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Abstract
Deep Reinforcement Learning methods require a large
amount of data to achieve good performance. This sce-
nario can be more complex, handling real-world domains
with high-dimensional state space. However, historical in-
teractions with the environment can boost the learning pro-
cess. Considering this, we propose in this work an imita-
tion learning strategy that uses previously collected data
as a baseline for density-based action selection. Then, we
augment the reward according to the state likelihood un-
der some distribution of states given by the demonstrations.
The idea is to avoid exhaustive exploration by restricting
state-action pairs and encourage policy convergence for
states that lie in regions with high density. The adopted sce-
nario is the pump scheduling for a water distribution system
where real-world data and a simulator are available. The
empirical results show that our strategy can produce poli-
cies that outperform the behavioral policy and offline meth-
ods, and the proposed reward functions lead to competitive
performance compared to the real-world operation.

Keywords
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1 Introduction
Over the past years, Reinforcement Learning (RL) ap-
proaches combined with function approximators have been
applied in different tasks such as games [1, 2] to con-
trol [3, 4]. The appeal of this approach is the ability to
support decision-making and leverage scalability for com-
plex domains. However, exploration in large state spaces
as found in the real world can be costly, inefficient, and
even infeasible. For example, in scenarios such as health-
care systems and autonomous driving, trial and error meth-
ods are not an option due to safety constraints. A way to
mitigate these problems is using historical interactions with
the environment, an approach called Offline Reinforcement
Learning1.
In the Offline RL [5] settings, the experiences of the agent
are limited to collected data, without the possibility of fur-
ther exploration. The reasons for this limitation include the
complexity of building accurate simulators and safety con-

1Some works uses the term Batch instead of Offline

straints for exploring the environment. Even when online
data collection is reasonable, the use of prior datasets capa-
ble of generalizing to efficient policies can be attractive due
to the costs to interact with the environment. Offline RL
methods such as [6, 7] rely upon the idea of constraining
the policy to the dataset to mitigate overestimation caused
when facing out-of-distribution state-action pairs.
On the other hand, in Online RL, agents interact with the
environment in an exploration-exploitation trade-off fash-
ion. A widely applied exploration strategy is the epsilon-
greedy [8], in which a given probability trade-off between
exploring the environment or exploiting the policy learned.
The exploration can also be encouraged by intrinsic mo-
tivation as curiosity or disagreement in the state’s estima-
tion by augmenting the reward function. For instance, some
works [9, 10, 11] propose strategies based on counting oc-
currences of states/actions to encourage exploration of un-
familiar areas of the state-action space. In [12], the reward
is augmented based on the disagreement of an ensemble of
parametric Q-functions. Finally, methods to perform safe
exploration are discussed in [13]. In particular, incorporat-
ing demonstrations and restricting the exploration to mean-
ingful states can produce safe policies.
This work proposes the Safety through Intrinsically Mo-
tivated Imitation Learning (SIMIL) strategy that uses the
distribution of historical interactions (demonstrations) as
a guideline for action selection. The approach works as
follows: given a current state, action selection depends
on choosing the one that occurs most frequently in the
most similar states found in the demonstrations. Later, we
augment the immediate reward with an intrinsic motiva-
tion [14] according to the state likelihood under some dis-
tribution of states. The underlying idea is to constrain the
policy to state-action pairs found in expert demonstrations
using k-Nearest Neighbors (k-NN) to avoid exhaustive ex-
ploration. Also, we encourage states that lie in high-density
regions under the demonstrations distribution using Kernel
Density Estimation (KDE) [15].
We apply this imitation learning strategy in a scenario of
pumping scheduling for water distribution systems (WDS).
For that, it is available a dataset of three years of data col-
lected in timesteps of one minute from a real-world opera-
tion. The pump scheduling is the process to decide when,
and in some cases at which speed, the pump(s) should op-
erate regarding the forecasting of the water demand. Yet,

1



some requirements must be satisfied, including safety con-
straints of water level in the tanks and pressure in the net-
work’s nodes. Some works have addressed these ques-
tions through several methods, including linear optimiza-
tion, evolutionary and branch-and-bound algorithms, and
recently Deep RL [16, 17, 18, 19]. This work uses a Deep
Q-Networks (DQN) [20, 1]-based approach to handle the
pump scheduling problem. The contributions presented in
this work are the following:

• A formulation of the pumping scheduling problem
using Partially Observable Markov Decision Pro-
cess (POMDP) is presented, with definitions of sys-
tem states/observations, actions, and reward func-
tion. These definitions allow the system to operate by
achieving the constraints and minimizing the associ-
ated costs;

• An imitation learning strategy using real-world/offline
data. The empirical results demonstrated that the ob-
tained policies achieved competitive average cumula-
tive rewards compared with fully-offline training.

