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In recent decades, the laws of thermodynamics have been pushed down to smaller and smaller scales, within
the theoretical field of stochastic thermodynamics and state-of-the-art experiments performed on microfabricated
mesoscopic systems. These measurements concern thermal properties of electrons, photons, and mesoscopic
mechanical objects. Here we report on the measurements of thermal fluctuations of a single mechanical mode
in equilibrium with a heat reservoir. The device under study is a nanomechanical beam with a first flexural
mode resonating at 3.8 MHz, cooled down to temperatures in the range from 100 to 400 mK. The technique is
constructed around a microwave optomechanical setup using a cryogenic high electron mobility transistor, and
is based on two parametric amplifications implemented in series: an in-built optomechanical “blue detuned”
pumping plus a traveling wave parametric amplifier stage. We demonstrate our ability to resolve energy fluctu-
ations of the mechanical mode in real time up to the fastest relevant speed given by the mechanical relaxation
rate. The energy probability distribution is then exponential, matching the expected Boltzmann distribution. The
variance of fluctuations is found to be (kBT )2 with no free parameters. Our microwave detection floor is about
three times the standard quantum limit at 6 GHz; the resolution of our fastest acquisition tracks reached about
100 phonons, and is directly related to the rather poor optomechanical coupling of the device (g0/2π ≈ 0.5 Hz).
This result is deeply in the classical regime, but shall be extended to the quantum case in the future with systems
presenting a much larger g0 (up to 2π×250 Hz), potentially reaching the resolution of a single mechanical
quantum. We believe that it will open an experimental field, phonon-based quantum stochastic thermodynamics,
with fundamental implications for quantum heat transport and macroscopic mechanical quantum coherence.

DOI: 10.1103/PhysRevResearch.5.013046

I. INTRODUCTION

Statistical physics, and by induction thermodynamics,
are the basis of our understanding of macroscopic properties
from the microscopic entities and laws that structure matter.
One of the key results is the second law of thermodynamics,
which explains the arrow of time from purely reversible mi-
croscopic processes [1]. Fluctuations δX of a quantity X are
then Gaussian and vanishingly small, leading to a well-defined
mean value 〈X 〉.

But many of our intuitive understandings break down at
small scales: fluctuations can become as large as mean values,
and a specific class of theories known as fluctuation theo-
rems has been developed to describe them [2,3]. With today’s
technologies, these concepts (and their related paradoxes) can
even be probed experimentally using mesoscale and nanoscale
devices. For instance, a Maxwell demon has been realized
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by monitoring the charge in a single electron box, and feed-
ing back this information through a gate voltage controlled
by a computer; work is thus extracted [4]. Such electronic
systems are extremely promising, since one can cool them
down low enough (tens of millidegrees Kelvin) so that they
behave according to the laws of quantum mechanics. It should
then (at least in principle) be possible to probe the impact of
quantum coherence on thermodynamic concepts, which is the
new exciting field of quantum thermodynamics [5,6].

Beyond electric circuits, thermodynamics is conveying
concepts which are at the intersection of physics, chemistry,
and biology: after all, motion is a key ingredient there. Indeed,
the Landauer erasure principle has for instance been tested
using soft cantilevers and trapped colloids [7,8], demonstrat-
ing that erasing one bit of information produces a minimum
kBT ln(2) amount of heat. Similar stochastic thermodynamics
implementations have been realized on DNA molecules, e.g.,
monitoring their folding/unfolding and extracting work from
it [9]. Motion is thus at the core of the definition of heat: after
all, phonons are elementary (quasi-)particles constructed from
the (quantized) collective motion of atoms [10]. The quantum
limit of heat fluctuations [11] and phonon thermal conduc-
tance [12,13] are still subjects of debate today [14,15], with
very few experiments available in the literature [16,17]. Be-
sides, center-of-mass motion of mesoscopic objects is thought
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to be sensitive to quantum aspects of gravity (or any other
fluctuating fields that might be at the source of wave-function
collapse) [18]. Such mechanisms predict an imprint on me-
chanical fluctuations that might be measurable [19,20]. But
of course, having a large mechanical object cold enough to
host very few thermal excitations (population nth < 1), while
being in equilibrium with a heat reservoir, is a technological
challenge. This has been recently demonstrated with a 15-μm
aluminum drumhead device cooled down to 500μK [21].

Studying quantum fluctuations at equilibrium of a macro-
scopic mechanical object down to the single quantum might
thus be within reach in the near future [15]. We present in this
paper a specific scheme enabling such kinds of measurements,
based on microwave optomechanics. We focus here on a strict
classical description of the experiment, which is a mandatory
preliminary step towards the quantum realization, which we
discuss in the Conclusion of the present paper. In Sec. II we
describe the apparatus around which the experiment is con-
structed. In Sec. III we present the electric circuit modeling
leading to the detected signal definition, while in Sec. IV
the measurement protocol is explained and mathematically
analyzed. The results are finally discussed in Sec. V. We
separate what is directly the expression of expected proper-
ties of a single phononic mode in contact with a heat bath,
from features (certainly material dependent) which are not
expected. The former is an energy power spectrum typical
of an Ornstein-Uhlenbeck process [1,22], with exponentially
distributed fluctuations. The latter are visible as 1/ f -type
contributions to the spectra and out-of-equilibrium signatures,
which will be discussed in the framework of the two level
systems (TLSs) theory [23,24] (Sec. VI).

II. EXPERIMENTAL SETUP

The optomechanical device we use has been presented
in Ref. [25]. It consists of a 50-μm-long beam of 300-nm
width and about 100-nm thickness, embedded in a microwave
cavity (gap about 100 nm). The beam is a bilayer, made of
high-stress silicon-nitride (SiN) covered with a thin layer
of aluminum. The cavity is patterned with a 100-nm layer
of niobium. The first in-plane flexural mode of the beam
resonates at approximately �m/(2π ) = 3.8 MHz, while the
cavity resonates at ωc/(2π ) = 5.988 GHz. The motion x of
the beam modulates the cavity’s mode effective capacitance
C(x), leading to a frequency change characterized by the (first
order) coupling strength G = dωc/dx, which is measured to
be about G/(2π ) ≈ 1.8×1013 Hz/m. The cavity is coupled
evanescently (with an effective capacitance Cc) to a trans-
mission line which enables one to connect the device to the
drive/measurement circuitry.

A schematic of the setup is presented in Fig. 1. A first
microwave pump tone is used to drive the optomechanics.
This signal is split in order to create a “cancellation line”
that opposes whatever remains from this pump at the input of
the detection amplifying stage. This cancellation is performed
by a computer that checks periodically the pump amplitude
on the output, and adjusts a voltage-controlled attenuator and
phase shifter on the cancellation line. We can suppress this
signal by at least 60 dB. Three distinct microwave amplifiers
are in use: first a traveling wave parametric amplifier (TWPA)

FIG. 1. Experimental optomechanical setup. A microwave pump
tone drives the mechanical mode, while the sideband signal is am-
plified by a TWPA, a cryogenic HEMT, plus a room temperature
HEMT. The TWPA is powered by a separate pump tone, and is
protected from saturation due to the optomechanical drive by means
of a cancellation tone. The measurement is performed through down-
mixing followed by a lock-in amplifier (see text for details). Bottom
inset: Measurement scheme; a pump tone (of power Pin) is applied at
ωp = ωc + �m (“blue pumping” arrow), with ωc the cavity resonance
frequency (whose susceptibility is shown in violet, arb. units). Top
inset: Mechanical sideband spectrum measured at ωc, imprinted by
the amplified Brownian NEMS motion at �m (Lorentz curve of
half-height width �eff , arb. height; see text).

that is powered by a separate pump tone [26]. The character-
istics of this device are explicitly given in Appendix C, and
lead to an equivalent noise at its input of 0.8 K (±0.1 K) for
the whole chain (noise figures being quoted at the readout
frequency). Cancellation and TWPA pump tones are added
to the signal line by means of a power combiner and a di-
rectional coupler (light blue rectangles). The ambient noise
coming from the pumps’ injection lines is attenuated by about
50 dB (orange zigzag blocks in Fig. 1). Besides, both the Nano
Electro Mechanical System (NEMS) cell and the TWPA are
protected by (two-stage) circulators (yellow disks; the orange
squares are Z0 = 50 � loads). The signal is then further ampli-
fied by a cryogenic high electron mobility transistor (HEMT)
amplifier from Low Noise Factory (LNF) with noise temper-
ature 2.5 K, and then a room temperature HEMT. We finally
mix down the signal with a local oscillator (LO, a microwave
tone shifted from ωc by a fixed �ω frequency) and a Marki
mixer (brown circle). This megahertz signal at �ω is finally
fed into a Zurich Instruments (ZI) high frequency lock-in
amplifier that is used to demodulate and digitize the data.

