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Abstract 
This paper presents a very short solution to the 4th Millennium problem 
about the Navier-Stokes equations. The solution proves that there cannot be a 
blow up in finite or infinite time, and the local in time smooth solutions can 
be extended for all times, thus regularity. This happily is proved not only for 
the Navier-Stokes equations but also for the inviscid case of the Euler equa-
tions both for the periodic or non-periodic formulation and without external 
forcing (homogeneous case). The proof is based on an appropriate modified 
extension in the viscous case of the well-known Helmholtz-Kelvin-Stokes 
theorem of invariance of the circulation of velocity in the Euler inviscid flows. 
This is essentially a 1D line density of (rotatory) momentum conservation. 
We discover a similar 2D surface density of (rotatory) momentum conserva-
tion. These conservations are indispensable, besides to the ordinary momen-
tum conservation, to prove that there cannot be a blow-up in finite time, of 
the point vorticities, thus regularity. 
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1. Introduction 

The Clay millennium problem about the Navier-Stokes equations is one of the 7 
famous problems of mathematics that the Clay Mathematical Institute has set a 
high monetary award for its solution. It is considered a difficult problem as it has 
resisted solving it for almost a whole century. The Navier-Stokes equations are 
the equations that are considered to govern the flow of fluids, and had been 
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formulated long ago in mathematical physics before it was known that matter 
consists from atoms. So actually they formulate the old infinite divisible material 
fluids. Although it is known that under its assumptions of the millennium prob-
lem the Navier-Stokes equations have a unique smooth and local in time solu-
tion, it was not known if this solution can be extended smoothly and globally for 
all times, which would be called the regularity of the Navier-Stokes equations in 
3 dimensions. The corresponding case of regularity in 2 dimensions has long ago 
been proved to hold but the 3-dimensions had resisted proving it. Of course the 
natural outcome would be that regularity holds also in 3-Dimensions. Many 
people felt that this difficulty hides our lack of understanding of the laws of 3- 
dimensional flow of the incompressible fluids.  

This paper presents a very short solution to the Clay Millennium problem 
about the Navier-Stokes equations. The solution proves that there cannot be a 
blow up in finite or infinite time, and the local in time smooth solutions can be 
extended for all times, thus regularity. This happily is proved not only for the 
Navier-Stokes equations but also for the inviscid case of the Euler equations both 
for the periodic or non-periodic formulation and without external forcing (ho-
mogeneous case). But it is also indicated that once the hypotheses of external 
forcing of the millennium problem allow 1) for the existence of a unique smooth 
solution local in time, and 2) the criterion of the accumulation of the vorticity as 
in Theorem 2.2 still holds with external forcing as in the formulation of the Mil-
lennium problem, then the same result of regularity (no blow up) holds also for 
this inhomogeneous case. I try to keep the length of this paper as short as possi-
ble so as to encourage reading it, and make the solution as easy to be understood, 
as possible. 

My first attempt to solve the millennium problem about the regularity of the 
Navier-Stokes equations problem was during the spring 2013 (uploaded at that 
time see [1] Kyritsis K. October 2013). Later attempts and solutions were pub-
lished between 2017 and 2022 (see references [2]-[7]). All of them in the same 
direction of regularity and no Blow-up. But some of the proofs where imperfect 
and longer, that in the current paper have been perfected and shortened. In the 
current paper we prove also something more compared to my previous publi-
cations that the regularity holds also for the Euler inviscid equations, with the 
same hypotheses of the millennium problem putting ν = 0, for the viscosity coef-
ficient.  

The author has also solved the 3rd Millennium problem P vs NP in computa-
tional complexity with 3 different successive solutions each one simpler that the 
previous (see references [3] [6] [8] [9] [10]).  

This millennium problem seems by the title of the articles as if solved by other 
authors like [11] Durmagambetov Asset et al. 2015 also [12] Moschandreou. T. 
2021, and [13] Ramm G. A. 2021.  

Nevertheless, in my assessment they do not really solve it but eventually prove 
something else. In [9] Durmagambetov Asset et al. 2015, the authors do not util-
ize the strict hypotheses of the formulation of the millennium problem, and the 
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existence in general of blows-ups that they prove is a rather known fact. In [14] 
Ramm G. A. the strict hypotheses of the formulation of the millennium problem 
are indeed utilized but the solution essentially gives the existence of a smooth 
solution locally in time. Because the local in time [0, t1] smooth solution that he 
produces does depend on the initial data, we cannot repeated it in [t1, t2] [t2, t3] 
till infinite with certainty because we cannot claim that t1 = t2 − t1 = t2 − t3 etc. or 
that their repetition will converge to infinite. Thus there is no really a proof for 
no blow up and regularity. On the other hand, in [13] Ramm G. A. 2021 he 
proves that any solution of the Navier-Stokes equations, with the hypotheses of 
the millennium problem it will blow-up in finite time. There is obviously the 
counter example of potential (irrotational) flows that it is known that they do 
not blow up, and plenty many other specific counter examples in various publi-
cations of various authors, that do not blow up. Thus his solution cannot be 
correct (although I could not find the error in his arguments). And finally in [12] 
Moschandreou T. the solution as he writes in the conclusions is regular but he 
leaves open that fact that for a set of measure zero of the 3-space there might be 
a blow-up in finite time. Thus it does not really proved either regularity or the 
existence with certainty of a blow up.  

2. The Formulation of the Millennium Problem and the 4  
Sub-Problems (A), (B), (C), (D) 

In this paragraph we highlight the basic parts of the standard formulation of the 
4th Clay millennium problem as in [15] Fefferman C.L. 2006. 