• To evaluate the proposed scheduling, we compare the
results with the real-world water distribution system
regarding the electricity consumed, pumps use distri-
bution and the tank level profile. The results showed
that our approach achieved competitive performance
with real-world operation.

The organization of the paper is as follows. Section 2 de-
scribes some related works. Section 3 introduces the pump
scheduling problem and its formalization as a POMDP;
Section 4 presents technical aspects. Section 5 describes the
imitation learning strategy proposed. Section 6 describes
the conducted experiments and shows the obtained results.
Finally, are presented conclusions in Section 7.

2 Related Works
Offline RL methods rely on the capacity to exploit and gen-
eralize from static datasets to efficient policies. Although,
leveraging the learning process using prior experiences can
be challenging due to the distributional shift issue and
overly optimism in the face of uncertainty [6, 5]. The Ran-
dom Ensemble Mixture (REM) [21] used in this paper ad-
dresses this problem by using a convex combination of Q-
values to mitigate overestimation under the assumption of
a diverse and large dataset. Also, it can be adopted orthog-
onally to other sampling methods allowing further online
data collection. Similarly, Jaques and colleagues [7] han-
dle the overestimation issue by applying a dropout-inspired
Q-learning and penalizing divergence from prior data dis-
tribution through KL-control. Batch Constrained Deep Q-
Learning (BCQ) [6, 22] also constrains the policy regarding
actions found in the dataset using as a baseline a generative
model.
Some other works have used demonstrations as a pre-
training step. In [23] is presented Deep Q-learning from

Demonstrations (DQfD) that uses demonstrations as a pre-
training and later improves the learned policy with self-
generated experiences. The pre-training phase applies a
supervised loss to ground values from unseen actions re-
garding the demonstrations. After the pre-training, DQfD
interacts with the environment through the learned policy.
In [24] the method incorporates the actor-critic algorithm
DDPG, and a loss is applied to tie the policy to the offline
data.

As an imitation learning strategy, this work interacts with
the environment by performing a density-based action se-
lection using the demonstrations as a distribution. Some
approaches instead use this distribution to create models
to perform exploration. For instance, Model-based Of-
fline Policy Optimization (MOPO) [25] builds a model us-
ing supervised learning and then penalizes the uncertainty
in further interactions based on the model’s error estima-
tion. Therefore, MOPO balances the return and risk in col-
lecting experiences out-of-distribution of the support data.
Similarly, the Model-Based Offline Reinforcement Learn-
ing (MOReL) [26] proposes to learn a policy for a pessimist
MDP (P-MDP) using offline data. This P-MDP partitions
the state space according to the uncertainty, applying a re-
ward penalty to unknown areas. In [27] the authors propose
a model-based approach that can mix online data collec-
tion with prior offline data. For that, a model is built and
incrementally improved through Monte Carlo Tree Search
rollouts.

Imitation Learning approaches [28] aims to mimic the
behavior observed in demonstrations. In [29] is pro-
posed a hierarchical method for action selection with self-
improvement over time. The first step is to select a primitive
that corresponds to some behavior. The second step is se-
lecting a sub-goal achieved by performing the chosen prim-
itive. Finally, an action generator picks a policy to execute
the primitive. The underlying idea is to improve the ac-
tion generator by practicing. Similar to our work and [30],
this approach uses k-NN queries to retrieve a primitive from
demonstrations given a current state. The difference lies in
the fact that we propose a passive sampling approach, let-
ting the evaluation of the state-action pairs to the learning
method.

Our work has a basis on the wealth of literature on imita-
tion learning and offline RL. However, the intersection be-
tween these branches remains underexplored. While offline
methods rely upon methods to improve the exploitation of
static datasets, the exploration often seeks to uncover areas
in the state space. Yet, static datasets may not be large and
diverse, and exploring unknown states can produce undesir-
able behaviors. Thus, the premise of our contribution is to
increase the sample efficiency. We consider expert demon-
strations as an underlying model for action selection and
encourage policy convergence to high-density regions un-
der the demonstration distribution through intrinsic motiva-
tion.