The setup is mounted on a commercial BlueFors cryostat,
and experiments are performed while regulating the mixing
chamber base plate from 100 to 400 mK. At higher temper-
atures, the TWPA amplifier stops working properly, while
at lower temperatures an internal optomechanical instability
known in the community as “spikes” corrupts the results [25].
These points shall be commented upon in more details in
Appendices C and D, respectively.
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FIG. 2. Electric circuit model describing the microwave cavity
with a movable capacitor (the boxed “NEMS + CAVITY” in Fig. 1;
see text).

III. DETECTED SIGNAL

Our detection scheme is based on “blue detuned” optome-
chanical pumping (bottom inset Fig. 1) [25,27]. A microwave
pump tone (of power Pin) is applied at frequency ωp = ωc +
�m. The (dynamical) back-action of the light field onto the
mechanics leads to antidamping, transforming the mechanical
relaxation rate �m into �eff (see Appendix B for details):

�eff = �m + �opt, (1)

�opt = −2G2

(
κext/2

κtot

)
Pin

�mωc k0
, (2)

with κext the coupling rate of the cavity to the transmission
line, and κtot = κext + κin the total cavity relaxation rate (κin

stands for internal losses). Since �eff < �m, the motion is
(parametrically) amplified. We fit about 100 kHz for κext and
200–150 kHz for κtot (decreasing with increasing Pin) on the
susceptibility curves (Fig. 1 bottom inset, violet line) [25].
This decrease of losses with microwave power is presumably
due to the presence of TLSs(see discussion below). Note
the factor 1/2 that arises in Eq. (2) because of evanescent
coupling. We write k0 and m0 for the effective spring con-
stant and mass of the mechanical mode, respectively, having
�2

m = k0/m0.
In the following, we describe the measurement in classical

terms, following the electric circuit modeling of Refs. [28,29];
only when appropriate shall we make the link to quantum
theory. For the modeling, we shall assume ω ∼ ωc, and
Z0Ccωc � 1. The voltage Vout to be detected is written

Vout (t ) = −ω2
cCc

Z0

2
φ(t ) + Vamp(t ), (3)

with Vamp the voltage noise of the detection port, and φ the
generalized flux (primitive integral of the voltage drop) across
the microwave cavity. This cavity is modeled as an RLC
circuit, with Ct = C(0) the effective capacitance of the mode
in the absence of motion and L its effective inductance, such
that ω2

c = 1/(LCt ) (see Fig. 2). The microwave damping is
modeled through two effective resistors in parallel, an internal
Rin for all material-dependent losses, and a Rext corresponding
to the leakage towards the outside (beyond capacitance Cc, not
shown). The total losses simply write 1/Rt = 1/Rin + 1/Rext,
with κin = 1/(RinCt ) and κext = 1/(RextCt ). One defines

κext = ω2
c

Z0

2

C2
c

Ct
, (4)

from circuit theory, considering that the end load of the output
line is equal to Z0 [28]. The linear coupling between mechan-
ics and microwaves generates a comb in the output signal,
that presents components at ωn = ωc + n �m with n ∈ Z. This
leads to the expressions [28]

Vout (t ) =
∞∑

n=−∞

VM,n(t ) e−iωnt + VM,n(t )∗e+iωnt

2
, (5)

φ(t ) =
∞∑

n=−∞

μn(t ) e−iωnt + μn(t )∗e+iωnt

2
, (6)

Vamp(t ) =
∞∑

n=−∞

VN,n(t ) e−iωnt + VN,n(t )∗e+iωnt

2
, (7)

with VM,n, μn, and VN,n the respective (complex) amplitudes
in the frames rotating at ωn. The motion x is itself expressed
in a frame rotating at �m:

x(t ) = x0(t ) e−i�mt + x0(t )∗e+i�mt

2
, (8)

with x0 the complex motion amplitude. The drive voltage Vd

created by the microwave generator can be defined as

Vd (t ) = 1

2
Vp e−iωpt + 1

2
V ∗

p e+iωpt

+
∞∑

n=−∞

VP,n(t ) e−iωnt + VP,n(t )∗e+iωnt

2
, (9)

with VP,n the complex noise amplitude of the drive field around
frequency ωn. The injected power is thus Pin = |Vp|2/(2Z0).

In the sideband-resolved limit �m 
 κtot/2, only three
components of the comb are relevant: the pump tone at ωp, and
the two sidebands at ωp ± �m (i.e., n = ±1). For a blue de-
tuned scheme, ωp = ωc + �m. In this case, only the sideband
at ωp − �m = ωc is measurable, the other one being strongly
suppressed. The corresponding voltage amplitude VM,n=−1 is
found to be [28]

VM,−1(t ) ≈ −Gx∗
0 (t )

κext/2

κtot

Vp

�m

+ κext

κtot
VP,−1(t ) + VN,−1(t ), (10)

keeping only noise terms inside the cavity. The reverse scheme
is “red detuned” pumping (pump tone applied at ωc − �m),
where the sign of �opt in Eq. (2) is opposite (− should read +,
leading to attenuation instead of amplification). The measur-
able sideband is again the one at ωc, but it corresponds now
to n = +1. The voltage amplitude VM,n=+1 is then similar to
Eq. (10), with a change of sign in front of G and a replacement
x∗

0 → x0. The two blue and red detuned schemes are explic-
itly compared in the following in order to validate the data
analysis.

The mixing process can be formally written as

α[Vout (t ) × cos(ωd t )]filter = Vmeas(t ), (11)

with ωd the frequency of the LO in Fig. 1; we define ωn −
ωd = �ω the demodulation frequency (n = ±1 depending
on the scheme, blue or red detuned pumping). In Eq. (11),
the term “filter” means that only the component at ωn − ωd
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is processed, while the one at ωn + ωd is filtered out. The
coefficient α conveniently contains all calibration from the
detection chain, which is discussed in more detail in Ap-
pendix C. One subtlety arises concerning the detection noise
background: the component at ω′

n = ωd − �ω = ωn − 2�ω

is actually mixed down equally well as ωn in this process,
and adds up to the initial noise background VN,n appearing
in Eq. (10). The voltage digitized by the lock-in amplifier
therefore reads

Vmeas(t ) = α

2

[
−G x̄(t )

κext/2

κtot

Vp

�m
+ κext

κtot
VP(t ) + VN (t )

]
,

(12)

having defined for blue detuned pumping

VP(t ) = VP,−1(t )e−i�ωt + V ∗
P,−1(t )e+i�ωt

2
, (13)

VN (t ) = 1
2 [VN,−1(t ) + V ∗

N,n′ (t )]e−i�ωt

+ 1
2 [VN,−1(t ) + V ∗

N,n′ (t )]∗e+i�ωt , (14)

x̄(t ) = x∗
0 (t )e−i�ωt + x0(t )e+i�ωt

2
, (15)

the noise component due to the pump tone, the amplification
chain noise background, and the “effective motion” signal,
respectively. Note that the latter corresponds exactly to Eq. (8)
under the replacement �m → −�ω. In Eq. (14), n′ refers
to the component at ωc − 2�ω; no such term exists for the
input noise, in the limit κtot � �ω which is taken experimen-
tally [we chose arbitrarily �ω/(2π ) = �m/(2π ) + 2 MHz,
within the lock-in bandwidth]. A similar writing holds for
red detuned pumping. For more details on the classical circuit
theory, we refer the interested reader to Ref. [28].