The Navier-Stokes equations are given by (by R we denote the field of the real 
numbers, ν > 0 is the density normalized viscosity coefficient) 

( )
1

3 , 0, 3
n

i
i j i

j j i

R t
u pu u u x

t x x
nν

=

∂∂ ∂
≥+ = − + ∆ ∈
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with initial conditions ( ) ( )0,0u x u x=  3x R∈  and ( )0u x C∞∈  diver-
gence-free vector field on R3                                       (2.3) 

If ν = 0 then we are taking about the Euler equations and inviscid case.  
2

2
1

n

i ix=

∂
∆ =

∂∑  is the Laplacian operator. The Euler equations are (2.1), (2.2), (2.3) 

when ν = 0.  
It is reminded to the reader, that in the equations of Navier-Stokes, as in (2.1) 

the density ρ, is constant, it is custom to normalized to 1 and omit it. 
For physically meaningful solutions we want to make sure that u0(x) does not 

grow large as x →∞ . This is set by defining u0(x), and f(x, t) and called in this 
paper Schwartz initial conditions, to satify  

( ) ( )0
, 1

Ka
x a Ku x C x

−
∂ ≤ +  on R3 for any α and K      (2.4) 

(Schwartz used such functions to define the space of Schwartz distributions)  
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Remark 2.1. It is important to realize that smooth Schwartz initial velocities 
after 

(2.4) will give that the initial vorticity ω0 = curl(u0), in its supremum norm, is 
bounded over all 3-space.  

( ) ( ), ,, 1
Ka m

x t a m Kf x t C x t
−

∂ ∂ ≤ + +  on [ )3 0,R × +∞  for any α, m, K  (2.5) 

We accept as physical meaningful solutions only if it satisfies  

[ )( )3, 0,p u C R∞∈ × ∞                    (2.6) 

and  

( )3

2
, du x t x C

ℜ
<∫  for all 0t ≥  (Bounded or finite energy)   (2.7) 

Remark 2.2 It is important to realize that smooth external force (densities) 
with the Schwartz property as in (2.5), have not only a rule for upper bounded 
spatial partial derivatives but also the same rule for time upper bounded partial 
derivatives. 

Remark 2.3 We must stress here that imposing smoothness of the coordinate 
functions of velocities and external forces of the initial t = 0 data and later time t 
data in the Cartesian coordinates plus and Schwartz condition as in (2.5) is not 
equivalent with imposing similar such smoothness of the coordinate functions 
and conditions in the cylindrical or spherical coordinates. We will give in the 
paragraph 4, remark 4.5 an example of a strange blowup, where at any time t > 0 
the coordinates of the velocities are smooth and bounded in all space as func-
tions in the polar coordinates and still the vorticity has infinite singularity at ze-
ro. 

Alternatively, to rule out problems at infinity, we may look for spatially peri-
odic solutions of (2.1), (2.2), (2.3). Thus we assume that u0(x), and f(x, t) satisfy  

( ) ( )0 0
ju x e u x+ = , ( ) ( ), ,jf x e t f x t+ = , ( ) ( ),0 ,0jp x e p x+ = , for 1 3j≤ ≤  

(2.8) 

(ej is the jth unit vector in R3)  
In place of (2.4) and (2.5), we assume that u0(x), is smooth and that 

( ) ( ), ,, 1 Ka m
x t a m Kf x t C t −∂ ∂ ≤ +  on [ )3 0,R × +∞  for any α, m, K (2.9) 

We then accept a solution of (2.1), (2.2), (2.3) as physically reasonable if it sa-
tisfies  

( ) ( ), ,ju x e t u x t+ = , ( ) ( ), ,jp x e t p x t+ = , on [ )3 0,R × +∞  for 1 3j≤ ≤  (2.10) 

and [ )( )3, 0,p u C R∞∈ × ∞                    (2.11) 

In the next paragraphs we may also write u0 instead of u0 for the initial data 
velocity. 

We denote Euclidean balls by ( ) { }3, : :B a r x R x a r= ∈ − ≤ , where x  is 
the Euclidean norm.  

The 4 sub-problems or conjectures of the millennium problem are the next: 

https://doi.org/10.4236/jamp.2022.108172


K. E. Kyritsis 
 

 

DOI: 10.4236/jamp.2022.108172 2542 Journal of Applied Mathematics and Physics 
 

(Conjecture A) Existence and smoothness of Navier-Stokes solution on R3. 
Take ν > 0 and n = 3. Let u0(x) be any smooth, divergent-free vector field sa-

tisfying (4). Take f(x,t) to be identically zero. Then there exist smooth functions 
p(x, t), u(x, t) on [ )3 0,R × +∞  that satisfy (2.1), (2.2), (2.3), (2.6), (2.7).  

(Conjecture B) Existence and smoothness of Navier-Stokes solution on R3/Z3. 
Take ν > 0 and n = 3. Let u0(x) be any smooth, divergent-free vector field sa-

tisfying (8); we take f(x, t) to be identically zero. Then there exist smooth func-
tions p(x, t), u(x, t) on [ )3 0,R × +∞  that satisfy (2.1), (2.2), (2.3), (2.10), (2.11).  

(Conjecture C) Breakdown of Navier-Stokes solution on R3 

Take ν > 0 and n = 3. Then there exist a smooth, divergent-free vector field 
u0(x) on R3 and a smooth f(x, t) on [ )3 0,R × +∞  satisfying (4), (5) for which 
there exist no smooth solution (p(x, t), u(x, t)) of (2.1), (2.2), (2.3), (2.6), (2.7) on 

[ )3 0,R × +∞ .  
(Conjecture D) Breakdown of Navier-Stokes solution on R3/Z3 

Take ν > 0 and n = 3. Then there exist a smooth, divergent-free vector field 
u0(x) on R3 and a smooth f(x, t) on [ )3 0,R × +∞  satisfying (2.8), (2.9) for which 
there exist no smooth solution (p(x, t), u(x, t)) of (2.1), (2.2), (2.3), (2.10), (2.11) 
on [ )3 0,R × +∞ .  