3 Modeling the pump scheduling
problem

In water distribution systems, pump scheduling is a deci-
sion process about when operating pumps to supply wa-
ter while limiting electricity consumption. Therefore some
constraints must be respected, including a minimum pres-
sure within the network, safety water level in the tanks, and
avoiding frequent switches in pump operation to protect the
assets. To that end, distinct strategies can be used according
to the particularities of the system. For instance, pumping
water in off-peak hours when the price of electricity has dif-
ferent tariffs throughout the day or reducing the tank level
in periods of low consumption to preserve the water quality,
and so on.
The water distribution system used here is located in
Worms, Germany, and supplies water for about 120000
citizens2. The composition of this system is one station
with four pumps (NP1, NP2, NP3, NP4), with distinct set-
tings and fixed speed (ON/OFF). The flow Q through those
pumps is proportional to the electricity consumption kW ,
being NP1 > NP2 > NP3 > NP4. In other words, using
pump NP1 supplies more water in the network than pump
NP2 but also corresponds to higher electricity consumption.
Also, two storage tanks with different capacities are placed
and provide water for the end consumers. Among the con-
straints and requirements established in the operation set-
tings for this system are the following:

• It is desirable to avoid frequent switches and distribute
pump operations to protect the assets;

• It is imposed a boundary condition of the tank level
and, once achieved, the minimum pressure is guaran-
teed;

• It is desirable to provide water exchange in the tank
during one day of operation to keep the water quality.

The tank is located 47m above the pumps and has a 10m
length. Thus, the tank levels considered are in the range of
[47, 57]m. We consider only one tank once that the second
has the level stable along with the operation. The special-
ists assume a safety operation guarantee with at least 3m
filled with water. Besides this, the system does not have
sensors measuring the water’s quality. Thus, to ensure the
exchange and preserve the water’s quality, we assume that
in one operation day, the level must decrease below half of
the total capacity. Finally, the upper boundary constraint
overlaps the physical limit.
As with many real-world tasks, the scenario of pumping
scheduling is partially observable. In other words, the agent
has a noisy or incomplete observation of the environment.
For instance, most of the state’s features are noisy once it
has been gathering by sensors. Also, the water demand has
variance along the hours, days, and seasons, even following
a pattern. A POMDP is an extension of MDP that considers

2The dataset has been provided by the IoT.H2O project (IC4WATER
JPI funding)

uncertainty regarding the current state of the environment.
Formally, the POMDP can be defined as [8]:

POMDP = < S,A, P,R,Ω, O, γ > (1)

where the set S correspond to the States of the environ-
ment; A is defined as the set of Actions available; P is the
Transition Probability which defines the probability being
in some state st ∈ S, taking an action at ∈ A, resulting a
next state s′t+1 ∈ S; the Reward rt ∈ R is the return to be
in some state st and perform an action at; O is the set of
conditional probabilities of take an action at in some state
st and receive an Observation ot ∈ Ω about the next state
s′t+1; Finally, γ is the Discount Factor ∈ [0, 1] which de-
termines the relevance of immediate rewards over rewards
in the future.
The States S and the Observations Ω are interchangeable
in the context of this work as adopted in [31] and repre-
sented by:

• The water level in the tank and water consumption;

• The previous action performed (currently being ap-
plied);

• The cumulative time that the pumps operated in a hori-
zon length of 24 hours, the month and time t;

• A binary value called water quality indicating whether
on the current day of operation the system has reached
a certain minimum in the tank level.

Actions A are defined by the set of binary values that rep-
resent if some pump is operating (value 1) or not (value 0)
once the pumps have fixed speed. At each timestep, only
one pump is running or none of them.
Finally, two Reward functions are designed to choose the
most efficient pump at a given time t, as well as respect the
boundary conditions of the tank level, preserve the water
quality, and make use of different pumps. The immediate
rewards are defined by the Equations 2 and 3:

rt = e1/(−Qt/kWt) −B ∗ ψ + log(1/(P + ω)) (2)

rt = −e(−1/kWt) −B ∗ ψ + log(1/(P + ω)) (3)

