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The Singapore bar-model has recently arrived in many Spanish classrooms, where it has been 
identified as an effective modelling tool for problem-solving in primary schools. This model 
introduces a pictorial approach prior to the abstract symbolic resolution. Schools usually change 
over to this scheme by introducing it in grade 1 (6/7 years old) and progressing yearly with the 
children. In this study we perform a pre-post analysis of 71 fifth graders. An experimental group of 
16 children were introduced to the Singapore bar-model, while the control group, the remaining 55 
children, solved the exact same set of problems using their usual symbolic-only approach. Our results 
show statistically significant improvements in the performance of the experimental and the control 
groups in the cognitive domains of “knowing” and “applying” as well as in the content domain of 
geometry.  
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Introduction  
Problem-solving is one of the key aspects in mathematical education and maybe one of the most 
difficult skills to teach. Many students and many teachers struggle with this issue, where solutions 
come from a complex mixture of creativity and pattern-recognition. Teaching mathematical 
modelling literature agrees on problem-solving being some cycle (Perrenet & Zwaneveld, 2012) 
where reality is transformed into a mathematical model whose mathematical solution is found and, 
later, transformed back into reality.  

According to DeWindt-King and Goldin (2003) “a representation is any configuration (of characters, 
images, concrete objects, etc.) that can denote, symbolize or, otherwise “represent” something else” 
(p. 2). The representation of the problem data can be a way to emphasize, understand and link the 
most important information, so that practice can be seen as a useful tool for the students in problem 
solving (Heagarty & Kozhevnikov, 1999). The scientific community agrees that representing data is 
useful for improving performance in problem solving, although there is no single way to represent 
data. The works of Fagnant and Vlassis (2013) and Heagarty and Kozhevnikov, (1999) show several 
ways, focusing mostly on the schematic representations. Appropriate representation has positive 
effects on children's performance, which reinforces the importance of working on this content from 
an early age (Uesaka et al., 2007). 

Spanish tradition tends to rely only on the symbolic representation of mathematical models, and other 
types of representations are hard to find in classrooms and/or textbooks. Among teachers and 
students, the usual scheme is known as the “Datos-Operación-Solución'' scheme (which translates as 
“data-operations-solution”, DOS, from now on). Under this scheme, children are asked to organize 
problem-solving in the three steps shown in practice in Figure 1. First, they write down “Data” and 
all numerical data that appears in the problem statement, usually with units. Then, children have to 



 

 

perform the needed calculations (Operations). Finally, in the Solution block, they write down a full 
sentence stating the result back in the context of the problem. 

 
Figure 1: DOS-Scheme implemented by an 11-year-old from a bilingual school (English & Spanish) 

It was in the 1980s when Singapore brought in the idea of modeling quantities and their relationships 
with bars, avoiding the more abstract symbolic-only approach and giving students a pictorial way to 
represent a problem’s mathematical model. According to Blum and Leiss (2005) modelling cycle, 
shown in Figure 2, BMM allows the students to obtain a model of the situation prior to the 
mathematizing step. This approach clearly contrasts with the DOS, which moves directly towards the 
mathematical work without performing any modelling. 

 
Figure 2: Blum and Leiss modelling cycle 

The bar method model (BMM from now on) uses as a fundamental mainstay the concept of the "bar", 
which is a pictorial diagram that allows the organization of the abstract information, converting it into 
understandable data (Walker, 2005). Using this method, it is possible to represent data from 
arithmetic and algebraic problems (word problems), which not only allows us to transform abstract 
words and concepts into pictorial representations, but also helps to understand and analyze the 
problem itself (Yeap, 2011). According to Kho (1987) and Kho et al. (2009), once the students have 
been able to represent the data using the bars, they are much more likely to understand the situation 
and, therefore, to solve the problem. 

Since its introduction in Singapore, the BMM has been a centerpiece in mathematics, beginning in 
the first grade of primary education. According to Ng and Lee (2009), in the first two years, they 
usually work through pictorial representations of known objects, to encourage students to have 
specific references to the data. Subsequently, the concept of the "bar" is introduced, with which they 
continue to work throughout their school years. Many Spanish schools have started to use Singapore’s 
textbooks. Usually, the method is introduced in grade 1 and progresses with the children as they 



 

 

advance in their schooling years. In those schools, older kids are thus taught with the DOS scheme 
while their younger schoolmates are introduced to this pictorial representation. This situation leads 
to the main research question for this study: Can grade 5 students, who have only been taught to use 
abstract symbolic modelling, also benefit from the introduction of BMM? 