Remark 2.4. It is stated in the same formal formulation of the Clay millen-
nium problem by C. L. Fefferman see [15] Fefferman C.L. 2006 (see page 2nd 
line 5 from below) that the conjecture (A) has been proved to holds locally. “…if 
the time internal [0, ∞), is replaced by a small time interval [0, T), with T de-
pending on the initial data…” In other words there is ∞ > T > 0, such that there 
exists a unique and smooth solution ( ) [ )( )3, 0,u x t C R T∞∈ × . See also [16] A.J. 
Majda-A.L. Bertozzi, Theorem 3.4 pp 104. In this paper, as it is standard almost 
everywhere, the term smooth refers to the space C∞. 

In the next the 
m

 is the corresponding Sobolev spaces norm and. We de-
note by Vm = {u in Hm(Rn) and divu = 0} where Hm(Rn) are the Sobolev spaces 
with the L2 norm.  

We must mention that in A.J. Majda-A.L. Bertozzi [16], Theorem 3.4 pp 104, 
Local in Time existence of Solutions to the Euler and Navier-Stokes equations it 
is proved that indeed if the initial velocities belong to Vm [ ]3 2 2m ≥ +  there 
exist unique smooth solutions locally in time [0, t]. Here, in the formulation of 
the millennium problem the hypotheses of smooth with Schwartz condition ini-
tial velocities satisfies this condition therefore we have the existence and uni-
queness of smooth solution locally in time, both in the non-periodic and the pe-
riodic setting without external forcing (homogeneous case). 

The existence and uniqueness of a smooth solutions locally in time is stated in 
the formulation by C.L. Fefferman [15] for the homogeneous cases and conjec-
tures (A), (B). When a smooth Schwartz condition external force is added (in-
homogeneous case), it is natural to expect that also there should exist a local in 
time unique sooth solution. But this I did not find to be stated in the A.J. Maj-
da-A.L. Bertozzi [16], so I will avoid assuming it.  
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We state here also two, very well-known criteria of no blow-up and regularity.  
In this theorem the 

m
 is the corresponding Sobolev spaces norm and. We 

denote by Vm = {u in Hm(Rn) and divu = 0} where Hm(Rn) are the Sobolev spaces 
with the L2 norm.  

Theorem 2.1 Velocities Sobolev norm sufficient condition of regularity. Given 
an initial condition 0

mu V∈  [ ]3 2 2 3.5m ≥ + =  e.g. m = 4, then for any vis-
cosity 0ν ≥ . there exists a maximal time T ∗  (possibly infinite) of existence of 
a unique smooth solution ( ) ( )1 20, ; 0, ;m mu C T V C T V∗ ∗ −   ∈ ∩     to the Euler 
or Navier-Stokes equation. Moreover, if T ∗ < +∞  then necessarily  

( )lim .,
t T m

u t∗→
= +∞ . 

Proof: See A.J. Majda-A.L. Bertozzi [16], Corollary 3.2 pp 112). QED 
Remark 2.5 Obviously this proposition covers the periodic case too. 
Theorem 2.2 Supremum of vorticity sufficient condition of regularity 
Let the initial velocity 0

mu V∈  [ ]3 2 2m ≥ + , e.g. m = 4, so that there exists a 
classical solution [ ]( )1 20, ; mu C T C V∈ ∩  to the 3D Euler or Navier-Stokes eq-
uations. Then: 

1) If for any T > 0 there is M1 > 0 such that the vorticity ω = curl(u) satisfies 

( ) 10
., d

T

L
Mω τ τ∞ ≤∫  

Then the solution u exists globally in time, [ ]( )1 20, ; mu C C V+∞∈ ∩  
2) If the maximal time T ∗  of the existence of the solution  

[ ]( )1 20, ; mu C T C V∈ ∩  is finite, then necessarily the vorticity accumulates so 
rapidly that  

( )
0

lim d.,
T

T

Lt
ω τ τ∞∗→

∞= +∫                  (2.12) 

Proof: See A.J. Majda-A.L. Bertozzi [16], Theorem 3.6 pp 115, L∞ vorticity con-
trol of regularity. QED. 

Remark 2.6 Obviously this proposition covers the periodic case too.  

3. What Is That We Do Not Understand with the  
Navier-Stokes Equations? The Need for More  
Consciousness for Interpretations. Why We Chose  
the Geometric Calculus Approach for the Solution?  

It has been written in the initial formulation of the problem, that our difficulty 
of solving this millennium problem shows that there are several things that we 
do not understand very well in the Navier-Stokes equations. In this paragraph 
we will investigate this issue. We will explain also why the rather elementary 
geometric calculus approach is better so as to solve the millennium problem, 
compared to more advanced functional analysis.  

