 with mutation

 no relevance test

weighted
 with mutation

 with relevance test

M
et

ho
d

0.25 0.2 0.65 1 1 1 0.65 0.8 0.2 0.3 0.25 0.4 0.3 0.1 0.3 0.1 0.15 0.2 0.15 0

0.1 0.15 0.7 1 1 1 0.75 0.8 0.4 0.45 0.25 0.4 0.4 0.35 0.15 0.05 0 0.05 0 0

0.3 0.35 0.65 1 1 1 0.8 0.7 0.15 0.4 0.25 0.1 0.35 0.35 0.25 0.05 0.1 0.1 0.1 0

0.5 0.5 0.95 1 1 1 0.8 0.8 0.1 0.4 0.25 0.2 0.2 0.3 0 0 0 0 0 0

Informative Variables Duplicates of Variable 1 Irrelevant Variables

0.0

0.2

0.4

0.6

0.8

1.0

(a) Results on the synthetic data set. The features are sorted in the following order:
8 informative features, 6 redundant features, 6 irrelevant ones. On the graph, each cell
represents the number of times when a feature was chosen by a feature selection method
divided by the number of experiments (20).

Protein
Madelon Isolet

Fashion MNIST Coil20
PCMAC Relathe

Basehock Gisette

0.6

0.8

1

0.
71

0.
6

0.
76

0.
63

0.
69

0.
92

0.
7

0.
65

0.
78

0.
86

0.
72

0.
62

0.
77

0.
63

0.
71

0.
93

0.
72

0.
67

0.
81

0.
87

0.
72

0.
63

0.
79

0.
64

0.
71

0.
93

0.
8

0.
7

0.
87

0.
88

0.
72

0.
64

0.
79

0.
64

0.
72

0.
93

0.
83

0.
74

0.
91

0.
88

A
cc

ur
ac

y

standard crossover
no mutation
no relevance test

weighted crossover
no mutation
no relevance test

weighted crossover
with mutation
no relevance test

weighted crossover
with mutation
with relevance test

(b) Comparison on the benchmark data sets described in Table 1. The accuracy on the
unlabeled set (ACC-U) of a classifier trained on the final feature subset is illustrated.

Figure 3: Comparison of 4 different versions of the genetic algorithm: the stan-
dard crossover comparing with the weighted crossover, adding to the latter
successively mutation operator and then the relevance test. Note that the pro-
posed approach, FSGA, corresponds to the last column in red.

on Madelon, MNIST and Basehock data sets. Adding the mutation step leads to
a significant improvement on PCMAC and Basehock. Finally, the relevance test is
a useful procedure to reduce the search space, and a significant improvement
is observed on 3 data sets (PCMAC, Relathe, Basehock).

4.2 Improvement from Pseudo-labeling Unlabeled Data

In this section, we set the search scheme to FSGA and investigate how the choice
of the learning algorithm and the fitness criterion impact the feature selection
quality and what contribution unlabeled data can make.

At first, we evaluate two supervised baselines: when a single decision tree

13

is used as a learning algorithm with the 5-fold cross-validation score as the
fitness criterion (Sup-Tree), and when the random forest is learned with the
out-of-bag score as the criterion (Sup-RF). In both cases, only the labeled exam-
ples are used for learning and fitness evaluation, and by comparing these two
criteria we study whether the choice of a more sophisticated learning approach
improves the results.