Up to this point, the time-dependent variables intro-
duced above (VP, VN and x̄) correspond mathematically to
one realization of the stochastic processes they correspond
to. Let us define Vmeas(ω) = FT [Vmeas(t )](ω) the voltage
in frequency space, where FT [ f (t )](ω) = ∫ +∞

−∞ f (t )e−iωt dt .
Using Kubo’s notations [30], we define the instantaneous
(i.e., before ensemble averaging) voltage power spectrum
as 2π SVmeas (ω) δ0(ω′ − ω) = Vmeas(ω)Vmeas(ω′)∗ [and similar
expressions for the constitutive random variables Eqs. (13)–
(15)], with ω ∈] − ∞; +∞[. From Eq. (12), we obtain

SVmeas (ω) = |α|2
4

[
G2

(
κext/2

κtot

)2 |Vp|2
�2

m

Sx̄(ω)

+
(

κext

κtot

)2

SVP (ω) + SVN (ω) + cross terms

]
,

(16)

with “cross terms” referring to all cross-correlation spectra.
Knowing that input and output noises are uncorrelated, and
that correlations between x̄ and VP and VN (which are respon-
sible for sideband asymmetry [29]) are negligible here, these
terms shall vanish when computing statistical properties in
Sec. IV.

The voltage power spectral densities SVP and SVN are rea-
sonably flat over the width of the microwave cavity resonance
κtot: we can therefore treat them as being white. Besides, since

the voltage noise amplitudes VN,−1 and VN,n′ are uncorrelated,
and essentially of equal intensity, the power spectral density
SVN is twice the level measured before the mixer. This is the
price to pay in the down-mixing process (see Appendix C).
Dividing Eq. (16) by Z0, one obtains the (double-sided) power
spectral density of detected power [in W/(rad/s), therefore
joule]. Further dividing by h̄ ωc one converts it into a photon
flux power spectral density [in (photons/s)/(rad/s), therefore
photons]:

Sϕ̇ (ω) = 2G2

(
κext/2

κtot

)2 Pin

�mωck0
Sn(ω)

+
[(

κext

κtot

)2

Sinϕ (ω) + Soutϕ (ω)

]
, (17)

where we dropped the calibration factor |α|2/4 for simplicity.
Note that the formula reads the same for red detuned pumping.
Expressing input and output noises Sinϕ and Soutϕ in terms of
photons enables one to evaluate the technique for future quan-
tum measurements [31]: we reach about three photons, which
is the state of the art [26] (see discussion in Appendix C).
Explicitly,

Sn(ω) = k0Sx̄(ω)

h̄�m
, (18)

which corresponds to the instantaneous mechanical energy
power spectral density (expressed in phonons), peaked around
�ω (instead of �m). All of these classical spectra are even,
therefore experimentally what is presented for a quantity X is
the single-sided 2 SX ( f > 0), with f = ω/(2π ) in Hz.

IV. MEASUREMENT PROTOCOL

In practice, each measured power spectrum is acquired
over a finite time δt around time t : 〈Sϕ̇ (ω)〉δt (t ). Neglecting for
now the photon background noise in Eq. (17), this is simply
proportional to the mechanical energy spectrum 〈Sn(ω)〉δt (t ),
within a coefficient ( κext/2

κtot
)|�opt| ∝ Pin. If the time span δt

is infinitely long, this quantity should become t independent
and reproduce the well-known Lorentzian mechanical spec-
trum, with a half-height width �eff and an area kBT/(h̄�m)
(schematic in Fig. 1, top inset) [27]. This is not perfectly
true experimentally because of 1/ f drifts (see the discussion
below). On the other hand if δt becomes infinitely short, one is
supposed to obtain (mathematically) a Dirac peak (essentially,
the motion is a well-defined oscillation at �m for timescales
� 1/�eff ), which fluctuates over longer times t . Again this
suffers from experimental limitations: the frequency resolu-
tion is inversely proportional to the acquisition speed, which
means that the peak is “blurred” over a frequency span 1/δt .
This aspect is explicitly discussed in Appendix F. The actual
experimental dependence of measured spectra for not-too-
long and not-too-short speeds is shown in Fig. 4, top insets.

From the photon flux spectra 〈Sϕ̇ (ω)〉δt , we define the side-
band peak power (in photons/s),

〈Ėϕ〉δt (t ) = 1

2π

∫ +∞

−∞
〈Sϕ̇ (ω)〉δt (t ) dω, (19)
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which is then proportional to the mechanical energy (in
phonons):

〈En〉δt (t ) = 1

2π

∫ +∞

−∞
〈Sn(ω)〉δt (t ) dω. (20)

Technically, the area of the sideband is not obtained through
integration (which would be very noisy), but rather with a
Lorentz fit (from PYTHON routines SciPy.optimize.curve_fit
[32] and lmfit.minimize [33], black line top inset on left,
Fig. 4). Indeed, the background noise that we neglected up
to now impacts strongly the quality of the numerical analysis,
especially at the fastest acquisition speeds (smallest δt ; see
Appendix F). Besides, at not-too-fast speeds, it enables us to
fit also both the peak width (extracting thus �m from �eff )
and the peak position �m (defined from the demodulation
reference). It turns out that these parameters are not constant,
and fluctuate over time; this is explicitly discussed in Sec. VI.

Data acquisition is performed over a time �T , that we
arbitrarily chose as being 1000 δt for convenience (each of
our sets is made of N = 1000 points exactly). We construct

〈Ėϕ〉 = 〈〈Ėϕ〉δt (t )〉�T , (21)

CĖϕ
(τ ) = 〈〈Ėϕ〉δt (t ) 〈Ėϕ〉δt (t − τ )〉�T , (22)

the photon flux mean value and the corresponding autocor-
relation function, respectively. In Eq. (22), τ takes discrete
values from −1000 δt to +1000 δt . Similar expressions hold
for the mechanical energy with 〈En〉 and CEn (τ ). For each set,
the whole procedure is repeated from 2 to 100 times (depend-
ing on acquisition speed) in order to improve the quality of
the data and assess the impact of 1/ f drifts on quoted values
[indeed, ideally Eqs. (21) and (22) should be t independent].
As always, taking the experimental averaging over �T for
an ensemble average is based on a fundamental hypothesis:
ergodicity. This assumption is not that straightforward here,
precisely because of the 1/ f detected features; this point shall
be specifically discussed in the following.

V. PHONON MEAN POPULATION AND POWER
SPECTRAL DENSITY

In order to interpret the experiment, we first remind the
reader of basic classical statistical physics results [1,22]. We
model the mechanical mode as being in contact with a thermo-
dynamic bath at temperature T (the cryostat), and an optical
bath at an effective temperature Topt [29]. We define for the
mechanical energy Em = h̄ �m En

�E = Em − 〈Em〉, (23)

the amplitude of fluctuations around the mean 〈Em〉. This
quantity follows the dynamics equation

d�E (t )

dt
= −(�m + �opt )�E (t ) + Rm(t ) + Ropt (t ), (24)

with Rm and Ropt the two random energy flows associated with
each bath. They verify

Cm(τ ) = 〈Rm(t )Rm(t − τ )〉 = 2�m(kB T )2 δ0(τ ), (25)

Copt (τ ) = 〈Ropt (t )Ropt (t − τ )〉 = 2|�opt|(kB Topt )
2 δ0(τ ), (26)

0 = 〈Rm(t )Ropt (t − τ )〉, (27)

FIG. 3. Phonon population 〈En〉/G as a function of applied pump
power Pin measured at 200 mK. Labels stand for different measuring
schemes. The dashed line is a simple guide for the eye (see text;
note the log-log scale spanning two orders of magnitude in power).
Inset: Intrinsic phonon population (value extrapolated at zero pump
power) as a function of temperature; error bars are from the repro-
ducibility scatter of the main graph; the line is calculated from theory
(kBT/[h̄�m], see text).

meaning that they have no intrinsic finite correlation time,
with the last line stipulating that the two baths are uncorre-
lated. One obtains

〈Em〉 = �m(kBT ) + |�opt|(kBTopt )

�m + �opt
, (28)

S�E (ω) = 2[�m(kBT )2 + |�opt|(kBTopt )2]

(�m + �opt )2 + ω2
, (29)

for the mean energy and power spectral density. Consider
�opt = 0; then one recovers the simple case of a canonical
ensemble with a bath at temperature T , a situation which
has been studied experimentally with macroscopic objects
[34]. Energy fluctuations are Gaussian [35], a simple con-
sequence of the central limit theorem because of the large
number of degrees of freedom involved. However, the single
mode statistics is different: it is described by the Boltzmann
distribution p(E ) = e−E/(kBT )/Z , where in the classical limit
the partition function Z = kBT [ensuring

∫ +∞
0 p(E ) dE = 1].

