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Changes and rigors in systems of mathematical representations within 
gifted children’s problem-solving process  

Sebastian Schorcht 

Technische Universität Dresden, Germany; sebastian.schorcht@tu-dresden.de  

  

The paper shows how two gifted primary school children use rules of an individual system of 
mathematical representations during a problem-solving task. From a research perspective, 
transformations within and between various representations lead to new mathematical insights and 
is fundamental for mathematical experiences. But which processes of using mathematical 
representations do primary school children go through within problem-solving? What happens 
descriptively before a new mathematical insight in context of representations? For this purpose, two 
children (3rd grade, 9 years old) were confronted with a mathematical problem-solving task. The case 
of Fred and Mark shows how they develop the means of representation themselves before a new 
mathematical insight.  
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Theoretical Framework 
Within a semiotic-pragmatic approach to explaining how mathematicians get new insights, Hoffmann 
(2005, p. 149; Translation by Schorcht) describes the interplay between representations and 
representational changes: 

Playing with representations and their [...] transformations are essential to make those associations 
possible, that we need in order to be able to tap into ideas and conjectures for possible solutions 
[…]. 

In this quote, he describes how transformations of mathematical representations lead to associations, 
which in turn allow mathematical insights. Transformations of representations seem to be necessary 
for mathematical insights. Accordingly, successful problem-solving depends on the ability to 
transform between representations flexibly. These transformations are one characteristic skill of 
mathematical gifted children (Käpnick, 1998; Benölken, 2015; Assmus & Fritzlar 2018), who are 
mostly successful in problem-solving. In order to observe mathematical problem-solving with respect 
to transformations of representations, the analysis of the problem-solving behavior of mathematically 
gifted students is particularly suitable. Since this transformation performance is an attribute of 
mathematical giftedness, transformation processes should be well analyzable in a setting with 
mathematically gifted children. The resulting choices for the setting are discussed in more detail in 
the section Methods. 

Transformations within or between modes of external representations are grounded on Bruner's 
(1966) model of different representations of knowledge, which is mostly extended by different 
researchers (Lesh, Post, & Behr, 1987; Prediger & Wessel, 2011). For the analysis, the semiotic-
pragmatic approach will be used, to understand the interplay between these “modes” of 
representations and new mathematical insights. Representations will be understood as diagrams in 



 

 

the sense of Dörfler (2014, p. 5; Translation by Schorcht): Diagrams contains “inscriptions with a 
well-defined structure, specified by relationships between parts […], together with rules for 
reshaping, transforming […] etc.” Dörfler understands inscriptions primarily as signs without a 
visible relation or system of representation. Decompositions and transformations will be possible, if 
rules of representation are included. Relationships between parts of inscriptions can be transformed, 
including reference to a rule of the used system of representation.  

Dörfler (2014), referring back to Peirce (1976), embeds the actions on diagrams in diagrammatic 
reasoning. Diagrammatic reasoning involves the construction of diagrams: the creation of a rule-
based set of related inscriptions. Diagrammatic reasoning also involves performing experiments on 
the diagrams: this means transformations, compositions, combinations or decompositions, such as 
adding, removing or restructuring representations. According to Dörfler (2014), and in special degree 
also Hoffmann (2004), observing and recording the experimental results is a necessary part of 
diagrammatic reasoning: 

It is not sufficient, thus, that we perform our experiments with diagrams quasi blindly, like a 
machine. Although a computer might perform experiments quite better than human beings, the 
essential point of realizing the limits of a selected representational system is self-reflection: 
observing what we are doing when performing an experiment. (Hoffmann, 2004, p. 301; Italic by 
Hoffmann) 

Transformations of representations, such as reshaping, compositions and decompositions of diagrams 
within certain rules in a system of representation, enable associations that lead to mathematical 
insights. Through these transformations of representations, new insights become associable for 
mathematicians by self-reflection on the process. Hoffmann (2004) assumes two possible ways to 
evolve the diagrammatic reasoning within a certain problem: 

The interesting point, now, is the question how to get something new from observing the outcome 
of diagrammatization. I want to distinguish two possibilities. On the one hand, there is the process 
of uncovering new implications of constructions within a given system of representation, and on 
the other hand, there is the process of developing the means of representation themselves. 
(Hoffmann, 2004, p. 299; Italic by Hoffmann) 

In focus on learning mathematics the following research question emerges:  

(1) Which processes of self-reflection on diagrammatizations of representations do primary school 
children use within problem-solving from the first inscription to a subjectively identified 
mathematical solution?  