Then, we analyze the utility of unlabeled data for feature selection by con-
sidering three semi-supervised approaches. At the beginning, we use a self-
learning algorithm to pseudo-label the unlabeled examples. Then, the labeled
and the pseudo-labeled examples are used for training the genetic algorithm,
where the random forest is set as a learning algorithm. To study how the qual-
ity of pseudo-labels influence the performance of the feature subset search,
we compare two self-learning policies: 1) when at each step randomly picked
10% of the unlabeled examples are added with their corresponding predictions
(RSLA), 2) when we add at each step unlabeled examples with prediction vote
higher than a threshold empirically learned from minimization of the trans-
ductive criterion (TSLA, Section 3.2). Note that the former policy is similar to
a mechanism used by Ren et al. (2008) for co-training. In the both cases, the
strength of a feature subset S is evaluated by the pseudo-supervised out-of-
bag score FL∪L̂(S) defined by Eq. (3). Finally, to see the impact of pseudo-
labels on the fitness criterion alone, we introduce a third approach, where the
pseudo-labels are acquired by TSLA and used inside the genetic algorithm, but
the feature strength is evaluated on validation sets consisting only of the purely
labeled examples. In other words, for each subset S, the learning algorithm is
trained on both the labeled and the pseudo-labeled examples, and the out-of-
bag score on the labeled examples is used as the fitness criterion:

FL(S) :=
1
l

l

∑
i=1

I(yi 6= argmax
c∈Y

vL(x
[S]
i , c)), (4)

where x[S]i denotes projection of xi on the set of features S.
The performance results are summarized in Table 2. At first, we can see that

the random forest provides always more qualitative selection compared to the
single tree (higher accuracy and smaller variance). Hence, the use of ensemble
methods improves the selection quality, which would be connected with their
robustness to overfitting.

Then, we observe better quality selection when the pseudo-labeled exam-
ples are used in the algorithm, so all the three semi-supervised approaches
generally outperform its supervised baseline Sup-RF. TSLA with FL∪L̂ as the
criterion benefits the most from unlabeled data, and it significantly outper-
forms Sup-RF on 4 data sets, RSLA on Relathe and Basehock, TSLA with FL on
Isolet and MNIST.

By comparing RSLA and TSLA, we can see that the more careful pseudo-
labeling based on the transductive guarantees leads to the highest performance,
and the larger portions of noisy pseudo-labels generally lead to worse results.

14

Table 2: The classification performance (accuracy) of different approaches to
evaluate the fitness score in FSGA: two supervised baselines Sup-Tree and
Sup-RF, three semi-supervised approaches, where TSLA and RSLA denote which
self-learning policy is used for pseudo-labeling, while FL∪L̂ and FL denote
which fitness criterion is taken. In addition, a % of wrong pseudo-labeled un-
labeled examples (% N) is provided for the approaches that use FL∪L̂ as the cri-
terion. ↓ indicates statistically significantly worse performance than the best
result (shown in bold), according to the Mann-Whitney U test (p < 0.01).

Data set Sup-Tree Sup-RF RSLA: FL∪L̂ TSLA: FL∪L̂ TSLA: FL
ACC-U ACC-U ACC-U % N ACC-U % N ACC-U

Protein .707 ± .043 .719 ± .037 .725 ± .045 25.5% .719 ± .04 21.4% .702 ± .04

Madelon .606↓ ± .04 .617↓ ± .023 .632 ± .02 39.6% .643 ± .031 42% .651 ± .034

Isolet .744↓ ± .026 .751↓ ± .027 .77 ± .025 18.3% .787 ± .02 14.1% .766↓ ± .022

Fashion .604↓ ± .027 .627 ± .021 .631 ± .021 32.5% .636 ± .023 30.6% .631 ± .014

MNIST .639↓ ± .029 .676↓ ± .024 .714 ± .02 19.5% .717 ± .021 17.4% .694↓ ± .021

Coil20 .903↓ ± .022 .922 ± .018 .922 ± .017 6.8% .931 ± .016 5.7% .917 ± .022

PCMAC .783↓ ± .022 .822 ± .014 .824 ± .021 17.4% .826 ± .019 15.9% .826 ± .018

Relathe .684↓ ± .033 .735 ± .024 .708↓ ± .042 28.6% .739 ± .027 23.1% .738 ± .028

Basehock .84↓ ± .032 .902↓ ± .008 .9↓ ± .009 8.5% .911 ± .01 7.8% .902 ± .018

Gisette .849↓ ± .024 .88 ± .01 .88 ± .012 11.7% .877 ± .01 12% .874 ± .015

However, both for RSLA and TSLA, the performance is not degraded with re-
spect to the baseline Sup-RF on most of data sets, which validates our choice
of the out-of-bag score inside the criterion. Thus, we conclude that the se-
lection becomes more qualitative when unlabeled data are explored using the
self-learning algorithm.