One can recover these results from pure (classical) mechanical
arguments, starting from the fluctuation-dissipation theorem
and its associated Langevin force (see Appendix A).

Consider now �opt �= 0 but Topt ≈ 0. Equation (28) reads

〈Em〉 = G kBT, (30)

G = �m

�m + �opt
, (31)

with G the optomechanics gain. We plot in Fig. 3 the mean
population of the mechanical mode, recalculated from the
mean measured photon flux Eq. (21). The measurements have
been performed with both red detuned (G < 1) and blue
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FIG. 4. The central part shows the power spectral density (PSD) of the photon flux Sϕ̇ measured at T = 200 mK, with a pump power
Pin = 10 nW. Different colors correspond to different acquisition speeds (δt) and durations (�T = 1000 δt); see labels δt = {t1, t2, t3, t4} in the
top of the figure. The black solid line is a fit, which corresponds to the expected spectrum of fluctuations [demonstrating the high-frequency
cutoff at �eff/(2π )], but also reveals an unexpected 1/ f addendum. Note the overlap between different spectra (“stitching”; see text). Top inset:
Typical raw signals for different δt (see legend t1 − t4 and color code), which are fitted with a Lorentzian function (black line demonstrated
on the left panel) to define sideband peak area 〈Ėϕ〉δt , position [shift from reference value �ω/(2π )], and linewidth �eff/(2π ); for slow
acquisitions, the peak is well defined (left graph; see black line fit), while we lose resolution as the acquisition speed is increased; note the
different lines plotted in the two right panels, taken from the same respective statistical batches; at the fastest, the linewidth is essentially given
by the sampling (see text). Bottom inset: Corresponding probability distribution functions (PDF) vs amplitude normalized to mean (equivalent
to En/〈En〉), demonstrating the change of shape as the acquisition speed increases (from Gaussian to exponential; see black lines and discussion
in text).

detuned (G > 1) schemes, with the TWPA amplifier on and
off (see labels). All the data are in very good agreement, and
the remaining scatter is due to the reproducibility of the mea-
surement (1/ f drifts). Note that 〈En〉 (which in the quantum
language is nothing but the mode’s thermal population nth)
verifies 〈En〉 
 1: we are deeply in the classical limit at all
studied temperatures.

In Fig. 3, we see that the measured mean phonon popula-
tion (normalized to gain G, ranging from 0.5 to 3) is actually
increasing as we increase the injected microwave power Pin,
a phenomenon known as technical heating in the community

(see, e.g., Refs. [21,25]). A very natural guess is to assume that
the effective temperature of the optical bath Topt �= 0 increases
and becomes relevant [see Eq. (28)]. This is actually inconsis-
tent. In the classical formalism (with a large enough cavity
photon population), Topt = Tcav �m/ωc from back-action; we
safely neglect sideband asymmetry, which would induce a
reversed-in-sign correction for red and blue pumping which
is not observed here [29]. Tcav is the effective temperature of
the cavity, which could be due to both a real physical heating
of the chip (microwave absorption) or to out-of-equilibrium
photons arising from the generator noise (see Appendix C).
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At the highest powers (around 15–20 nW), Tcav would reach
about 300 K (about 1000 photons), which is unphysical (and
obviously not observed when measuring directly the output
spectrum of the cavity). We thus have to conclude that this
effect has another (unknown) origin, with no clear tempera-
ture and power dependencies (the line in Fig. 3 is above all
a guide to the eye, here a simple linear law). In the inset
of Fig. 3, we plot the mean population extrapolated at zero
power. The line is the theoretical prediction from Eq. (30)
with �opt = 0: kBT/(h̄�m). The agreement is fairly good, with
a slight (unexplained) deviation at low temperatures. Note
that the scatter is essentially due to the reproducibility of the
measurement, impacted by the 1/ f noise. We shall comment
on the features which are not understood in the following.

From the photon flux correlation function Eq. (22), we
compute the fast Fourier transform (FFT, NumPy.correlate au-
tocorrelation and NumPy.fft FFT algorithms [36] in PYTHON),
leading to the experimental spectrum definition

2SĖϕ
( f ) = δt

N2
FFT[CĖϕ

(τ )]( f ), (32)

for different acquisition speeds δt , with the factor 2 on the left-
hand side due to the experimental convention f > 0. These
spectra are plotted in Fig. 4, main graph (see color code for
δt , top insets). The normalization factor in Eq. (32) takes into
account both the number of points N of the discretized ac-
quisition and the bandwidth 1/δt . For not-too-fast acquisition
speeds, the data overlap very well, demonstrating “stitching.”
We conclude that ergodicity is well verified even at the slowest
speeds, where 1/ f drifts are non-negligible. However, the
fastest tracks (only red data) should be rescaled because of
the acquisition finite bandwidth (see Appendix G).

The full spectrum displayed in Fig. 4 is fit by the expression
(black full line)

2SĖϕ
( f ) = A f

f
+ S0

1 + ( f
�eff /(2π )

)2 . (33)

The �eff is actually not fitted, but obtained from the known
power dependence of the measured peak width (see Ap-
pendix B), demonstrating very good agreement with data: the
mode cannot exchange energy with its environment at speeds
exceeding its relaxation rate. The impact of detection noise
and of the fitting routine is analyzed in Appendix F. S0 then
gives us the level of energy fluctuations while A f / f corre-
sponds to an unexpected contribution that shall be discussed
in Sec. VI.

Applying now the assumption Topt ≈ 0 to Eq. (29), one can
write

S�E (|ω| � �eff ) ≈ G2 2 (kBT )2

�m
, (34)

with 2 (kBT )2/�m the ω → 0 value that characterizes an
unpumped mode (�opt = 0). Reversing this expression and
making use of the transduction coefficient between the op-
tical and the mechanical fields, we can therefore recalculate
from the best fit value of S0 the actual thermodynamical me-
chanical fluctuation level. Comparison between red detuned
(G < 1) and blue detuned (G > 1) schemes is discussed in Ap-
pendix E. Making this experiment at various temperatures, we

FIG. 5. Normalized spectrum level (no units)
√

�m S0
G2 /

( κext/2
κtot

|�opt |) at different temperatures and pump powers (size of
dots from small/low to big/large Pin). The line is the theoretical
calculation with no free parameters (see text). Inset: Time trace of
population fluctuations at the fastest acquisition speed (200 mK,
power 10 nW); the line is the mean value; resolution is about 100
phonons; see text for discussion.

present this quantity (normalized to the phonon energy h̄�m)
as a function of T in Fig. 5. The black line is the theoretical
prediction, with no free parameters, demonstrating very good
agreement with data. The scatter seems to be due to our re-
producibility and fitting capability (see Appendix F), with no
specific link to the microwave power Pin. It confirms the mag-
nitude of the variance 〈�E2〉 = 1/(2π )

∫ +∞
−∞ S�E (ω)dω =

(kBT )2 in this canonical ensemble, the subtlety being
that the specific heat associated with the single mode is
precisely kB [34].