where at the time t, Qt is the flow rate through the ac-
tive pump, and kWt is the respective electricity consump-
tion; B is the achievement of lower/upper restrictions of
the water level in the tank. These lower/upper values
are defined by specialists in the system and in case of
not achievement, B = 1 in case of overflow and B =
abs(level_of_the_tankt−boundary_condition) ∈ (0, 1]
in case of (near) shortage, being ψ = 10, otherwise B = 0.
Also, B has an exception, being -1 strictly for the timestep
when the tank level reaches the water quality condition. P
is a penalty that increases with accumulated pump run time.
The penalty P increases +1 at each timestep of cumulative
operating time, and for the Equation 3 it also hold for the



action (NOP). In the case of switching to a pump that has
already been running throughout the day, ω equals 30 for
the respective timestep of the switch, otherwise 1. If no
pumps are running, neither −e(−1/kWt) nor e1/(−Qt/kWt)

are considered.
Which differentiates the Equation 2 is efficiency regard-
ing the pumps through Qt/kWt, when the Equation 3 di-
rectly penalize the electricity consumption through the term
e−1/kWt . As a consequence, this leads to a different percep-
tion regarding the actions. As the agent tries to maximize
these rewards along its trajectory, the result is the emer-
gence of some behavior applying the policy learned through
these distinct returns. Thus, by designing two reward func-
tions, we aim to analyze the adequacy of those behaviors
regarding the goals established.

4 Deep Reinforcement Learning
The DQN [20, 1] combines Q-Learning [32] with Deep
Neural Networks. The state-input can be, for instance, a
set of images or continuous values, and the output is an
estimation of how good is be in that state s and perform
an action a, called Q-value. During the learning process,
DQN tries to approximate the optimal Q* for each state-
action pair performing updates through the Bellman equa-
tion. This approach achieves higher scalability compared
to other methods once that is not necessary to keep a vast
search space. Later, Hausknecht and Stone [31] introduced
long short-term memory (LSTM) in this structure to handle
partially observable environments, and van Hasselt and col-
leagues adopt a Double DQN [33] to tackle the optimistic
nature of the original Q-Learning.

4.1 Learning Process
Using a simulator of the environment and real-world data of
the water consumption at determined time t, the simulator
can calculate at timestep t the values of flow Q, pressure
H , and electricity consumed kW , as well the tank level
at t + 1. The dynamic of this simulator is first to define
the state s and then use some strategy to choose an action
to be performed. Once this action is applied, a reward is
given, and the next state is perceived, constituting a transi-
tion T = < state, action, reward, next state >.
During this process, new transitions feed the Experience
Replay. The Experience Replay [34] and the Target Net-
work are two techniques applied in [1], to improve the
performance of DQN. The former break the correlation of
data, and the latter makes the learning process more stable.
Transitions stored in the replay memory consist of a batch.
Then, this batch is split into mini-batches and shuffled to
break the correlation between the data. Finally, the states of
these mini-batches are inputs in the neural network, which
aims to approximate Q*(s, a) through the Bellman Equa-
tion 4 [8].

Q∗(s, a) = E[R(s, a) + γmaxa′Q′(s′, a′)], (4)

where an expectation is defined regarding the future returns,
discounting it through the factor γ ∈ [0, 1]. The Q-Learning

approach establishes a convergence for the optimality, up-
dating the Bellman equation through Equation 5.

Q(s, a) = Q(s, a)+α[R(s, a)+γmaxa′Q′(s′, a′)−Q(s, a)].
(5)

In order to update the Q(s, a), every state-action pair is
recorded and updated iteratively in the tabular form of
Q-learning [32]. This approach suffers from a problem
called curse of dimensionality [8] as the number of pos-
sible states and actions grows. This can be even more
complicated when considered continuous values, that must
be discretized in some way. For that, DQN combines Q-
learning with neural networks as a function approximator
with weights θ to estimate the Q-values. This is accom-
plished by minimizing the loss δ at each time step i, as
shown in Equation 6.

δi(θi) = E[R(s, a)+γmaxa′Q′(s′, a′, θi−1)−Q(s, a, θi)]
2,

(6)
where the weights θi−1 are those fixed in the target net-
work that in turn, are periodically updated copying weights
θ. The frequency that the target network updates can be
seen as a hyperparameter, being with the replay memory
properties an object of study in the performance of DQN
and variants [35].
The problem of traditional Q-learning is that it tends to
overestimate state-action pairs out of the distribution when
exploiting a fixed dataset [6]. REM mitigates this using an
ensemble of models to improve the generalization through
the Equation 7.