When we compare the two criteria based on TSLA, FL∪L̂ and FL, we de-
duce that the use of pseudo-labeled data for evaluation of feature strength
is actually helpful. This may be connected with the fact that the few labeled
examples bias the fitness score, and trusting pseudo-labels would give more
benefit than harm. This is coherent with a general observation that the tra-
ditional supervised model selection based on validation is not effective in the
semi-supervised setting (Madani et al., 2005). Note that TSLA with FL never-
theless outperforms the baseline Sup-RF, since the pseudo-labels are still used
to compute the feature weights.

4.3 Comparison with the State-of-the-Art

Finally, we validate the proposed approach referred as TSLA-FSGA, by com-
paring its performance with the state-of-the-art. It is compared with RLSR,
SFS, SSLS and CoT-FSS (with decision tree as the learning algorithm inside the
wrapper, the co-training for pseudo-labeling and the 5-fold cross-validation

15

score as the selection criterion), all introduced in Section 2. In order to addi-
tionally validate FSGA, we also compare with two more selection algorithms,
for which the unlabeled examples are pseudo-labeled before the feature selec-
tion step using TSLA for a fair comparison. Then, the first approach (denoted
by TSLA-FSS), similarly to Han et al. (2011), performs the forward sequential
search by minimizing the pseudo-supervised out-of-bag score of a random for-
est given by Eq. (3), whereas the second approach (denoted by TSLA-RFE) ap-
plies the recursive feature elimination based on the random forest.

Due to the lack of labeled training examples, the hyperparameters of all
methods are set to their default values. Namely, for RLSR, the regularization
parameter γ is set to 0.1; for SSLS and SFS, the number of nearest neighbors
is set to 20, and the bandwidth for constructing the graph Laplacian is deter-
mined using the median distance heuristic (Schölkopf, 1997). For TSLA-FSS, at
each step we add 10% best features into the model, and for TSLA-RFE, at each
step we remove 10% worst ones.

First, we compare the considered approaches on the synthetic data set. In
Fig. 4a the feature selection results averaged over 20 trials are reported. One
can observe that the filter approaches, SFS and SSLS, perfectly detect and dis-
card the irrelevant features. However, since the importance of features is eval-
uated independently, only individually strong informative variables are se-
lected. Thus, some informative features are rarely or never selected (2-3, 5-8),
and redundant features (9-14), which bring no new information, are preferred.
In contrast, RLSR is able to find redundancies but does not succeed to eliminate
the irrelevant variables (15-20). From the results, CoT-FSS has the most difficul-
ties to select relevant variables without a clear selection pattern. All TSLA-RFE,
TSLA-FSS and TSLA-FSGA perform quite well. FSS is less effective in eliminat-
ing the irrelevant variables than RFE and FSGA that discard them as perfect as
the filter methods. Although RFE is slightly better in selecting variables 7 and
8, FSGA outperforms it in selecting variable 2. As it was mentioned before, vari-
able 2 is an individually weak variable, so RFE often discards it preferring to
keep one of the duplicates of variable 1. In turn, FSGA evaluates features jointly
focusing explicitly on how the selected features are combined.

Figure 4b summarizes the performance results on the 10 benchmark data
sets. On 4 data sets, Isolet, Fashion, MNIST and Coil20, our approach sig-
nificantly outperforms all the other methods, while it is never significantly
worse in cases when TSLA-FSGA is not the best. Compared to our approach,
performances of other wrapper-based methods (CoT-FSS and TSLA-FSS) are
significantly worst in most of the cases, which indicates the superiority of a
genetic algorithm over a sequential search as the search scheme. We can also
see that the performance of RLSR fluctuates from one data set to another. This
could be connected with its sensitivity to the value of its regularization param-
eter γ, which is difficult to tune with few labeled examples. The filter methods,
SFS and SSLS, are significantly worst in all situations. One can conclude that
the filters are more suitable as a pre-processing step rather than as a complete
feature selection process.