Finally, from the acquired time tracks of 〈Ėϕ〉δt (t ) we
can build histograms; this is done for each acquisition speed
δt (see bottom insets in Fig. 4). We plot them with an
area normalized to 1 [directly compatible with a probability
distribution function (PDF)], and an energy amplitude axis
normalized such that the mean is also 1. At the fastest speed
the shape is clearly exponential (right plot; the line is a theo-
retical function with no fit parameter). The standard deviation
is then also 1. However, as we slow down the acquisition, the
distribution becomes gradually Gaussian (see line middle-left
plot of Fig. 4 bottom insets), with a smaller standard devia-
tion, as it should. Note that the first PDF (on the left) does not
display a fit, the histogram being quite impacted by the slow
drifts of the (nonstationary) 1/ f noise.

An attempt had been made in Ref. [21] to develop the mea-
surement method producing Fig. 4. However, the resolution
was very far from enough for this purpose (no TWPA was
used), and the heavy averaging was essentially filtering out
the thermodynamic contribution, leaving only what should
have been the equivalent of our 1/ f term (see discussion in
Appendix H). On the other hand, we reach here at the fastest
tracks a resolution of about 100 phonons (see real-time data
in inset Fig. 5), being limited only by our relatively poor
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FIG. 6. Af constant of 1/ f noise contribution fitted at different
powers and temperatures, in units of photons on chip. Dashed lines
are exponential fits: Af = A0(T )eP/P0(T ) (see text). Inset: P0 fit pa-
rameter from the main graph as a function of temperature T .

optomechanical coupling G. In quantum mechanics terms
with the zero point fluctuation xZPF ≈ 27 fm, we have g0 =
G xZPF ≈ 2π 0.5 rad/s. Using drumhead aluminum devices
in the future, one can reach couplings as high as g0 ≈
2π 250 rad/s, winning therefore a factor ≈105 on the detected
signal (all other parameters being kept equivalent) [29].

VI. 1/ f NOISES

A striking unexpected feature observed in our measure-
ments is the 1/ f contribution to the photon flux fluctuations,
main plot in Fig. 4. We show the fit parameter A f in Fig. 6
as a function of both injected power Pin and temperature T .
We observe that this coefficient can be fit by an exponential
input power dependence (note the y axis of the figure), with a
smooth temperature dependence (see inset).

The origin of this effect remains unknown. It is not even
clear if it originates in the phonon or in the photon field (see
discussion in Appendix E, comparing red and blue detuned
pumping), which is why we characterize it in terms of pho-
tons. Besides, since 1/ f drifts are responsible for very slow
(close to ω → 0) dynamics, one could wonder whether this
signature has to be linked to the technical heating of Fig. 3
(a supposedly true dc effect). Again, this remains an open
question.

Besides, one should also keep in mind that the mechan-
ical parameters �m and �m are also fluctuating; this had
been already reported in Ref. [21] in the framework of low-
temperature optomechanics, but also in more conventional
experiments [37,38]. Since we fit the mechanical response (on
not-too-fast tracks), we can extract these parameters and com-
pute their statistical properties. This is summarized in Fig. 7.
The probability distributions look reasonably Gaussian, and
the power spectral densities present a clear 1/ f trend (see
example in the inset). We find out that the damping noise is
essentially constant in temperature T , which is consistent with
findings from Ref. [38] taken at slightly higher temperatures.

FIG. 7. Allan variance of mechanical frequency �m/(2π ) (blue)
and of mechanical damping �m/(2π ) (green) as a function of temper-
ature. Tracks are acquired with our slowest acquisition speed, over
about 14 h. Sizes of dots are shown for different microwave powers
(from small/low to big/large as in Fig. 5). Dashed lines are guides
for the eyes. Inset: Typical power spectral density, here computed for
frequency (at 200 mK, with drive power 10 nW); the line is a 1/ f
fit (see text); the doubling of the line comes from the folding of the
negative frequency axis onto the positive one.

On the other hand, the frequency noise grows as we cool
down, a feature also seen in Ref. [21] down to much lower
temperatures. Both damping and frequency fluctuations are
of the same order as reported values for SiN beam devices
cooled at cryogenic temperatures [38]. The scatter in Fig. 7
is rather large (as is usually the case when measuring 1/ f ),
but no specific drive power dependence can be seen. Again,
the mechanism behind these features might be linked to the
previous properties impacting energy fluctuations, but no mi-
croscopic theory has been formulated yet.

It is nonetheless tempting to imagine that TLSs are re-
sponsible for these facts. Indeed, low temperature mechanical
properties of microfabricated structures are analyzed in the
framework of this model [39,40], while experiments on mi-
crowave cavities also reported a growing frequency variance
with lowering temperature, which was interpreted as a sig-
nature of interacting TLSs [41]. Furthermore, an internal
instability of microwave optomechanics has been reported be-
low typically 150 mK [25]. This feature, nicknamed “spikes,”
is discussed in Appendix D. The deviation at low T of the
mechanical mode energy with respect to theory (Fig. 3 inset)
might be related to this; the fact that the most impacting 1/ f
signatures grow as we cool down is a rather intriguing fact,
that might suggest that a profound link exists between them.

VII. CONCLUSION

We report on a technology that enables us to measure in
real time the energy fluctuations of a mesoscopic mechani-
cal mode. The setup is constructed around a state-of-the-art
microwave optomechanical cryogenic platform, presenting
a background noise of three times the standard quantum
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limit (three photons at 6 GHz). The resolution is then about
100 phonons at our fastest acquisition rates (about 20 ms),
with a 4-MHz mode. The limiting parameters are the intrinsic
losses of the TWPA [26], and mostly the weak optomechani-
cal coupling of the device we used here [25]. We believe that
both aspects can be greatly improved, leading to an effective
resolution on the detected sideband spectrum equivalent to a
single mechanical quantum.

This means not only that these experimental capabilities
surpass the best microfabricated calorimetric setups to date
(zepto-joule calorimetry [42]), but also that the phonons them-
selves become the quantum bath being probed, performing
quantum calorimetry with phonons, opening thus an experi-
mental field [43,44].

The next experimental step is therefore to mount this mea-
surement setup onto a cryostat enabling one to “brute-force”
cool down to the quantum regime such MHz mechanical
modes, as demonstrated in Ref. [21]. Quantum stochastic
thermodynamics experiments would be within reach [15], but
this requires one to further analyze the setup in quantum me-
chanics terms (the theoretical treatment presented here being
purely classical).

The measurement is constructed around the observable x̂ ∝
â + â† (motion amplitude), not energy h̄�m n̂ ∝ â†â, which
means that we shall not detect single-phonon tunnelings per
se, but their (dispersive) imprint onto the optical field. This
should nonetheless enable one to study single phonon events,
transposing to mechanics what has been beautifully achieved
for electrons. As an example, one should be able to demon-
strate, at extremely low temperatures where the mechanical
thermal population nth < 1, how the system can be absolutely
free of excitations over macroscopic timescales (similarly to
electrons in a superconductor) [45]: a rather counterintuitive
possibility, which essentially means that the system could be
said to be T = 0 K exactly for a short period of time, while
obviously on average T > 0 K is always recovered.
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APPENDIX A: FROM LANGEVIN FORCE
TO BOLTZMANN DISTRIBUTION

One can easily construct the energetics description of a
mode from its motion, at least in the so-called high-Q limit.
Consider the dynamics equation of a harmonic oscillator (m0

being its mass, and k0 its spring constant, �2
m = k0/m0):

ẍ + �m ẋ + �2
m x = δF/m0, (A1)

with δF (t ) the Langevin force linked to the damping �m

through the fluctuation-dissipation theorem. Both originate
from a thermal bath at temperature T , and the stochastic force
is by definition described by a centered (〈δF 〉 = 0) Gaussian
probability distribution with correlator:

CδF (τ ) = 〈δF (t )δF (t − τ )〉 = 2m0�m kBT δ0(τ ). (A2)

The presence in the above equation of the Dirac distribution
simply means that there is no finite correlation time char-
acterizing the bath (the associated spectrum is white). This
obviously poses a mathematical problem for our definitions:
the variance of this noise which defines the width of the
Gaussian probability distribution is infinite (since it is related
to the integral of the fluctuation spectrum). It shall not impact
the final result of the modeling, which is cut off at high
frequencies by the mechanical relaxation rate. One should
therefore clarify that δF fluctuations are Gaussian for any
bandwidth �ω cut in the white noise spectrum, around any
frequency ω0.