The paper will briefly show an outline on this research question. In the following, the methodological 
conditions are clarified and categories for a qualitative content analysis (Mayring, 2008) are 
deductively determined from the theory just described. 

Methods 
The survey is affiliated to the project "Mathe für Cracks" (Math for cracks) at Justus-Liebig-
University Giessen. The project is an enrichment program for students (3rd to 8th grade; 8 to 14 years 



 

 

old), who are particularly interested in mathematics. Most participants are tested for giftedness while 
the program accepts children whose interest is mathematics as well. This is due to the origin of the 
participants, who come through the “Deutsche Gesellschaft für das hochbegabte Kind” (German 
Society for the Highly Gifted Child) and partly also from “Mensa”. For membership in “Mensa” 
association, the children must be tested. Insights into these test results or the procedure of the tests 
do not take place for data protection reasons. All participants must present a teacher recommendation 
in order to participate in the course. Consequently, these are particularly high-achieving students, 
some of whom have also been tested through their own membership of clubs. In cooperation with 
“Deutsche Gesellschaft für das hochbegabte Kind” (German Society for the Highly Gifted Child), 
Mathematikum Giessen and Mathematik-Zentrum Wetzlar, the program provides 40 places for 
primary school children (8 to 11 years old) and 50 places for secondary school children (10 to 14 
years old). “Mathe für Cracks” cooperates with one third of primary and secondary schools in Hesse 
(State of Germany). Since studies with mathematically gifted children, such as Käpnick (1998) or 
Assmus and Fritzlar (2018), show that the changes in representation is a characteristic of 
mathematical giftedness, the framework "Mathe für Cracks" is particularly suitable for recording 
transformations of representations before new mathematical insights. 

The pilot study contains video recordings from 13 interviews with 18 children: 8 children worked 
individually and 10 children worked together in sets of two. Working on problems alone resulted in 
not externalizing internal processes or interpretations. Only in collaboration and communication with 
others did internal processes become visible. Therefore, the setting was adapted in the last 5 
interviews. The children operate in these last 5 interviews together with their pencil on one given 
paper. This was intended to increase the collaboration rate between the two children. 9 settings took 
place with an accompanying interviewer (7 single interviews and 2 group interview), while 4 settings 
were only provided with an introductory interviewer (1 single interview and 3 group interview). The 
setting was changed during the pilot study because the interviewers had too much influence on the 
students' solving behavior. The children tried to guess a solution via gestures of affirmation instead 
of solving the problem through mathematical reasoning. For this reason, an accompanying 
interviewer was not used in the final 4 interviews with 7 children. As Goos and Galbraith (1996) also 
discussed, working in teams is best suited to avoid influences of the interviewing environment and 
incomplete and inconsistent verbalizations. For this reason, thinking aloud, interrupting interview 
questions, or retrospective questions were neglected during the last interviews in the pilot study. One 
geometric (5 interviews) and one number theory problem-solving task (8 interviews) were provided 
to the participants. The paper will be focused on the following number theory task: 

A palindrome number can be read forwards and backwards. For example, 1221 and 808 are 
palindrome numbers. Neighbor palindrome numbers are located next to each other on the number 
line (for example 121 and 131). Which differences are possible between two neighbor palindrome 
numbers? 

As shown in the student’s solution at Figure 1, one good idea to solve this problem is to write down 
some palindrome numbers in order. By arranging neighbor palindrome numbers, the difference 
between the numbers can be found. In 6 pupils’ solutions are lists of the possible differences as well 
(circled numbers in Figure 1). These knowledge stores are results of experiments on diagrams. 



 

 

Distances between two neighbor palindrome numbers are 2, all powers of ten and all powers of ten 
multiplied by 11.  

 

Figure 1: Given task and solution by Fred and Mark (9 years old). 

Beside these products of diagramatization, there are transcripts of video recordings. These transcripts 
were analyzed by qualitative content analysis (Mayring, 2008) with coding categories developed 
deductively. The coding category diagrammatization contains four subcategories:  

• constructing an icon or a diagram,  
• experimenting upon this icon or diagram,  
• observing the result of experiments and  
• determining in general formulae.  