Methodology 
This research follows a pre-test/post-test design. This study has been carried out in a middle-sized 
school in Segovia, Spain. All 76 fifth grade students have participated in it, though 5 of them have 
not been included since they are identified as special-education students. The remaining 71 children 
are divided into 4 classrooms, each one lead by a different math teacher. Three of the classrooms (55 
students) have been assigned as the control group, and the remaining one (16 students) has acted as 
our experimental group, since their teacher was looking for new approaches to problem-solving 
methods, given the difficulties their students had on this topic.  

The intervention was carried out as follows: For over a month, daily, both experimental and control 
groups solved the same two problem inventories consisting of a total of 53 word-problems, all able 
to be solved with the help of BMM. It is important to remark that these children have never been 
exposed to pictorial models before our interventions. The control group worked with their usual DOS 
scheme. The word-problem inventory was agreed upon by the four classroom teachers and divided 
into three sections: additive structure with natural numbers, additive structure with decimal numbers 
and, finally, multiplicative structures and fractions (that were also represented with bars). With 
respect to TIMSS’ content-domain classification, all the problems fall in the group numbers, while 
regarding cognitive domains, 49% classify as applying, 17% as reasoning, and 34% as knowing. 

The first sessions for the experimental group were entirely dedicated to the pictorial representation 
of the problem statement, introducing BMM by example. In the first two sessions, all questions were 
removed from the problems’ statements to avoid the mechanical use of DOS scheme by the students. 
Only when students got used to modelling the situation with bars and could pose and answer several 
questions from their drawn bar-model were the original questions to the problems reintroduced.  

To assess the effectiveness of the intervention we used two similar sets of questions released from 
TIMSS (2011) as pre-test and post-test. The first set had already been configured and tested in the 
Spanish context in Fraile’s PhD (2017) while the second was designed to match this one with a similar 
weight (shown in Table 1) in both content domains (numbers, data display and geometric shapes and 
measures) and cognitive domains (applying, reasoning, and knowing).  

Table 1: Total number and percentage of the questions in each domain for the pre- and post-tests 

  

Date 

Question content domain Question cognitive domain 

Numbers Data  Geometry Applying Reasoning Knowing 

Pre-test 28/04/2020 7 (63%) 2 (18%) 2 (18%) 4 (36%) 4 (36%) 3 (27%) 

Post-test 08/06/2020 9 (60%) 4 (27%) 2 (13%) 5 (33%) 5 (33%) 5 (33%) 



 

 

Among all the questions in the pre-test, three of them threw up unexpected results and were 
reintroduced to better understand the children’s motivations for their answers, redesigning them as 
diagnostic questions, where incorrect responses allow the teacher to understand where the mistakes 
may be (Wylie & William, 2006).  

Analysis 
Students' answers analysis has been carried out using R software. We start by comparing problem 
solving skills before our intervention between the experimental and control groups, according to their 
results on the pre-test. The results shown in Table 2 may suggest some bias in favor of the 
experimental group, but the chi-square test p-value is 0.82, showing no significant differences 
between the number of correct answers in both groups. 

Table 2: Post-test average results in a 0-10 scale for each group in the studied domains. In brackets, 
pre-test average results and difference between both measurements. 

 Student’s content domain Student’s cognitive domain 

Numbers Data  Geometry Applying Reasoning Knowing 

Experimental 8.1 

(5.7+2.4) 

9.0 

(6.9+2.1) 

7.2 

(6.6+0.7) 

8.2 

(7.8+0.4) 

8.1 

(5.6+2.5) 

8.0 

(4.4+3.6) 

Control 5.9 

(4.6+1.3) 

8.0 

(6.9+1.1) 

2.6 

(4.7-2.2) 

5.6 

(6.3-0.7) 

6.9 

(5.3+1.6) 

5.4 

(2.9+2.5) 

The results suggest better problem-solving skills in the experimental group, as well as an 
improvement of this group after the intervention. Six repeated measurement Anovas were performed 
to determine statistically significant differences between both groups. These results are shown in 
Table 3. 