Let us now transpose the dynamics into the rotating frame
associated to the mode (at frequency �m),

δF (t ) = FX (t ) cos(�mt ) + FY (t ) sin(�mt ), (A3)

x(t ) = X (t ) cos(�mt ) + Y (t ) sin(�mt ), (A4)

having introduced the two quadratures of force and motion.
Equation (A1) can be rewritten, in matrix form,(

1 + 1
2Q

− 1
2Q 1

)(−Ẋ
+Ẏ

)
=−�m

2

(
1 0
0 1

)(−X
+Y

)
+ �m

2k0

(
FY

FX

)
,

(A5)

with Q = �m/�m the quality factor, having neglected the
slow components Ẍ , Ÿ (rotating wave approximation, valid
for Q 
 1). Similarly, we write

ẋ(t ) = �m[−X (t ) sin(�mt ) + Y (t ) cos(�mt )], (A6)

for the velocity, neglecting Ẋ and Ẏ . From the definitions
of kinetic energy Ec = m0 ẋ2/2 and potential energy Ep =
k0 x2/2, we simply obtain for the total energy Em = Ec + Ep

Em(t ) = k0
X (t )2 + Y (t )2

2
. (A7)

Let us take the limit Q → +∞ in Eq. (A5); the X and Y
equations then separate. Multiplying the first one by k0 X , and
the second one by k0 Y , we write

k0 X Ẋ = −�m

2
k0X 2 − �m

2
X FY ,

k0 Y Ẏ = −�m

2
k0Y

2 + �m

2
Y FX , (A8)

which after adding up leads to the result

dEm

dt
= −�m Em + �m

2
[Y FX − X FY ]. (A9)

This equation can be recast into the form of Eq. (24) by
introducing the energy difference �E (t ) = Em(t ) − 〈Em〉 and
the bath stochastic energy flow Rm(t ):

Rm(t ) = �m

2
[Y (t )FX (t ) − X (t )FY (t )] − �m〈Em〉, (A10)
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obtained here in the high-Q limit; a more generic discus-
sion can be found in Ref. [46]. The mean energy can be
inferred from the equipartition result (see below): 〈Em〉 =
kBT . Equation (A9) is finally easily solved in frequency
space as

S�E (ω) = SRm (ω)

�2
m + ω2

, (A11)

with SRm the spectrum associated to Rm. We should now con-
struct the statistical properties of this variable, from the initial
properties of δF .

To do so, Eq. (A10) is rewritten as

Rm(t ) = RX (t ) + RY (t ) − �m〈Em〉, (A12)

RX (t ) = �m

2
(χ ∗ FX )(t ) FX (t ), (A13)

RY (t ) = �m

2
(χ ∗ FY )(t ) FY (t ), (A14)

where we introduced the mechanical susceptibility χ (t )
Fourier transform (in the rotating frame), and ∗ designates the
convolution product [( f ∗ g)(t ) = ∫ +∞

−∞ f (t − x)g(x) dx]. We
have

χ (t ) = �m

2k0
e− �m

2 t �(t ), (A15)

〈FX (t )FX (t − τ )〉 = 4m0�m kBT δ0(τ ), (A16)

〈FY (t )FY (t − τ )〉 = 〈FX (t )FX (t − τ )〉, (A17)

〈FX (t )FY (t − τ )〉 = 0, (A18)

with �(t ) the Heaviside function [0 for t < 0, and 1 for
t > 0; for the time being, we only require �(0) to be finite].
Equations (A17) and (A18) simply state that the phase of
the random force is irrelevant, which would not be the case
in the presence of a squeezed noise. Equation (A15) solves
Eq. (A5) in the limit 1/Q ≈ 0, while Eq. (A16) is deduced
from Eqs. (A2) and (A3) (note the extra factor of 2 in the ro-
tating frame noise amplitude). FX and FY have by construction
the same probability distribution as δF (namely, Gaussian).
The mean values verify

〈RX 〉 = 〈RY 〉 = �m kBT
∫ +∞

−∞
e− �m

2 (t−x)�(t − x)δ0(x − t ) dx

= �m kBT �(0), (A19)

which introduces the value �(0) which has not been defined
yet. In order to impose 〈Rm〉 = 0, we have to take �(0) = 1/2.

Consider now the correlation functions of the type

〈RA(t )RB(t ′)〉 =
(

�2
m

4k0

)2

×
∫ +∞

−∞

∫ +∞

−∞
e− �m

2 (t−x)

�(t − x) e− �m
2 (t ′−x′ )�(t ′ − x′)

×〈FA(x)FA(t )FB(x′)FB(t ′)〉 dxdx′, (A20)

with A, B = X,Y in all possible combinations. The sec-
ond order force correlator can be decomposed using Wick’s

theorem:

〈FA(x)FA(t )FB(x′)FB(t ′)〉 = +〈FA(x)FA(t )〉 〈FB(x′)FB(t ′)〉
+ 〈FA(x)FB(x′)〉 〈FA(t )FB(t ′)〉
+ 〈FA(x)FB(t ′)〉 〈FB(x′)FA(t )〉.

(A21)

Reinjecting this result into Eq. (A20), one obtains

〈RX (t )RX (t ′)〉 = 〈RY (t )RY (t ′)〉
= (�mkBT )2�(0)2 + �m(kBT )2[δ0(t − t ′)

+�m�(t − t ′)�(t ′ − t )], (A22)

〈RX (t )RY (t ′)〉 = 〈RY (t )RX (t ′)〉 = (�mkBT )2�(0)2. (A23)

In Eq. (A22), the product �(t − t ′)�(t ′ − t ) can obviously
be dropped when compared to the δ0(t − t ′) term. Finally,
making use of all of these findings, we deduce from Eq. (A12)

〈Rm(t )Rm(t ′)〉 = 2�m(kBT )2δ0(t − t ′), (A24)

which leads to the corresponding (white) spectrum SRm (ω) =
2�m(kBT )2; Eq. (A11) therefore reproduces Eq. (29), as it
should.

To conclude this Appendix, let us focus on the distributions
of the random variables. Since the forces FX and FY are Gaus-
sian distributed, their corresponding motions X and Y are also
Gaussian (linear response). Their PDFs are written

p(X ) = 1√
2π σ 2

X

e
− X2

2σ2
X , (A25)

p(Y ) = 1√
2π σ 2

Y

e
− Y 2

2σ2
Y , (A26)

with σ 2
X and σ 2

Y the corresponding variances, which are de-
fined as

σ 2
X = σ 2

Y = 1

2π

∫ +∞

−∞
|χ (ω)|2SFX (ω) dω = kBT

k0
, (A27)

in which we introduced

χ (ω) = �m

2k0

1

�m/2 + i ω
, (A28)

SFX (ω) = 4m0�m kBT, (A29)

the mechanical susceptibility χ (ω) in frequency space and the
force noise spectrum SFX (ω). The variances are finite, as they
should be.

Equation (A7) tells us that energy is the sum of two uncor-
related squared Gaussian variables: this is known as a (χ2)2

law. It results in an exponential distribution function:

p(Em) = 1

σE
e− Em

σE �(Em), (A30)

which verifies 〈Em〉 = σE and 〈E2
m〉 = 2σ 2

E , leading to an en-
ergy variance of σ 2

E . Since 〈Em〉 = k0(σ 2
X + σ 2

Y )/2, one infers
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FIG. 8. Power dependence of the effective damping (peak half-
height width) �eff , at different temperatures. The lines are fits leading
to �m (Pin = 0 values) and coupling G (slope); see text. Inset: Tem-
perature dependence of mechanical damping �m; the line is a linear
fit [25].

immediately that σE = kBT which matches the well-known
equipartition result.