If the children start to use the pencil to make a drawing, this section was coded with constructing an 
icon or a diagram. If the relations were transformed in a new representation, it is an experimenting 
upon this icon or diagram. After an experiment, the observing the result of experiments could be 
identified verbally. Determining in general formulae is coded if the results of the experiments for all 
examples are verified.  

The coding category new mathematical insights contains two subcategories:  

• uncovering new implications of constructions within a given system,  
• developing the means of representation themselves. 



 

 

Uncovering new implications of constructions within a given system was encoded when students 
followed the given rules within an experiment or transformation, naming relations that were not 
included in the previous representation. Developing the means of representation themselves was 
coded when students changed the meaning of the representation by adapting new rules. 

In the following, the case study of Fred and Mark is analyzed in order to show the self-reflection 
process during problem solving and before a new mathematical insight (in the sense of Hoffmann). 

Analysis 
Mark and Fred (9 years old), who face the palindrome number task, construct a diagram by noting 
the palindrome numbers from 11 to 111. They use representations such as 112 to communicate and 
negotiate the rules of their own system of representation. They experiment with the diagram to 
identify differences and observe the results of experiments by circling the differences. In the 
following, they note the palindrome numbers from 202 to 919, but only those with 0 and 1 in the 
hundreds place. After that, 1001 and 1111 follow. By uncovering new implications of constructions 
within a given system, they correctly note all palindrome numbers between 2002 and 3003 (Figure 
1). In the following, two moments will be considered in more detail: First, at the moment of 
establishing a rule to create the diagram, and second at the moment of a new mathematical insight: 

In the first case, Mark and Fred are into the process of diagrammatic reasoning. They design a list 
with all palindrome numbers. To do this, they start at 11 and continue through two-digit multiples of 
11 until they reach 101 and 111. From this moment on (line B039 in the transcript below), they discuss 
different ways of continuing the sequence to satisfy the rule "A palindrome number can be read 
forwards and backwards" within the given system of natural numbers. Among the numbers discussed 
are 112, 122 and 220 but these are not included in the list of palindrome numbers (B039 to B053 and 
B058). Fred and Mark develop the means of representation themselves. The rule for construction of 
palindrome numbers is extended to the rule “same digit in the hundreds place value and ones place 
value”. They construct 202, 212 (B054, B059 to B061):   

B039 Fred: No hundred and twelve is not 

B040 Mark: But there is the one twice 

B041 Fred: Yes, but that means nothing. Look! <<writes separately on the sheet 112>> One, one, two - 
read backward would be two hundred and eleven  

B042 Mark: True! 

B043 Fred:  and that's another one and then the next one is one hundred [twen]-two  

B044 Mark: [twen] 

B045 Fred: Yes, one hundred twenty-two. 

B046 Mark: Noo! 

B047 Fred: Or, yes, yes, yes! Um, because the rest doesn't work.  

B048 Teacher: <<leaves his place>> 

B049 Fred:  One hundred and twenty-two <<writes 122>> 

B050 Mark: Yes, but then we now have two hundred, um 

B051 Fred: uhhh, true true true 



 

 

B052 Mark:  [two hundred and twenty-one] read backwards 

B053 Fred: Oh yes! <<crosses out 122>> 

B054 Mark: So, it does not work. Now it's two hundred and two. 

B055 Fred: Yes, so um 

B056 Mark: Now two hundred and two comes here. <<taps his pencil to the right of the crossed-out 
122>> 

B057 Fred: But two hundred, uh, right, the rest does not work. <<writes 202>> 

B058 Mark: Exactly, and then two hundred and twenty. 

B059 Fred: Two hundred and twelve. 

B060 Mark: Right, two hundred and twelve is correct. 

B061 Fred: <<writes 212>> and then three[hundred and three]. 

B062 Mark:  [hundred and THREE]! <<nods once>> 

B063 Fred: <<writes 303>> 

B064 Mark: We've got it now, right? 