1) One primary point, known but often forgotten is the next. The Euler and 
the Navier-Stokes equations are the equations that are considered to govern the 
flow of fluids, and had been formulated long ago in mathematical physics before 
it was known that matter consists from atoms. So actually they formulated the 
old infinite divisible material fluids. After L. Boltzmann and the discovery of 
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material atoms, the truer model is that of statistical mechanics. We may consider 
that the two different types of matter, 1) infinite divisible, 2) made from finite 
atoms, behave the same as far as flows in fluid dynamics, and certainly there are 
many common properties but ultimately are mathematically and logically dif-
ferent. One example of the difference is that in the atomic structured material 
fluid model, the angular velocity of the spin e.g. of electrons, protons, neutrons 
which is about 1 terahertz (infrared range) can vary increase or decrease, inde-
pendently from the vorticity, which is only the part of the angular velocity which 
is “geared to the environmental” rotation of the fluid. In the classical Weierstrass 
calculus of infinite divisible material fluids (Euler and Navier-Stokes equations) 
this distinction does not exist and all the angular velocity of a point is due to the 
vorticity. In [17] Muriel, A. 2000 a corresponding to the millennium problem in 
statistical mechanics has been solved in the direction of regularity. Similarly, in 
[18] Kyritsis, K. November 2017 a solution of the current millennium problem 
has been proved in the direction of regularity, but only if adding an additional 
hypothesis to the initial formulation, that of existence of finite atomic particles 
that are conserved during the flow. Strictly speaking a mathematical model of 
the material fluids and their flow which will have a high degree of exactness 
should take in to account that matter consists of atoms, (the electron range of 
magnitudes is of the order 10−15 meters) and this suggests that we should avoid 
utilizing concepts of continuity and smoothness that use ε > 0 δ > 0 in their defi-
nition smaller than 10−15 meters. To address this difficulty of our current (Weier-
strass) calculus the author developed the Democritus digital and finite decimal 
differential calculus (see [19] Kyritsis K. 2019b, [20] Kyritsis K. 2017 B, [21] Ky-
ritsis K. 2022). In this finite calculus, we define concepts, of seemingly infinite-
simal numbers (they are finite), seemingly infinite numbers (they are finite) and 
feasible finite numbers, so as to develop a differential and integral calculus up to 
decimal numbers with only a fixed finite number of decimals (decimal density of 
level of precision). Different levels of precision give different definitions of con-
tinuity and smoothness. These multi-precision levels Democritus calculi are 
what an applied mathematician is doing when applying the Newton-Leibniz and 
Weierstrass calculus with the infinite (and infinitesimals). The Democritus cal-
culus strictly speaking is not logically equivalent to the Newton-Leibniz calculus 
or to the Weierstrass calculus. E.g. classical Weisstrass calculus continuity cor-
responds in the Democritus calculus of being continuous not only to a single 
precision level but to all possible precision levels. Because in the Democritus 
calculus continuity and smoothness is only up to a precision level, the turbu-
lence can be defined in a way that in Weierstrass calculus cannot be defined. In a 
turbulent flow, the flow in the Democritus calculus may be smooth relative to a 
precision level but non-smooth relative to a coarser precision level (or the oppo-
site) in the Weierstrass calculus this is impossible. Furthermore, now when a 
computer scientist is experimenting with computers to discover if in a flow there 
will be a blow up or not in finite time, within the Democritus calculus and its 
Navier-Stokes equations he will have an absolute proof and criterion. If the vor-

https://doi.org/10.4236/jamp.2022.108172


K. E. Kyritsis 
 

 

DOI: 10.4236/jamp.2022.108172 2545 Journal of Applied Mathematics and Physics 
 

ticity will become seemingly infinite (still finite) in a feasible finite time interval 
there is a blow up. If it becomes only feasible finite in any feasible finite time in-
terval, there is no blow up. Of course blow-up in the Democritus calculus is not 
equivalent with a blow up in the Weisstrass calculus. Finally, with the Democri-
tus calculus the applied mathematician acquires the subjective quality of con-
gruence. In other words, what he thinks, sais and writes is what he acts and ap-
plies. With the infinite in the ontology of calculus this is not possible and it is 
unavoidable the incongruence, because infinite cannot be acted in the applica-
tions in a material reality where all are finite.  

2) It is known that when the calculus (which is used in modeling the fluids) 
was discovered by Newton and Leibniz, the original mathematical ontology was 
utilizing infinitesimals, smaller than any positive real numbers but not zero. 
Then later with Weierstrass calculus this ontology was abandoned, we restricted 
ourselves to the real numbers only, and we utilized limits and convergence. So 
when we take the law of force (momentum conservation) of Newton F = m * γ 
on a solid finite particle and then take the limit by shrinking it to a point to de-
rive the Euler and Navier-Stokes equations, we must not forget, that originally 
the limit was not to a point but to an infinitesimal solid body particle. This is not 
the same! In [21] Kyritsis K. 2022, I have restored with strict mathematics the 
original ontology of infinitesimals of Newton-Leibniz, utilizing algebra of inter-
vals (or inverses of ordinal numbers as J.H. Conway has also done with the sur-
real numbers see [22] J.H. Conway and [23] K. Kyritsis ordinal real numbers 1, 2, 
3). Then we have a two-density calculus with two different linearly ordered fields, 
a) the real numbers, b) a larger such field of Newton-Leibniz fluxions, with infi-
nitesimal, finite and infinite numbers. The topologies of convergence of a solid 
finite particle by shrinking it to a point or to an infinitesimal solid particle are 
different! And this affects the issue of vorticity and angular velocity of infinite-
simal particle. When I was a University student, and I was learning about the 
equations of Navier-Stokes, I was satisfied to see that the simple law of force 
(momentum conservation) of Newton F = m * γ was converted to the Navier- 
Stokes equations, but I was shocked to realize, that the rest of the independent 
information about the motion of the solid finite particle, namely its rotational 
momentum, was not shrunk to an angular velocity ω of the infinitesimal solid 
particle. So we see now that this is not reasonable in the Weisstrass calculus, 
which shrinks to a point, while it is possible in the older Newton-Leibniz calcu-
lus which shrinks to an infinitesimal solid body, and would lead to a different 
model of flows of fluids, with independent initial data of angular velocities, be-
sides linear velocities and besides the derived from them vorticity.  