Finally, the recursive feature elimination, TSLA-RFE, has the best perfor-

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Feature Number

SFS

SSLS

RLSR

TSLA-RFE

CoT-FSS

TSLA-FSS

TSLA-FSGA

M
et

ho
d

1 0 0 0.85 0.15 0.25 0 0 1 1 1 1 0.9 0.85 0 0 0 0 0 0

1 0 0 0.65 0.05 0.3 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0.15 0.9 1 1 1 0.5 0.8 0 0 0 0 0 0 0.4 0.5 0.4 0.4 0.4 0.55

0.1 0.15 1 1 1 1 1 1 0.2 0.25 0.3 0.4 0.25 0.35 0 0 0 0 0 0

0 1 0.05 0.1 0.05 0 0.15 0.1 1 0.85 1 0 0.15 0.9 0.05 0 0.15 0.45 1 1

0.6 0.2 0.7 1 1 1 0.9 0.8 0 0 0.15 0.05 0.4 0.7 0.05 0 0.2 0.1 0.1 0.05

0.5 0.5 0.95 1 1 1 0.8 0.8 0.1 0.4 0.25 0.2 0.2 0.3 0 0 0 0 0 0

Informative Variables Duplicates of Variable 1 Irrelevant Variables

0.0

0.2

0.4

0.6

0.8

1.0

(a) Results on the synthetic data set. The features are sorted in the following order:
8 informative features, 6 redundant features, 6 irrelevant ones. On the graph, each cell
represents the number of times when a feature was chosen by a feature selection method
divided by the number of experiments (20).
(b) Performance results on benchmark data sets. The classification accuracy is com-
puted on the unlabeled set. ↓ indicates statistically significantly worse performance
than the best result (shown in bold), according to the Mann-Whitney U test (p < 0.01).

Data set Filters Embedded Wrappers
SFS SSLS RLSR TSLA-RFE CoT-FSS TSLA-FSS TSLA-FSGA

Protein .676↓ ± .035 .634↓ ± .037 .695 ± .034 .719 ± .039 .583↓ ± .09 .719 ± .033 .719 ± .04

Madelon .589↓ ± .035 .526↓ ± .038 .516↓ ± .015 .658 ± .027 .514↓ ± .032 .649 ± .032 .643 ± .031

Isolet .56↓ ± .037 .549↓ ± .03 .638↓ ± .05 .755↓ ± .03 .438↓ ± .058 .656↓ ± .053 .787 ± .02

Fashion .348↓ ± .03 .35↓ ± .033 .419↓ ± .048 .615↓ ± .025 .462↓ ± .043 .444↓ ± .041 .636 ± .023

MNIST .112↓ ± .0 .176↓ ± .029 .129↓ ± .013 .671↓ ± .029 .394↓ ± .068 .514↓ ± .027 .717 ± .021

Coil20 .748↓ ± .046 .743↓ ± .045 .858↓ ± .029 .902↓ ± .02 .817↓ ± .038 .817↓ ± .025 .931 ± .016

PCMAC .613↓ ± .056 .545↓ ± .027 .773↓ ± .033 .832 ± .019 NA .813 ± .042 .826 ± .019

Relathe .613↓ ± .025 .584↓ ± .017 .719 ± .034 .746 ± .028 NA .694 ± .032 .739 ± .027

Basehock .733↓ ± .051 .582↓ ± .081 .875↓ ± .02 .913 ± .008 NA NA .911 ± .01

Gisette .851↓ ± .019 .521↓ ± .01 .51↓ ± .01 .871 ± .017 NA NA .877 ± .01

Figure 4: Comparison of our method with the state-of-the-art approaches to
select relevant features in semi-supervised learning.