Equation (A30) is nothing but the classical version of the
Boltzmann distribution. The final message is then that an
exponential energy distribution is equivalent to a Gaussian
motion distribution; with the magnitudes of the associated
white spectra related to T , the bath characteristic temperature.

APPENDIX B: EFFECTIVE DAMPING �eff

The microwave setup calibration is discussed in Ap-
pendix C below; on the other hand, the optomechanics
coupling G requires a specific measurement that we present
here. It is based on the exploitation of the mean sideband
peak characteristics (averaging together all the data measured
during the period �T , using the blue detuned pumping). This
is done for all acquisition speeds δt , except the fastest one
(red curves in Fig. 4) which distorts the measured line, an
effect commented upon in Appendix G. The Lorentzian fit
enables one to extract area (leading to mean energy, Fig. 3),
peak position, and half-height width �eff . The latter can be fit
to Eqs. (1) and (2) as a function of injected power Pin, for each
temperature T . This is shown in Fig. 8.

The slopes of these lines define the optomechanical
coupling G/(2π ) ≈ 1.8 · 1013 Hz/m, and the Pin → 0 extrap-
olation gives us the mechanical damping rate �m. It is found
to be linear in temperature in this range (see inset in Fig. 8),
in accordance with Ref. [25].

The same calibration can be done in red detuned pumping,
with a change of sign in the slope. Note that these slopes
are independent of T , as they should be since the coupling
is a pure geometrical effect. The scatter in Fig. 8 is genuine,
and comes from the fluctuations of mechanical parameters
(see Sec. VI). Finally, the measurement of �eff enables one
to compute the optomechanical gain G for any T and Pin (and
any of the two red or blue detuned schemes).

APPENDIX C: TWPA CHARACTERIZATION

Prior to the run, the microwave setup is characterized.
The gains and losses are measured carefully using a vector
network analyzer. For the injection lines, room temperature
noise is suppressed by 50-dB attenuation affixed at different
stages of the cryostat (zigzag blocks in Fig. 1).

On the detection side, the cryogenic HEMT provides a
gain of 40 dB while the room temperature one has 30 dB.
The microwave noise background around 6 GHz, referenced
to the input of the cryo-HEMT, is then about 2.5 K. This
is what is obtained from measurements performed before
the mixer, with a spectrum analyzer; when using the mixing
technique, we obtain twice this background, as explained in
the main part of the paper. Besides the calibration of our
(passive) microwave elements, the HEMT noise figure has
been verified, and validated, in a run using the cold/hot load
technique: comparing the measured noise generated by a 50-�
termination located on the 3-K plate to the one of a similar
load bolted onto the mixing chamber stage (at 10 mK). A
microwave switch mounted on the same mixing chamber plate
enabled us to connect one or the other loads while keeping the
cryostat cold.

At the lowest temperatures, the TWPA on/off gain around
6 GHz is 10 dB, and the insertion loss of “TWPA + directional
coupler + circulator” is about 4 dB. This is not optimal since
we work on the higher side of the bandpass of the amplifier,
which was designed for a 15-dB gain at slightly lower fre-
quencies. Optimizing the center frequency and the insertion
losses, we infer that we could potentially win about 5–10 dB
[26]. The gain degrades quickly as we increase the tem-
perature of the parametric amplifier above 300 mK; besides,
the intrinsic noise of the TWPA itself increases dramatically
above this limit (because of free quasiparticles thermally ex-
cited in the aluminum layer; see Fig. 9). Typically, it can still
be used at 400 mK with a marginal gain, and essentially ruins
the measurement chain above.

The measured noise of the full setup with the TWPA am-
plifier “on” is shown in Fig. 9 (the three amplifier gains are
taken into account, the noise being referenced to the input of
the TWPA). As we increase the mixing chamber plate temper-
ature T , we see a thermal increase in this noise which is due
to all the components present on the mixing chamber plate:
our 50-� load, the microwave components (circulators and
couplers), and the TWPA itself (see Fig. 1). As such, model-
ing properly the T -dependent losses becomes quite involved,
and is far outside of the scope of our paper. We therefore
simply linearly fit the data in Fig. 9 in order to extract a
reasonable estimate of our T → 0 background noise. The
extrapolation slightly underestimates the real limiting noise
figure, since for kBT/(h̄ωc) � 1 it should flatten out below
typically 100 mK. We therefore retain a conservative value of
about 0.8 K (±0.1 K) at T = 0 K, corresponding thus to about
three photons, which matches expectations [26].

In the inset of Fig. 9, we show the input power dependence
of the measured noise: the background level increases with
Pin, and similarly for the two pumping schemes (red and blue
detuned). By measuring the cavity spectrum, we observe that
this is actually due to an out-of-equilibrium photon population
that increases with the pump power [25]. Classically, we
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FIG. 9. Microwave noise amplitude around 6 GHz (referenced to
the input of the TWPA amplifier), for low injection powers Pin. The
line is a linear guide showing a temperature-dependent contribution
when the mixing chamber plate temperature is regulated, and the
T → 0 limit of 0.8 ± 0.1 K (three photons). Note the fast increase
in noise above 0.35 K (see text). Inset: Noise dependence to power
Pin measured at 200 mK, for the two different pumping schemes; the
line is a linear guide to the eye, demonstrating the impact of input
noise (see text).

model it with the voltage noise amplitudes VP,±1 appearing in
Eq. (10), the sign ± referring to red or blue detuned. By using
different microwave sources, or adding a notch filter, we can
demonstrate that this noise is directly related to the quality
of the pump signal. The actual power dependence seems to
depend on the setup; it looks reasonably linear in Fig. 9 which
is different from the findings of Ref. [25]. Besides, within
our resolution it seems that the so-called technical heating of
Fig. 3, and the 1/ f contribution to the spectrum of Fig. 4, do
not depend on this pump noise.

APPENDIX D: “SPIKES” INSTABILITY

In Ref. [25], an instability in the dynamics of the beam
was reported for temperatures lower than about 150 mK. It
is visible as large amplitude peaks appearing in the sideband
spectrum, which were nicknamed “spikes.” The origin of this
phenomenon is still unknown, and we presume that it should
also impact our measurements, the extent of which is the point
of the present Appendix.

In Fig. 10 we plot two slow time tracks taken at slightly
different temperatures: 100 and 200 mK. Strikingly, we see
that the amplitude of fluctuations is much larger on the colder
data set, which is a clear signature of spikes.

Let us comment in more detail upon the data. When
computing the mean energy 〈En〉, we see that the value extrap-
olated at zero injected power is actually smaller than expected
(see inset of Fig. 3). On the other hand, the relative importance
of technical heating grows as we cool down; if this is not
taken into account properly (which is particularly difficult at
low temperatures without TWPA), the inferred mode energy

FIG. 10. Slow time tracks normalized to mean for two tempera-
tures, at microwave power around 7 nW (see legend). The colder set
exhibits much larger excursions than the hotter one (see discussion
in text).

at a finite power Pin would then be much larger than the
thermodynamic value.

Interestingly, while the 1/ f contribution to energy fluctu-
ations increases as we cool down (Fig. 6), the flat part still
seems to reproduce very well the thermodynamic value, even
at 100 mK (see Fig. 5). It is thus very tempting to suggest that
spikes are inherently linked to the 1/ f fluctuations, whatever
might be the microscopic mechanism behind this. How to
understand a smaller mean energy compared to the thermo-
dynamic temperature T remains also an open question.

APPENDIX E: “RED” AND “BLUE” PUMPING
SCHEMES COMPARISON

In order to validate our analysis, we compare red and blue
detuned schemes. For the mean mechanical energy, this is
done in Fig. 3. We see that, indeed, correcting for the optome-
chanical gain G produces the same result. In this Appendix,
we shall concentrate on fluctuations.