3) In the current solution of the millennium problem, we may observe a 20% - 
80% Pareto rule. In other words, more than 80% of the equations utilized as go-
verning equations of the flow, are those derived from fundamental theorem of 
the calculus, (in the form of Stokes theorem, divergence theorem, green theo-
rem, Helmholtz-kelvin theorem, fundamental theorem of calculus etc.) and less 
that 30% the PDE of the Navier-Stokes equations. So I might say that the main 
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equations governing the phenomenon of flow is the machinery of exterior diffe-
rential algebra (wedge product) differentiation (differential forms) etc. rather than 
simply PDE equations. For reasons of simplicity and because we are restricted 
here to only 3 spatial dimensions, we do not utilize the symbolism of the wedge 
products and differential forms, but only the Stokes theorem, divergence theo-
rem etc.  

4) These versions of the fundamental theorem of the calculus (Stokes theorem 
etc.) lead to an extension of the law of momentum conservation of 3D fluid parts 
to a law of 1D line density (rotatory) momentum conservation (Theorem 4.1) 
and law of 2D surface density (rotatory) momentum conservation (Theorem 
4.2). These laws are very valuable for infinite divisible fluids so valuable as the 
existence of finite atoms in the atomics structured fluids. Without these extra 
laws of momentum density conservation, we would have no hope to solve the 
millennium problem. As T. Tao had remarked (see [24] [25]), only an integral of 
3D energy conservation and an integral of 3D momentum conservation is not 
adequate to derive that momentum point densities ρ•u, or energy point densities 
(1/2)ρ•u2 will not blow up.  

5) Besides the forgotten conservation law of finite particles, which unfortu-
nately we cannot utilize in the case of infinite divisible fluids to solve the millen-
nium problem, there are two more forgotten laws of conservation or invariants. 
The first of them is the obvious that during the flow, the physical measuring 
units dimensions (dimensional analysis) of the involved physical quantities (mass 
density, velocity, vorticity, momentum, energy, force point density, pressure, etc.) 
are conserved. It is not very wise to eliminate the physical magnitudes interpre-
tation and their dimensional analysis when trying to solve the millennium prob-
lem, because the dimensional analysis is a very simple and powerful interlink of 
the involved quantities and leads with the physical interpretation, to a transcen-
dental shortcut to symbolic calculations. By eliminating the dimensional analysis, 
we lose part of the map to reach our goal. 

6) The 2nd forgotten conservation law or invariant, is related to the viscosity 
(friction). Because we do know that at each point (pointwise), the viscosity is 
only subtracting kinetic energy, with an irreversible way, and converting it to 
thermal energy, (negative energy point density), and this is preserved in the flow, 
(it can never convert thermal energy to macroscopic kinetic energy), we know 
that its sign does not change too, it is a flow invariant, so the integrated 1D or 
2D work density is always of the same sign (negative) and as sign, an invariant of 
the flow. The conservation or invariance of the sign of work density by the vis-
cosity (friction) is summarized in the lemma 3.1 below.  

7) Finally we must not understate the elementary fact that the force densities 
Fp due to the pressures p, pF p= −∇  are conservative, irrotational vector field, 
and they do not contribute to the increase or decrease of the rotatory momen-
tum and vorticity of the fluid during the flow. Because of this we get that the 
conserved 1D and 2D densities of momentum in Theorems 4.1 and 4.2 are only 
of the rotatory type.  
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8) Anyone who has spent time to try to prove existence of Blow up or regular-
ity in the various physical quantities of the fluid like velocity, vorticity, accelera-
tion, force density, momentum, angular momentum, energy etc., he will observe 
that in the arguments the regularity and uniform in time boundedness propa-
gates easily from derivatives to lower order of differentiation, while the blowup 
arguments propagate easily from the magnitudes to their derivatives. The con-
verses are hard in proving. This is due to the usual properties of the calculus de-
rivatives and integrals. The hard part of the proofs, must utilize forms of the 
fundamental theorem of the calculus like Stokes theorem, divergence theorem 
etc.  

9) Based on the above 8 remarks about what is not very well understood with 
Navier-Stokes equations I decided that elementary geometric calculus should be 
the appropriate context to solve the millennium problem, and this I did indeed.  

Lemma 3.1 The viscosity sign forgotten invariant. 
If we integrate the force point density of the viscosity, over a line (1D work 

density) or surface (2D work density) or a volume (work) its sign will remain the 
same during the flow. 

Proof: Because we do know that pointwise, the viscosity is only subtracting 
kinetic energy, with an irreversible way, and converting it to thermal energy, 
(negative energy point density), and this is preserved in the flow, (it can never 
convert thermal energy to macroscopic kinetic energy), we deduce that its sign 
does not change too it is a flow invariant, so the integrated 1D or 2D work den-
sity is always of the same sign (negative) and as sign an invariant of the flow. 
QED.  