Table 3: Anovas’ summary for the differences between both groups 

Student’s content domain Student’s cognitive domain 

Numbers Data  Geometry Applying Reasoning Knowing 

F(1,69)=8.055 

p<0.1 (.) 

F(1,69)=0.737 

p=0.39 

F(1,69)=13.72 

p<0.001 (***) 

F(1,69)=11.2 

p<0.01 (**) 

F(1,69)=1.572 

p=0.21 

F(1,69)=10.71 

p<0.01 (**) 

From the data shown in Table 2, the only significant difference in content domain has been in 
geometry, with an average difference of 2.9 points between groups due to the worse results in the 
post-test for the control group. In numbers and in data the differences have been smaller, with 1.1 and 
1 average points respectively, only significant to a 90% for the data domain. With respect to cognitive 
domains, two out of the three categories have had a significant increase for the experimental group 
showing p-values in the Anova tests below 0.01. 



 

 
 

As mentioned before, three questions in the pre-test were introduced in the post-test. Let us start our 
analysis with the following question (TIMSS Ref.M051091) that falls into the content domain 
“numbers” and the cognitive domain “knowing”. 

Figure 3: Question TIMSS Ref.M051091 that was included (in Spanish) in the pre-test 

Which fraction is not equal to the others? 
 

A.1/2  B. 4/8  C. 2/4  D. 2/8 

The pre- and post-test results of our fifth graders are shown in Table 4. No significant differences 
between experimental and control groups have been found in the answers of both groups in the pre-
test (Chi-square test p-value=0.18) nor in the proportion of correct answers (Binomial test p-
value=0.06). After consultation with teachers and students we understood that “not equal” might be 
ambiguous for the children. In the post-test we used the unambiguous term “not equivalent” obtaining 
a non-statistically significant 14% increase in the correct answers. Experimental and control groups 
differ in favor of the experimental group in the post-test (Chi-square test p-value=0.02; Binomial test 
p-value=0.004) where 94% of the children in the experimental group can answer correctly. 

Table 4: Comparison between pre- and post-test in exp. and cont. groups in M051091 question 

 Pre-test Post-test 

 A B C D Other A B C D Other 

Cont. 21 

(38%) 

5 

(9%) 

3 

(5%) 

21 

(38%) 

5 

(9%) 

16 

(29%) 

3 

(5%) 

3 

(5%) 

27 

(49%) 

6 

(11%) 

Exp. 2 

(13%) 

2 

(13%) 

0 

(0%) 

11 

(69%) 

1 

(6%) 

0 

(0%) 

1 

(6%) 

0 

(0%) 

15 

(94%) 

0 

(0%) 

The second question that was reevaluated is shown in Figure 4. TIMSS provides the four answers A. 
20, B. 25, C. 30 and D. 35. Trying to improve its usage as a diagnostic question, we changed the 
solutions to A. 35, B. 7 (number of empty gaps in the graph), C. 180 (6 grades times 30 students) and 
D. 145 (students represented in the graph). A remark on Fraile’s PhD annotations (Fraile, 2017, p.110) 
suggested one might further modify in the post-test the answer B. 7 to B’. 30, which was a common 
mistake, probably due to 30 being the only numerical data in the exercise. 

Figure 4: Second question (TIMSS Ref.M051117) that was included (in Spanish) in the pre-test 



 

 

Due to the changes in the test answers, we only analyze the proportion of correct answers. Table 5 
shows a higher success rate in the post-test of the experimental group, with 75% of correct answers, 
with respect to the 44% of the control group but also an increase in the mistakes towards the new 
option B’.30. The binomial test for the two groups p-value of 0.108, with no statistical significance. 