Constructing 303 after 212 suggests another rule that both share nonverbally but consensually (B062 
to B064). In the following Fred and Mark construct only palindromes with 0 or 1 in the tens place 
value. An uncommunicated rule might be: "There is 0 or 1 between the largest and smallest place 
value". Consequently, the digits of the hundreds place value and ones place value are increased by 
one in the following and noted with 0 or 1 at the tens place value. Fred and Mark construct 313, 404, 
414, 505 to 919. Following the rule, that the first and last digit of the number must have the same 
digit, they construct 1001 and 1111. After Fred notes 2002 and 2222, he compares the representation 
of four-digit numbers with that of three-digit numbers and stops the further construction of 
palindrome numbers (B154 to B160). In doing so, he makes a new mathematical insight and disproves 
the previously nonverbal rule (B162). Digits other than 0 and 1 can be entered in the middle place 
value. This considerably expands the representation of the palindrome number list. He is uncovering 
new implications of constructions within a given system: 

B154 Fred: Has actually only one zero more than here the two numbers <<points with the pen to 202 
and 212>>. Wait, thousand one hundred, there is still one, we can best <<writes 2112>>, 
ehm, let's note it down according to the size. Here <<points with the pen to 1001 and 
1111>> there is also another one (unintelligible), it doesn't work here! 

B155 Mark: <<looks at the task sheet>> (mumbles unintelligibly) 

B156 Fred: Wait! <<points with the pen to the lowest written line>> 

B157 Mark: Truue, true. 

B158 Fred: Paliadrome, <<shakes head>> ahh, no idea. So, it must be <<writes 3003>> three thousand 
three <<writes 3 and traces the number several times>>. 

B159 Mark: Three thousand three. 

B160 Fred: Hm, moment, I just thought about it for a moment. Then three thousand, there's that 
possibility again. Three 

B161 Teacher: Can I see what you're doing? 

B162 Fred: Ahh so, here there are still more possibilities <<points with the pen at 2222>>. The whole 
like here, the whole can make nevertheless also still with the three. There are still thousands 



 

 

of possibilities. But we can simply leave that in the small, because that is still the same 
distances. <<looks at the task sheet>> Namely one hundred and eleven, <<points with the 
pencil to 2112>> here, these are always, so these are one hundred and eleven again, I'll 
write under here again briefly the others that work <<writes 2332, 2442, 2552, 2662, 2772, 
2882 and 2992>>. 

Discussion  

Which processes of self-reflection on diagrammatizations of external representations do Fred and 
Mark use within their problem-solving process? Mathematical insights become possible for them by 
developing rules within their given system. Palindrome numbers consist of digits whose value is equal 
in power at the largest and smallest place value, at the second largest and second smallest place value, 
at the third largest and third smallest place value, and so on. The relation between the digits of a 
palindrome number Fred and Mark try to capture in a diagram. To do this, they discuss rules for 
constructing their diagram, which lines up palindrome numbers ordinally. To begin, they start with 
11 and correctly continue the series of palindrome numbers to 111. Fred then constructs the number 
112 in line B041 to see if it can be read forward and backward. In addressing the construction of the 
diagram, they also test 122 (B049). 220 is checked mentally (B056). Both develop the means of 
representation themselves by establishing the rules for constructing their diagram. However, setting 
the rule "There is 0 or 1 between the largest and smallest place value" to construct the diagram is no 
longer viable for the task after a certain moment. By the unspoken rule, Fred constructs 1001, 1111, 
and 2002. He also constructs 2222. Then, in conversation, Fred reflects on his construction by 
comparing the four-digit numbers 2002 and 2222 with the already constructed three-digit numbers 
202 and 212 (B154 to B160). This self-reflection leads to a change in the rule of their representation 
system. Fred discovers that between 2002 and 2222 the palindrome number 2112 can be formed. In 
self-reflection, Fred uncovers new implications of constructions within their system. He changes his 
own rule for constructing the diagram and independently forms a new rule. With this rule he can form 
new palindrome numbers and thus correctly notates all palindromes between 2002 and 3003.  

Conclusions 
This one example shows that Hoffmann's idea of self-reflection processes for constructing one's own 
diagrams for new mathematical insights are also relevant for children. In this case study, one can see 
particularly well how the self-reflection of the construction of the diagram leads to new mathematical 
insights. Continuing the diagram of 1001 and 1111 with 2002 and 2222, both children see a new 
relation that was not visible before. In the comparison of the four-digit numbers, with the three-digit 
numbers 202 and 212, Fred can uncover a new implication via self-reflection. Both change the set of 
rules for creating the palindrome list. The question now arises whether this development of rules is 
typical for new mathematical insights? Do the new insights always manifest themselves in this way 
in children's problem-solving processes? How can children be encouraged to develop their rules? Is 



 

 

there a way to descriptively capture the timing of children's mathematical insights? Further work on 
this topic will follow. 
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