4. The Helmholtz-Kelvin-Stokes Theorem in the Case of  
Viscous Flows. New Monotone Semi-Invariants of Viscous  
Flows with the Interpretation of Average Rotational  
Momentum Axial 1-D Line Densities 

Here we apply the idea that the most valuable equations that govern he flow of 
the fluid are not literally the Navier-Stokes equations but the invariants or semi- 
invariant properties of the flow, derived from the abstract multi-dimensional fun-
damental theorems of calculus, in the forms of divergence theorems, Stokes theo-
rems, Greens theorems etc. Actually this is the mechanism of wedge-products and 
abstract algebra of differential forms which is beyond classical partial differential 
equations. We do not utilize though definitions and symbolism of wedge-products 
and differential forms in his paper so as to keep it elementary and easy to read. 
The main discovery of this paragraph is the Helmholtz-Kelvin-Stokes theorem 
4.3 in the case of viscous flows and the resulting general no-blow-up theorem 4.4 
for the viscous flows without external forcing. A blow-up when it occurs, it will 
occur at least as blow-up of the vorticity, or of ρ•ω. If we discover average value 
invariants of the flow with physical units dimensions ρ•ω, that in the limit can 
give also the point value of the ρ•ω, and that are invariants independent from 
the size of averaging, it is reasonable that we can deduce conclusions, if the point 

https://doi.org/10.4236/jamp.2022.108172


K. E. Kyritsis 
 

 

DOI: 10.4236/jamp.2022.108172 2548 Journal of Applied Mathematics and Physics 
 

densities can blow-up or not.  
Theorem 4.1 The Helmholtz-Kelvin-Stokes theorem in the case of inviscid 

Euler equations flows without external force or homogeneous case. (Α 1D line 
density of rotatory momentum, conservation law) 

Let initial data in R3 so that they guarantee the existence of a unique smooth 
solution to the Euler equation in a local time interval [0, T]. Then at any time 

[ ]0,t T∈  the circulation Γ(c) of the velocities on a closed smooth loop is equal 
to the flux of the vorticity on smooth surface S with boundary the loop c, and is 
constant and preserved as both loop and surface flow with the fluid. In symbols 
(ρ = 1 is the density of the incompressible fluid) 

( ) d dc t c S S
u l sρ ρ ω

=∂
Γ = = ⋅∫ ∫∫

                 (4.1) 

Proof: See [16] Majda, A.J-Bertozzi, A. L. 2002, Proposition 1.11 and Corol-
lary 1.3, in page 23. The proof is carried actually by integrating the Euler equa-
tions on a loop c and utilizing that the integral of the pressure forces (densities) 
defined as –∇p are zero as it is a conservative (irrotational) field of force (densi-
ties). Then by applying also the Stokes theorem that makes the circulation of the 
velocity on a loop equal to the flux of the vorticity on a smooth surface with 
boundary the loop (see e.g. Wikipedia Stokes theorem  
https://en.wikipedia.org/wiki/Stokes%27_theorem) the claim is obtained. QED. 

We may notice that this circulation and surface vorticity flux has physical 
measuring units [ρ]*[ω]*[s]^2 = [m]*[s]^(-3)*[t]^(-1)[s]^2 = [m]*[s]^(-1)*[t]^(-1) 
= [moment_of_inertia]*[ω]*[s]^(-3) thus angular momentum point density. While 
the ρ*ω has physical measuring units dimensions [ρ]*[ω] = [m]*[s]^(-3]*[t]^(-1) = 
[moment_of_inertia]*[ω]*[s]^(-2) thus 2nd spatial derivative of rotational mo-
mentum of point density.  

A blow-up when it occurs, it will occur at least as blow-up of the vorticity, or 
of ρ•ω. If we discover bounded average value invariants of the flow with physical 
units dimensions ρ•ω, that in the limit can give also the point value of the ρ•ω, 
and that are invariants and bounded independent from the size of averaging, it is 
reasonable that we can deduce conclusions, if the point densities can blow-up or 
not.  

Here we convert the surface vorticity flux invariant of Helmholtz-Κelvin-Sto- 
kes to one with 3D integration which will be more convenient in the arguments 
as the volumes are preserved by incompressible flows and most important, the 
integration is 3-dimensional which can be utilized to define average values of the 
vorticity (flux) on 3D finite particles. 

We will prove at first a lemma about the 3D volume integral of Theorem 4.2, 
and convergence of average values of vorticity, based on this 3D integral, to 
point values to vorticity. 

We define an average value for the volume 3D integral of vorticity flux.  
Definition 4.1 We define as average value on ball in of the vorticity ω, denoted 

by Bω , the unique constant value of the vorticity on the interior of the ball that 
would give the same 3D flux of vorticity on the ball, 
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0 0
d d

S S
sd sdρ ω θ ρ ω θ

π π
⋅ = ⋅∫ ∫∫ ∫ ∫∫ . The integration on the surfaces S for the flux 

of the vorticity is on parallel circular discs in the ball. This average value ω  of 
the vorticity is of course the  

0
d d

S
B

s

B

ρ ω θ
ω

π
⋅

= ∫ ∫∫                   (4.2) 

and its direction is that of the vertical axis of the ball Β.  
Where ( ) 34 3B r= ∗ ∗π  is the volume of the ball B, of radius r, and Bω  

is the Euclidean norm of the vector. A more detailed symbolism of the average 
vorticity is the ( ) ( ),

,t B r t
x tω . 

The numerator of this average value of vorticity has also the interpretation of ro-
tational momentum average axial density on the ball B and relative to the axis a. A 
reason for this is that the physical dimensions of measuring units of this magnitude 
is that of rotational momentum line density. This is because the rotational mo-
mentum point density has physical dimensions [moment_of_inertia]*[ω]*[s]^(-3) 
= [m][s]^(-1)[t]^(-1), where [m] for mass, [s] for distance, [t] for time, and this 
magnitude has physical units dimensions, ([ρ][ω][s]^3) =  
([m][s]^(-1)[t]^(-1))[s]^(1), thus rotational momentum point density integrated 
on 1-d line axial density. And the full quotient therefore has physical units di-
mensions [m][s]^(-3)[t]^(-1)) = [ρ][ω].  