Table 5: Comparison between pre- and post-test in exp. and cont. groups in M051117 question 

 Pre-test Post-test 

 A B C D Other A B’ C D Other 

Cont. 26 

(47%) 

0 

(0%) 

18 

(33%) 

6 

(11%) 

5 

(9%) 

24 

(44%) 

8 

(15%) 

11 

(20%) 

10 

(18%) 

5 

(9%) 

Exp. 8 

(50%) 

1 

(6%) 

6 

(38%) 

1 

(6%) 

0 

(0%) 

12 

(75%) 

2 

(13%) 

3 

(19%) 

1 

(6%) 

0 

(0%) 

The last question that was reevaluated (see Figure 5) deals also with basic facts about fractions and 
falls also in the content domain “numbers” and the cognitive domain “knowing”. It is an open 
question where students are asked to write their own answer. 

Figure 5: Question TIMSS Ref.M041299 that was included (in Spanish) in the pre-test 

 

TIMSS suggests 2/6 as a common mistake, resulting from adding the two numerators and the two 
denominators. Our analysis of the pre-test showed that 1/6 is also a common answer. Table 6 shows 
the results for 3/4 (or equivalent) answers, 2/6, 1/6, other answers and blanks for both tests. No 
statistically significant differences are found between pre- and post-tests for any of the two groups, 
but, again, the experimental group obtains a higher rate of correct answers in the post-test compared 
to the control group, throwing a p-value of 0.064 in the Binomial test. 

Table 6: Comparison between pre- and post-test in exp. and cont. groups in M041299 question 

 Pre-test Post-test 

 3/4  2/6 1/6 Blank Other 3/4 2/6 1/6 Blank Other 

Cont. 15 

(27%) 

9 

(16%) 

7 

(13%) 

3 

(5%) 

21 

(38%) 

18 

(33%) 

8 

(15%) 

2 

(4%) 

5 

(9%) 

22 

(40%) 

Exp. 6 

(38%) 

3 

(19%) 

0 

(0%) 

1 

(6%) 

6 

(38%) 

9 

(56%) 

2 

(13%) 

1 

(6%) 

0 

(0%) 

4 

(25%) 



 

 

Conclusions 
Not surprisingly, both experimental and control groups have benefited on average from the systematic 
work in problem-solving. A deeper analysis shows that there are three domains in which we have 
found significant differences between groups at 95% significance-level. With respect to content 
domain, significant differences have only been found in the geometry block, while the numbers block, 
throws a p-value only below 0.1. Regarding cognitive domains, “applying” and “knowing” show a 
statistically significant difference in favor of the experimental group, consistent with the fact that 
these blocks have been the focus of 83% of the intervention. 

The international success average of fourth graders in question M051091 assessing the concept of 
equivalent fractions is 44%, while Spanish students obtain a much lower rate of 30%. One academic 
year later, our fifth graders are close to the international average with a slight difference (not 
statistically significant) in favor of the experimental group and a 45% average success rate. After the 
intervention, where bars were used to represent fractions, there is a non-statistically significant 
increase in the results of both groups which now shows a much clearer difference in the experimental 
group, where only one student misses this question. The differences between groups in the post-test 
are statistically significant and prove a better grasp of the basic facts of fractions for this group. 

The international success average for fourth graders in Question M051117 where they are asked to 
read and interpret data from a graph is 54%, while Spanish students obtain a lower rate of 50%. In 
the pre-test there are nearly no differences between the two groups, with C. 180 being the most 
common wrong answer. The average success for this question is 48% in the pre-test. Option B was 
replaced by 30 respondents in the post-test, where 14% of the children chose this modified answer 
(only one chose number 7 in the first version), a clear sign of a better choice for a diagnostic question.  

The international success average for fourth graders in Question M041299 where they are asked to 
add fractions 1/2 and 1/4 is 23% showing, again, Spanish students a much lower rate of 14%. In the 
pre-test, our fifth graders obtained a better result on average of 30%, with no significant differences 
between groups. After the intervention, the percentage of correct answers for the control group is 
33% and 56% for the experimental group, without statistical significance. 

According to the literature, BMM can help children’s problem-solving skills when it is taught in the 
early years. This study suggests that the positive effects of this approach can be attained even as late 
as 5th grade and that further analysis and interventions should be tested to better understand how it 
affects the different cognitive domains and to establish with elder children (or even adults) if the 
opportunity window to improve problem-solving skills with the use of BMM ever closes. 
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