17

28 56 112 224
Number of selected features

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70
Ac

cu
ra

cy
Fashion

28 56 112 224
Number of selected features

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MNIST

TSLA-FSGA
TSLA-RFE

TSLA-FSS
SSLS

RLSR
SFS

Figure 5: Performance of the proposed method and the state-of-the-art ap-
proaches on the Fashion and MNIST data sets when the number of selected
features varies. CoT-FSS is omitted due to the large computational time.

mance on the data sets with many irrelevant features such as Madelon, PCMAC,
Relathe and Basehock. However, when there are plenty of different infor-
mative features (Isolet, Fashion, MNIST, Coil20), RFE tends to underselect
some weak but important for classification variables, so it becomes signifi-
cantly worse than TSLA-FSGA. In addition, all these data sets are multi-class,
which may arise additional difficulties for the feature selection task. In con-
trast, TSLA-FSGA successfully outputs feature subsets that are sparse and highly
discriminative at the same time. Also, with the help of the relevance test,
our approach detects and explicitly eliminates irrelevant variables, so the algo-
rithm performs very well on Madelon, PCMAC, Relathe and Basehock as well.

In addition, we have looked at the performance of the algorithms depend-
ing on the number of selected features d′. In Figure 5, we demonstrate the per-
formance results on the Fashion and MNIST data sets, taking d′ ∈ {

√
d, 2
√

d,
4
√

d, 8
√

d}. One can observe that our approach TSLA-FSGA outperforms the
other algorithms on different sparsity levels. However, we can see that the dif-
ference in accuracy between all the algorithms becomes less apparent as we
relax the sparsity requirement. This is explained by the fact that the search
space is significantly smaller for larger d′, and the performance is less sensitive
to incorrect choices of features. This observation has motivated us to fix the
number of selected features as d′ = b

√
dc in all other experiments.

4.4 Run-time

We present in Table 3 the run-time of all the algorithms, to illustrate theoretical
complexities introduced in Section 3.4.

A particular attention should be taken on MNIST, Fashion, Gisette with

18

Table 3: The average run-time of the feature selection algorithms under con-
sideration on the benchmark data sets. s stands for seconds, m for minutes and
h for hours.

Data set SFS SSLS RLSR TSLA-RFE CoT-FSS TSLA-FSS TSLA-FSGA

Protein 1 s 1 s 10 s 9 s 22 s 26 s 2 m

Madelon 15 s 14 s 1 m 9 s 5 m 4 m 4 m

Isolet 5 s 1 s 2 m 13 s 9 m 6 m 4 m

Fashion 4 m 4 m 3 m 24 s 16 m 13 m 7 m

MNIST 5 m 4 m 3 m 24 s 18 m 14 m 7 m

Coil20 8 s 1 s 3 m 13 s 16 m 7 m 3 m

PCMAC 45 s 31 s 23 m 13 s >1 h 26 m 3 m

Relathe 29 s 22 s 38 m 13 s >1 h 29 m 4 m

Basehock 1 m 51 s 44 m 16 s >1 h >1 h 4 m

Gisette 17 m 17 m 21 m 40 s >1 h >1 h 6 m

respect to the large sample size as well as on Relathe, Basehock, Gisette

with respect to the large dimension. Although the genetic algorithm FSGA is
slower than RFE, it still passes the scale well both with respect to the sample
size and the dimension. Being very fast on small data sets, the filter methods
SFS and SSLS significantly slow down with the increase of sample size. In turn,
when the dimension is large, RLSR becomes expensive too. On large data sets,
CoT-FSS and TSLA-FSS are computationally infeasible. In general, the results
clearly illustrate the complexity discussion standing in Section 2.

5 Conclusion and Future Work

In this paper, we proposed a new framework for semi-supervised wrapper fea-
ture selection. To increase the diversity of labeled data, unlabeled examples are
pseudo-labeled using a self-learning algorithm. To produce a sparse solution,
we proposed a modification of the genetic algorithm by taking into account
feature weights during its evolutionary process and eliminating variables ir-
relevant to the target. The proposed model was empirically validated through
an ablation study and a comparison with several feature selection approaches.