Lemma 4.1 Let a ball B of radius r and center x, and the average vorticity Bω  
in it as in the Definition 4.1 so that its axis a that defines the average vorticity is 
also the axis of the point vorticity ωx at the center x of the ball. By taking the lim-
it of shrinking the ball to its center x, ( 0r → ), the average vorticity Bω  con-
verges to the point vorticity ωx. In symbols 0limr B xω ω→ = . If the axis a of the 
ball to estimate the average vorticity is not the axis of the point vorticity, then 
the limit of the average vorticity will be equal to the projection component ωa(x, 
t) of the point vorticity ω(x, t) on the axis a.  

Proof: We simply apply an appropriate 3-dimensional version, with iterated 
integrals of the 1-dimensional fundamental theorem of the calculus. QED. 

Remark 4.1. Such a limit of 3D body to a point is the same as the limit that 
from the Newton equation of force F = mγ, we derive the Navier-Stokes equa-
tions.  

Since the flow of a fluid under the Euler or Navier-Stokes equations, with or 
without smooth Schwartz external force is a smooth and continuous mapping F, 
then such a limit will be conserved to still be a valid limit during the flow. In oth-
er words ( ) ( ) ( )0 0limlimB B BF B FF ω ω→ →=  and 0B → , implies ( ) 0tF B → . 
We define of course in an obvious appropriate way the average vorticity ( )t BF ω  
as in definition 4.1, for the flow-image of a ball B after time t. Simply the disc sur-
faces will no longer be flat, and the loop no longer perfect circle. But the integrals 
in the definition will be the same. Constancy of the average vorticity on such 
surfaces will only be, up to its Euclidean norm and vertical angle to the surface. 
We must notice though that although a relation ( ) ( )0 0lim limBB B BF Fω ω−>→ =  
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would hold, the value of this limit will not be the vorticity ωF(x) at the flowed point! 
Unfortunately, the Lemma 4.2 holds not on arbitrary 3D shapes and arbitrary in-
tegration parametrization on it, but only when we start with standard 3D shapes 
like a sphere, a cylinder a cube etc. and the normal parametrization on them. The 
reason is that we need to take in to account in a normal way the average vorticity 
around a point in an unbiased way, that an arbitrary shape will not give.  

Another important conservation point is that the relation of the vorticity ωx 
being tangent to an axis a (or general curve) is conserved during inviscid Euler 
flows. It is the conservation of vorticity lines (See [16] Majda, A. J.-Bertozzi, A. L. 
2002, Proposition 1.9 in page 21). Therefore for inviscid (and incompressible) 
flows the axis of the initial point vorticity ω(0), which is also the axis to estimate 
the average vorticity on the ball B, will still be after the flow and at time t, tan-
gent to the point vorticity ω(t). But for general viscous flows this will not be so. 
Notice that such limits of average values would not work for the circulation of 
the velocity on a loop, as in the application of the iterated 1-dimensional funda-
mental theorem of the calculus would require boundaries of the integration.  

Lemma 4.2 Let the Euler or Navier-Stokes equations of incompressible fluids 
in the non-periodic or periodic setting, with smooth initial data and we assume 
that the initial data in the periodic or non-periodic case, are so that the supre-
mum of the vorticity is finite denoted by Fω on all 3-space at time t = 0. Let the av-
erage vorticity, or average rotational momentum density, defined as in Definition 
4.1 but with integration parametrization one any smooth 3D shape B of any size, 
that of course both as a diffeomorphic image of a spherical ball with its spherical 
coordinates integration parametrization. Then the average vorticity or average ro-
tational momentum density is also upper bounded by the Fω. In symbols  

0
d d

S
B B

s
Fω

ω θ
ω

π
⋅

= ≤∫ ∫∫                     (4.3) 

Proof: Since ( )F Fω ωω ω ω≤ =  in the flux-integration we have for the 
inner product of ω and the unit area vector n, ( ) ( )( ), ,n F n Fω ωω ω ω≤ ≤ . 
Thus in the integration we may factor out the Fω 

0 0 0
d d d d d d

S S S Bs F s s
F F F

B B B B
ω

ω ω ω

ω θ θ θ
π π π

⋅
≤ = = =∫ ∫∫ ∫ ∫∫ ∫ ∫∫ . QED. 

Theorem 4.2 A 3-dimensionl integral version of the Helmholtz-Kelvin-Stokes 
theorem. (Α 2D surface density of rotatory momentum, conservation law) 

Let initial data in R3 so that they guarantee the existence of a unique smooth 
solution to the Euler equation in a local time interval [0, T]. Then at any time 

[ ]0,t T∈  let a sphere B of radius r (as in figure 4.) considered as a finite particle, 
then the azimuthal θ-angle, θ-integral on a meridian in spherical coordinates of 
the circulations Γ(c) of the velocities on all closed longitude smooth loops paral-
lel to the equatorial loop is equal to the same θ-integral of the surface flux of the 
vorticity on smooth flat disc surfaces S with boundary the loops c (as in figures 
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4.2), and both integrals are constant and preserved as both surface and volume 
integrals during the flow with the fluid. In symbols (ρ = 1 is the density of the 
incompressible fluid) 

0 0
d d d d

c S S
u l sρ θ ρ ω θ

π π

=∂
= ⋅∫ ∫ ∫ ∫∫

               (4.4) 

After (4.2) 0
d d

S
B B

sω θ
ω

π
⋅

= ∫ ∫∫  it holds also 

for [ ]0,t T∈  ( ) ( )0B B tω ω=                   (4.5) 

Proof: We simply take the θ-azimuthal angle θ-integral of both sides of the 
equation 4.1 in the theorem 4.1. Both sides are preserved during the flow and so 
is their θ-integrals too (See Figure 1). We notice that the measuring physical 
units dimensions of the conserved quantity 

0
d

c S
u ldρ θ

π

=∂∫ ∫  is  
[mass]*[length]^(-3)*[velocity]*[length]^(2) = [mass]*[length]^(-2)*[velocity] 
thus integration in 2-dimension surface of momentum 3D-point-density, or equi-
valently momentum 1D density QED. 