δi(θi) = E[R(s, a) + γmaxa′
X

k

αkQ
′
k(s

′, a′, θki−1)−
X

k

αkQk(s, a, θ
k
i )]

2,

(7)

where for each mini-batch, α is a set of weights randomly
generated such that

P
k αk = 1. Thus, REM is a convex

combination of Q-values, converging for itself [21].

4.2 Sample Efficiency
The performance of the family of DQN-based approaches
is strongly correlated with sample efficiency. This section
describes the strategies adopted to provide richer observa-
tion of the current state, improve training performance, and
make better use of samples.

4.2.1 State stacking
In the original approach of DQN, n last previous states
(frames) are concatenated [1]. Thus, the input provides a
richer observation of the current state, such as the system’s
dynamic.

4.2.2 Training data scale
The state-input values have different ranges that differ sub-
stantially. It is applied normalization in both states and re-



ward values for the range [0, 1] using Equation 8. The fea-
ture is the value x, and max/min was defined considering
historical observations.

x′ =
x−min(x)

max(x)−min(x)
(8)

4.2.3 Prioritized Experience Replay (PER)
Schaul and colleagues present in [36] an improvement re-
garding the Experience Replay, prioritizing samples more
"unexpected". In other words, samples that provide the
highest values |δi| through the Equations 6 are those much
to learn from [37]. Then, every transition in the mini-batch
is associated with the correspondent magnitude of the loss,
such as T = < state, action, reward, next state, |δ| >.
Finally, to balance the bias introduced by the prioritiza-
tion of samples, PER applies Importance Sampling (IS)
weights.

5 Imitation Learning
The imitation learning strategy Safety through Intrinsically
Motivated Imitation Learning (SIMIL) present in this work
assumes that offline data is available and online data col-
lection is feasible. The underlying idea is to use the offline
dataset distribution as a model to constrain the action selec-
tion and enhance the sample efficiency while encouraging
the policy’s convergence to states that lie in high-density
regions under the same prior distribution.
The imitation learning strategy works as a follows: given a
current state st and demonstrations D, select the action a
mostly applied in the k-most similar states to st in D. For
that, we make use of k-Nearest Neighbors (k-NN), where
the parameter k can be chosen such that minimizes the dis-
tance min

P
D d(τ, τD), regarding trajectories τD ∈ D.

The objective is to keep new transitions tied to the previ-
ously collected data, mitigating overestimation facing un-
seen state-action pairs. Finally, a reward bonus ρη(st) is
added to the immediate reward according to the Kernel
Density Estimation (KDE) for st through Equation 9, being
ρ the importance factor for the bonus. Thus, we encourage
policy convergence to states with high density under prior
dataset distribution.

η(st) =
1

N

NX

i=1

K

�
st − sDi

h

�
. (9)

In Equation 9, K(st) ≥ 0 is the kernel that estimates the
density for the current state st over the states sD found
in the demonstrations. The parameter h is the bandwidth
that trade-off the results between balance and variance. In
this work, we adopt the k-NN based on Manhattan distance
once it can provide suitable metric for real-values without
parameter tuning and KDE with a gaussian kernel from
Scikit-learn [15]. The Algorithm 1 summarizes the strat-
egy proposed.
In particular, we reduce the dimensionality of the state’s
representation for the meaningful features regarding the
current status of the WDS and skip some of them for

Algorithme 1 : Safety through Intrinsically Motivated
Imitation Learning (SIMIL)

Input : set of Q-Networks with weights θQ, set of
Target Q’-Networks with weights θQ

′ ← θQ,
replay memory D′, demonstrations D,
frequency which update target net λ,
importance factor ρ;

Output : Policy π
1 for t ∈ {1, 2, ...} do
2 Sample state st
3 Select action at using k-NN(st) in D
4 Play (st, at), observe the reward rt and the next

state s′t
5 Calculate η(st), sum it to a final reward

r′t = rt + ρη(st)
6 Store transition (st, at, r

′
t, s

′
t) into D′

7 st ← s′t
8 end
9 for t ∈ {1, 2, ...} do

10 Sample a mini-batch of n transitions from D′

11 Calculate loss δ(θQ)
12 Perform a gradient descent step to update θQ

13 if t mod λ = 0 then
14 Update the set of weights θQ

′ ← θQ

15 end
16 end

the k-NN queries. That is because the timesteps are
strongly correlated, and skipping some of them reduces
the computational overhead due to k-NN query. Thus, the
state representation used to calculate the reward bonus and
perform k-NN queries has the reduced form of ϕ(st) = <
tank level, water consumption, current time,month >.