As a future work, it would be interesting to detect automatically the level of
sparsity, set to b

√
dc in our paper. In this case, simple criteria like the out-of-bag

score trivially lead to the situation when a large number of selected features is
chosen. One solution would be to add the regularization term to impose the
sparsity level, for example, as proposed by (Frohlich et al., 2003; Da Silva et al.,
2011).

19

Another direction would be to improve evaluation of the feature strength
by developing a fitness criterion aware of possible errors in pseudo-labels. For
instance, this can be achieved by introducing an additional assumption to de-
termine data regions of low confidence, where the pseudo-labels are prone to
error.

6 Acknowledgments

We thank 3 anonymous reviewers for their valuable comments. This work was
partly funded by the IDEX project IRS (France).

7 Declarations

Funding This work was partly funded by the IDEX project IRS (France).
Conflicts of interest/Competing interests Not applicable.
Availability of data and material All the data sets are publicly available in
Chang and Lin (2011); Guyon (2003); Xiao et al. (2017); LeCun et al. (1998); Li
et al. (2018); Dua and Graff (2017).
Code availability The code we have developed is available at
https://github.com/vfeofanov/TSLA-FSGA.

References

Amini M, Laviolette F, Usunier N (2008) A transductive bound for the voted
classifier with an application to semi-supervised learning. In: Advances in
Neural Information Processing Systems, pp 65–72

Biau G, Scornet E (2016) A random forest guided tour. Test 25(2):197–227

Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-
training. In: Proceedings of the eleventh annual conference on Computa-
tional learning theory (COLT), pp 92–100

Breiman L (2001) Random forests. Machine Learning 45(1):5–32

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regres-
sion trees. CRC press

Buza K (2020) Asterics: Projection-based classification of eeg with asymmetric
loss linear regression and genetic algorithm. In: 2020 IEEE 14th International
Symposium on Applied Computational Intelligence and Informatics (SACI),
pp 35–40, DOI 10.1109/SACI49304.2020.9118837

Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Com-
puters & Electrical Engineering 40(1):16–28

20

Chang CC, Lin CJ (2011) LIBSVM: A Library for Support Vector Machines.
ACM Transactions on Intelligent Systems and Technology 2(3):27:1–27:27

Chen X, Yuan G, Nie F, Huang JZ (2017) Semi-supervised feature selection
via rescaled linear regression. In: Proceedings of the 26th International Joint
Conference on Artificial Intelligence, vol 2017, pp 1525–1531

Da Silva SF, Ribeiro MX, Neto JdEB, Traina-Jr C, Traina AJ (2011) Improving the
ranking quality of medical image retrieval using a genetic feature selection
method. Decision support systems 51(4):810–820

Darst BF, Malecki KC, Engelman CD (2018) Using recursive feature elimina-
tion in random forest to account for correlated variables in high dimensional
data. BMC genetics 19(1):1–6

Dietterich TG (2000) An experimental comparison of three methods for con-
structing ensembles of decision trees: Bagging, boosting, and randomiza-
tion. Machine learning 40(2):139–157

Dua D, Graff C (2017) UCI machine learning repository. URL https://

archive.ics.uci.edu/ml/index.php

Efron B (1992) Bootstrap methods: another look at the jackknife. In: Break-
throughs in statistics, Springer, pp 569–593

Feofanov V, Devijver E, Amini MR (2019) Transductive bounds for the multi-
class majority vote classifier. Proceedings of the AAAI Conference on Artifi-
cial Intelligence 33:3566–3573

Frohlich H, Chapelle O, Scholkopf B (2003) Feature selection for support vector
machines by means of genetic algorithm. In: Proceedings. 15th IEEE Inter-
national Conference on Tools with Artificial Intelligence, IEEE, pp 142–148

Goldberg DE, Deb K (1991) A comparative analysis of selection schemes used
in genetic algorithms. In: Foundations of genetic algorithms, vol 1, Elsevier,
pp 69–93

Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning.
Machine learning 3(2):95–99

Guyon I (2003) Design of experiments of the nips 2003 variable selection bench-
mark. In: NIPS 2003 workshop on feature extraction and feature selection

Guyon I, Elisseeff A (2003) An introduction to variable and feature selection.
Journal of machine learning research 3(Mar):1157–1182

Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classi-
fication using support vector machines. Machine learning 46(1):389–422

21

Han Y, Park K, Lee YK (2011) Confident wrapper-type semi-supervised fea-
ture selection using an ensemble classifier. In: 2011 2nd International Con-
ference on Artificial Intelligence, Management Science and Electronic Com-
merce (AIMSEC), IEEE, pp 4581–4586

Jiang B, Wu X, Yu K, Chen H (2019) Joint semi-supervised feature selection
and classification through bayesian approach. In: Proceedings of the AAAI
conference on artificial intelligence, vol 33, pp 3983–3990

Kohavi R, John GH (1997) Wrappers for feature subset selection. Artificial in-
telligence 97(1-2):273–324

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86(11):2278–2324

Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H (2018) Feature
selection: A data perspective. ACM Computing Surveys (CSUR) 50(6):94

Louppe G (2014) Understanding random forests: From theory to practice.
1407.7502

Madani O, Pennock DM, Flake GW (2005) Co-validation: Using model dis-
agreement on unlabeled data to validate classification algorithms. In: Ad-
vances in neural information processing systems, pp 873–880

Mann HB, Whitney DR (1947) On a test of whether one of two random vari-
ables is stochastically larger than the other. The Annals of Mathematical
Statistics 18(1):50–60

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel
M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau
D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research 12:2825–2830

Ren J, Qiu Z, Fan W, Cheng H, Yu PS (2008) Forward semi-supervised feature
selection. In: Washio T, Suzuki E, Ting KM, Inokuchi A (eds) Advances in
Knowledge Discovery and Data Mining, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp 970–976

Schölkopf B (1997) Support vector learning. PhD thesis, Oldenbourg München,
Germany

Sechidis K, Brown G (2018) Simple strategies for semi-supervised feature se-
lection. Machine Learning 107(2):357–395

Sheikhpour R, Sarram MA, Gharaghani S, Chahooki MAZ (2017) A survey on
semi-supervised feature selection methods. Pattern Recognition 64(C):141–
158

22

Siedlecki W, Sklansky J (1993) A note on genetic algorithms for large-scale fea-
ture selection. In: Handbook of pattern recognition and computer vision,
World Scientific, pp 88–107

Song L, Smola A, Gretton A, Borgwardt KM, Bedo J (2007) Supervised fea-
ture selection via dependence estimation. In: Proceedings of the 24th inter-
national conference on Machine learning, pp 823–830

Syed FH, Tahir MA, Rafi M, Shahab MD (2021) Feature selection for semi-
supervised multi-target regression using genetic algorithm. Applied Intel-
ligence pp 1–24, DOI 10.1007/s10489-021-02291-9

Szenkovits A, Meszlényi R, Buza K, Gaskó N, Lung RI, Suciu M (2018) Feature
selection with a genetic algorithm for classification of brain imaging data. In:
Advances in feature selection for data and pattern recognition, Springer, pp
185–202

Tür G, Hakkani-Tür DZ, Schapire RE (2005) Combining active and semi-
supervised learning for spoken language understanding. Speech Commu-
nication 45:171–186

Tuv E, Borisov A, Runger G, Torkkola K (2009) Feature selection with ensem-
bles, artificial variables, and redundancy elimination. Journal of Machine
Learning Research 10:1341–1366

Vapnik VN (1998) Statistical Learning Theory. Wiley-Interscience

Wu X, Chen H, Li T, Wan J (2021) Semi-supervised feature selection with mini-
mal redundancy based on local adaptive. Applied Intelligence pp 1–22

Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. cs.LG/1708.07747

Xue B, Zhang M, Browne WN, Yao X (2015) A survey on evolutionary com-
putation approaches to feature selection. IEEE Transactions on Evolutionary
Computation 20(4):606–626

Yang M, Chen YJ, Ji GL (2010) Semi fisher score: A semi-supervised method
for feature selection. In: 2010 International Conference on Machine Learning
and Cybernetics, IEEE, vol 1, pp 527–532

Zhao J, Lu K, He X (2008) Locality sensitive semi-supervised feature selection.
Neurocomputing 71(10-12):1842–1849

A Additional Information on Relevance Test

In Section 3.3, we proposed to use the relevance test at every generation by
testing just a portion of features, whereas it was originally proposed to be per-
formed once on the whole feature set (Tuv et al., 2009). To validate our choice,

23

we compare two versions of the genetic algorithm: 1) at first, the relevance test
is performed on the whole feature set, features found to be irrelevant are re-
moved, and then FSGA is run without the relevance test step; 2) relevance test
is used at every generation of FSGA as described in Section 3.3.

Protein
MadelonIsolet

FashionMNIST Coil20
PCMACRelathe

BasehockGisette

0.6

0.8

1

0.
72

0.
63

0.
79

0.
63

0.
67

0.
93

0.
81

0.
71

0.
89

0.
87

0.
72

0.
64

0.
79

0.
64

0.
72

0.
93

0.
83

0.
74

0.
91

0.
88

A
cc

ur
ac

y

Relevance test
before FSGA

Relevance test
inside FSGA

Figure 6: Comparison of 2 versions of FSGA on the benchmark data sets: when
the relevance test performed just once before the genetic algorithm, and when
it is performed at every generation as it is described in Section 3.3. The ac-
curacy on the unlabeled set (ACC-U) of a classifier trained on the final feature
subset is illustrated.

The performance results on the benchmarks are illustrated in Figure 6. As
one can see, when the relevance test is iteratively used, the classification accu-
racy is noticeably higher on most of data sets, particularly on those with a high
number of irrelevant features (Madelon, PCMAC, Relathe, Basehock). This sug-
gests that the model learned on the whole feature set suffers from the curse of
dimensionality, so some irrelevant variables are not detected based on derived
feature weights.

In addition, we demonstrate that integration of the relevance test also sig-
nificantly improves the classical genetic algorithm (CGA), where the standard
crossover is used. Figure 7 illustrates the performance of the standard crossover
when successively the mutation step and the relevance test are added, com-
paring with the FSGA, where the proposed weighted crossover is used. One
can see that on the data sets with a large number of irrelevant features (PCMAC,
Relathe, Basehock) the performance of CGA is drastically improved. Never-
theless, the proposed weighted crossover tends to outperform the standard
crossover, which additionally validates our contribution.

24

Protein
Madelon Isolet

FashionMNIST Coil20
PCMACRelathe

BasehockGisette

0.6

0.8

1

0.
71

0.
6

0.
76

0.
63

0.
69

0.
92

0.
7

0.
65

0.
78

0.
86

0.
7

0.
6

0.
76

0.
63

0.
68

0.
91

0.
78

0.
66

0.
85 0.
86

0.
7

0.
63

0.
75

0.
63

0.
7

0.
91

0.
83

0.
74

0.
91

0.
88

0.
72

0.
64

0.
79

0.
64

0.
72

0.
93

0.
83

0.
74

0.
91

0.
88

A
cc

ur
ac

y

standard crossover
no mutation
no relevance test

standard crossover
with mutation
no relevance test

standard crossover
with mutation
with relevance test

weighted crossover
with mutation
with relevance test

Figure 7: Comparison of 4 different versions of the genetic algorithm on the
benchmark data sets: the standard crossover, to which the mutation operator
and the relevance test are successively added, and the FSGA. Note that the sec-
ond column corresponds to the classical genetic algorithm (CGA). The accuracy
on the unlabeled set (ACC-U) of a classifier trained on the final feature subset is
illustrated.

25