In Fig. 11 we plot the normalized phonon spectrum level√
�m S0
G2 /( κext/2

κtot
|�opt|), recalculated from the photon flux spec-

trum fit (right axis, 200-mK data). We present both blue
detuned data (which can be found also in Fig. 5) and red
detuned data. As for the mean mechanical energy, the agree-
ment between the two pumping methods is very good, the
difference being obviously that it is not possible to follow
the fastest tracks with a red detuned scheme, since we need
the optomechanical gain G > 1 to do so.

In Fig. 11, we also show the corresponding 1/ f compo-
nents (left axis). However, we kept them in units of photons
because transforming the graph into phonons following the
same procedure as for the flat spectrum S0 does not produce
a much better plot [the fit of A f in Eq. (33) is not that good].
Determining whether the origin of this effect is in the me-
chanics or the optics remains thus an open question. However,
we clearly see that red and blue detuned pumping data follow
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FIG. 11. Spectral contributions as a function of pump power Pin

measured at 200 mK with the two pumping schemes: red detuned
(red circled dots) or blue detuned (blue circled). Left axis (log. scale):
1/ f contribution Af , in photons2/s2 (the dashed line is the exponen-
tial fit of Fig. 6). Right axis (lin. scale): Recalculated normalized
phonon spectrum level (same parameter as in Fig. 5, no units). The
horizontal line is obtained from the fit value of Fig. 4.

the same trend as a function of Pin: the 1/ f term grows very
quickly with increasing power (see exponential fit).

APPENDIX F: FASTEST TRACKS FIT

The most difficult measurements are obviously the ones
realized at the fastest acquisition speed. For the slower tracks,
the peaks are sufficiently well defined that the Lorentz fit
error is small compared to the reproducibility; this is not
true anymore for the fastest tracks, where both an increased
error (discussed in this Appendix) and a bias (presented
in Appendix G) exist. When opening the bandwidth, the
background noise increases as well, and we can resolve the
sideband peak only at the highest powers Pin, with the largest
gains G. Besides, with an acquisition bandwidth 1/δt larger
than the peak width �eff , we lose information on the shape of
the sideband: the imprint of the motion is visible as only one
to three points higher than the background (see right top inset
in Fig. 4).

The fitting procedure is then as follows: we first aver-
age together all the data sets taken over the period �T =
1000 δt . This produces a sideband peak which looks rea-
sonably Lorentzian, with a width essentially given by the
acquisition bandwidth. Then, in the fitting routine that infers
the sideband parameters of each data file, we fix the Lorentz
peak width to its mean value, and constrain the peak position
to be around 0 Hz within only a few frequency steps 1/δt . As
such, the fit peak frequency position distribution looks like a
(centered) truncated Gaussian, and our main fitting parameter
is the height of the peak, or equivalently its area. Obviously,
acquiring data faster than �effshould impact quantitatively
the extracted area value: this point is explicitly discussed in
Appendix G. The optomechanics gain G is then computed
from the known power (and temperature) dependence of �eff ;

FIG. 12. The 200 mK fastest track power spectral densities for
peak (red data) and background (gray data). The full line corresponds
to Eq. (33) without the 1/ f term, but with a constant noise contribu-
tion attributed to fitting noise (which has been subtracted in Fig. 4).
The dashed line marks the level of background noise (see text for
details). Inset: Corresponding probability distribution functions; the
line is the exponential curve (see text).

note that at these acquisition speeds, 1/ f noise in damping �m

is irrelevant.
The great capability of this technique is that we can easily

separate what is genuinely characteristic of the sideband, from
what is simply due to the noise background. This is illustrated
in Fig. 12, where we compare the power spectral density cal-
culated from the previous fitting, and the one obtained when
constraining the fit position of the Lorentz peak far from the
central value of 0 Hz. In the latter case, the obtained spec-
trum is white, and more than one order of magnitude smaller
than what is obtained when fitting on the sideband (main
graph). The probability distribution function is centered on
zero, and clearly distinct from the exponential tail obtained
with the sideband peak data (inset). Note the slight negativity
which comes from a nonconstrained fit that also captures the
background noise when no signal is to be seen; this has been
truncated in Fig. 4 for clarity.

Finally, only the sideband processed data show the cutoff at
�eff in the spectrum, but the computed power spectral density
does not fall to zero above this value (see fit in Fig. 12). This
is presumably due to the fit error, which is distinct from the
background noise (which is subtracted in Fig. 4 for clarity);
see Appendix G for details of fast tracks fit corrections. As
a matter of fact, the final scatter in Fig. 5 corresponds to our
ability to fit the flat region of the FFTs of the type of Fig. 4
(main graph), obtained for different temperatures. This finite
error bar (which can be understood as our capability of defin-
ing kB) corresponds here to 100 spectra averaged together,
producing the typical scatter seen in Figs. 4 and 12.

APPENDIX G: FAST ACQUISITION RATE CORRECTIONS

At the fastest acquisition rate, we saw in the preceding
Appendix that the shape of the sideband peak is altered: it
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FIG. 13. Mean area of the sideband peak as a function of acqui-
sition bandwidth 1/δt (only the two fastest settings), in normalized
units (A0 being the value corresponding to the slowest track; data
are taken at different powers and different temperatures). The line
is a simple fit function: f (x) = 1 + x/4. Inset: Corresponding nor-
malized flat spectrum level as a function of bandwidth (S0 being the
reference value for slower acquisition speeds); the fit is 1/ f (x)2.

becomes broader, its width being defined by the sampling
rate. This is not the only impact of the fast tracking. Com-
paring the mean area obtained at different speeds δt , we also
find out that it is overestimated. In contrast, when stitching
the fastest spectrum to the others, we realize that we underesti-
mate fluctuations. This is summarized in Fig. 13, in a universal
plot with normalized axes.

The x axis corresponds to the sampling bandwidth normal-
ized to �eff . The y axis is the mean area normalized to its
value obtained at slow acquisitions (main), or the fit plateau
in the fluctuation spectrum normalized to the value extracted
with slow tracking (inset). These can be fit by very simple
empirical laws (see caption of Fig. 13).

In practice, with our settings only the fastest tracks (δt =
22 ms, Fig. 4) need a rescaling. Note that it does not impact
the fit of the plateau S0 in power spectral density, which is
very clearly defined by slower acquisition rates. It is only
needed for display purposes, when plotting the full-range data
from 1/ f to cutoff �eff . The fitting routine itself also impacts
Fig. 13, and its inherent bias is contained therein within our
empirical dependencies. For a more profound analysis of fit
biases, please see Ref. [47].

APPENDIX H: SLIDING AVERAGING

A first attempt to produce energy fluctuations spectra had
been made in Ref. [21], with measurements performed down

FIG. 14. Power spectral density obtained from data acquired at
200 mK (slowest rate, same set as Fig. 4). We present the original
spectrum, and the one obtained when applying a “sliding average”
on the measurement. Lines are fits (see text).

to the quantum regime. While the idea was clearly defined,
the resolution of the experiment was very far from the re-
quirements needed to produce the results we describe here.
To obtain fittable data, the authors had to process a “sliding
averaging” on the acquired measurements (averaging together
#n neighboring files, while shifting this window through the
whole set of data), and the extracted spectrum characteristics
did not present the expected thermodynamic behavior. The na-
ture of these slow fluctuations remained thus an open question
in this paper.

In the present Appendix we study the effect of sliding
averaging on our own data. In Fig. 14, we plot the power
spectral density obtained with our raw slow data measured at
200 mK, together with the one obtained when processing a
sliding averaging (with a #n = 10 file averaging window). We
clearly see that the averaging acts as a low pass filter, which
transforms the initial 1/ f component of our data into a 1/ f 2

(see fit lines); it completely suppresses the thermodynamic
plateau S0.

We therefore conclude that sliding averaging essentially
preserves only the 1/ f component of energy fluctuations.
There is thus no particular information in the shape of the
spectra obtained this way, since they are characteristic only
of the filtering method. Especially, what looked like a very
low frequency cutoff with a plateau is nothing but an arti-
fact of filtering + FFT method. However, the σE ∝ √

T law
observed in Ref. [21] contains genuine information, which
is characteristic of the (unknown) mechanism causing these
slow fluctuations.
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