6 Policy Evaluation
6.1 Experimental Setup
In this work, we aim to evaluate if (1) the proposed imita-
tion learning strategy can generate policies that outperform
offline methods baselines; (2) the proposed POMDP can
obtain policies that offer a competitive performance rela-
tive to that observed in the real world. To this end, we con-
ducted the experiments using the real-world dataset divided
into one year for the learning process and one year for the
evaluation. Both Offline RL methods and SIMIL use the
same amount of data for learning. For accurate compar-
isons, all samples interact with the simulator for both train-
ing and evaluation. This means that the evaluation of the
offline dataset is done through interactions with the simu-
lator. We compare the policies BCQ, REM, and SIMIL +
REM using 5 models for each reward function due to the
stochasticity in the learning process [38].

6.2 Results
To analyze the performance, we call the set of policies ob-
tained using the Equations 2 and 3 by Π1 and Π2 respec-



Policy Electricity Consumption (kW)
REM Π1 -1.11 ± 9.78

SIMIL + REM Π1 -4.05 ± 1.97
BCQ Π1 -3.54 ± 2.71
REM Π2 4.08 ± 7.93

SIMIL + REM Π2 -3.33 ± 5.77
BCQ Π2 -1.40 ± 3.33

Table 1: Average electricity consumption (%) ± standard
deviation compared to real-world operation.

Policy NOP NP1 NP2 NP3 NP4
Real-world 30.47 8.30 43.42 8.31 9.50

REM π∗
1 11.38 4.93 0.87 82.82 0.0

SIMIL + REM π∗
1 17.05 0.17 28.54 5.29 48.95

BCQ π∗
1 22.87 17.79 8.13 51.09 0.12

REM π∗
2 32.64 25.85 0.04 41.47 0.0

SIMIL + REM π∗
2 28.08 3.12 36.04 4.89 27.87

BCQ π∗
2 37.11 37.48 0.06 25.35 0.0

Table 2: Action distribution (%)

tively. We show in Figure 1 the min, max, and average
cumulative reward along with the episodes using the 5 poli-
cies obtained. The results show that SIMIL has lower vari-
ance and competitive performance relative to cumulative re-
wards compared to fully-offline policies. The lower peaks
in performance are mainly due to not meeting the tank level
safety constraints.
The three sub-goals: electricity consumption, distribution
of pump usage, and tank level are the counterparts of the
policy. Thus, a suitable policy performs with lower electric-
ity consumption/higher efficiency, reduces switches, and
distributes the pump operation while respecting the tank
level constraints. We show in Figure 2 the performance of
policies π∗ with a better average cumulative reward for Of-
fline RL and SIMIL. Tables 1 and 2 present a comparison
between the policies using as baseline the real-world statis-
tics for the evaluation data. Table 1 compares the electric-
ity consumption for Π regarding real-world operation while
Table 2 shows the action distribution for π∗. The results
show that SIMIL policies achieve competitive results with
real-world operations considering electricity consumption.
Finally, generally, the policies presented an operation in the
safety range of tank levels.

7 Conclusions
This work presents Safety through Intrinsically Motivated
Imitation Learning (SIMIL), an imitation learning strategy
using density-based action selection and intrinsic motiva-
tion to constrain policies to expert demonstrations. Our
contribution lies in the idea that SIMIL, while retrieving
expert demonstrations behavior, also allows the possibility
of extrapolating it in favor of states that lies in high-density
regions. That could represent a means to deploy safe deep
RL approaches in real-world applications. Finally, the re-
sults show that SIMIL can lead to policies that could even

outperform fully-offline methods.
We present a real-world problem called pumping schedul-
ing for water distribution utilities as an evaluation scenario.
The contributions of this work extend to this domain. The
proposed reward functions lead to policies that satisfy the
safety constraints, protect the assets and lead to electricity
savings. The authors hope that this representation of the
pumping scheduling problem can help other researchers in
different WDS settings.
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