Theorem 4.3. The Helmholtz-Kelvin-Stokes theorem in the case of viscous Na- 
vier-Stokes equations flows without external force (homogeneous case). 

Let initial data in R3 so that they guarantee the existence of a unique smooth 
solution to the Navier-Stokes equation with viscosity coefficient ν > 0, in a local 
time interval [0, T]. Then at any time [ ]0,t T∈  the circulation Γ(c) of the ve-
locities on a closed smooth loop is equal to the flux of the vorticity on smooth 
surface S with boundary the loop c, and is decreasing as both loop and surface 
flow with the fluid. In symbols (ρ = 1 is the density of the incompressible fluid) 

d d
c S S

u l sρ ρ ω
=∂

= ⋅∫ ∫∫

                    (4.1) 

And for [ ]0,t T∈  ( ) ( )0 d d
c S c S

u l u t l
=∂ =∂

>∫ ∫ 

           (4.6) 

and similarly for the 3D volume integration as in Theorem 4.2 
 

 
Figure 1. Spherical coordinates. 
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for [ ]0,t T∈  ( ) ( )
0 0

0 d d d d
S S

s t sρ ω θ ρ ω θ
π π

⋅ > ⋅∫ ∫∫ ∫ ∫∫          (4.7) 

After (4.2) 0
d d

S
B B

sω θ
ω

π
⋅

= ∫ ∫∫  it holds also for initial finite spherical par-

ticles for [ ]0,t T∈  ( ) ( )0B B tω ω>                (4.8) 

Proof: Again The (4.1) is nothing else of course but the Stokes theorem. 
We shall utilize here the next equation (See [16] Majda, A.J-Bertozzi, A. L. 

2002, (1.61), in page 23.) in the case of viscous incompressible flows under the 
Navier-Stokes equations  

( ) ( ) ( ) ( )
d d d d d
d dc t c t c t c t

u l u l curl l
t t

ν ν ωΓ = = ∆ = −∫ ∫ ∫  

           (4.9) 

This equation is derived after applying as in Theorem 4.1 the loop integral 
of the circulation at the Navier-Stokes equations instead at the Euler equations 
taking the material-flow derivative outside the integral, and eliminating the 
conservative, irrotational part of the pressure forces as gradient of the pressure. 
Here the viscosity is not zero thus the left hand of the equations is not zero as in 
the case of Euler equations, where it is conserved. The right hand side is nothing 
else than the loop work density of the point density of the force of viscosity at 
any time t. And as the viscosity always subtracts energy, this right hand side 
work density is always negative during the flow. We notice after the Lemma 3.1 
that the viscosity force point density keeps constant sign on the trajectory path 
as orbital component during the flow and relative to the velocity on the trajecto-
ry. It is always as orbital component opposite to the motion and represents the 
always irreversible energy absorption and linear momentum and angular mo-
mentum decrease. Similarly, for any rotation of the fluid e.g. with axis the tra-
jectory path. The viscosity force point density as component on the loop is al-
ways opposite to the rotation, it never converts thermal energy to add to linear 
or angular momentum. This opposite to motion monotonicity of the viscosity  
force density applies to the Navier-Stokes equations but also as opposite to rota-

tion monotonicity in the vorticity equation uD
Dt
ω νω ω= ∗ +∇ ∆  (see [16] Maj-

da, A.J.-Bertozzi, A. L. 2002, (1.33) and (1.50) in pages 13 and 20). So if we  
choose a direction of the loop so that the circulation integral on the right hand 
side is positive then this will have the same sign during the flow (although dif-
ferent absolute value), and will make the left hand side of the (4.9) always nega-
tive during the flow. But this means from the left-hand side of the equation that 
the circulation of the velocity on the loop is always decreasing during the flow.  

( )
d d 0
d c t

u l
t

<∫  for any t in [0, T]             (4.10) 

Thus (4.6) is proved, and (4.7) is direct consequence.  
To prove the equation 4.8 we notice that due to incompressibility, the flow is 

volume preserving, thus ( )( ) ( )( )0B x t B x= , and by dividing both sides of the 
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equation (4.7), and after the definition  

0
d d

S
B B

sω θ
ω

π
⋅

= ∫ ∫∫  it holds also 

for [ ]0,t T∈  ( ) ( )0B B tω ω>  (4.8) QED. 
Remark 4.2. We can extend the results of the theorems 4.1, 4.3 with Euler or 

Navier-Stokes equations to similar ones in the inhomogeneous case with exter-
nal forces Fext., provided of course 1) we have the existence and uniqueness of a 
smooth solution local in time, and 2) the criterion of the accumulation of the 
vorticity as in Theorem 2.2 continuous to hold with external forcing as in the 
formulation of the Millennium problem. We would start from an equation  

( ) ( ) ( ) ( ) ( )
d d d d d d
d d ext extc t c t c t c t c t

u l curl l F l F l
t t

ρ νρ ω ρ ρΓ = = − + ≤∫ ∫ ∫ ∫   

 

Similarly  

( ) 0
d d d d d
d ext extS c t S S

s curl l curlF s curlF s S M
t
ρ ω νρ ω ρ ρ⋅ = − + ⋅ ≤ ⋅ ≤∫∫ ∫ ∫∫ ∫∫

 

since as in the proof of Theorem 4.3 the friction circulation term is always nega-
tive and due to the Schwartz conditions on the external force in space and time 
the constant M0 is independent from space and time and the size of the surface 
of the loop in the integration. |S| is the area of the flux integration. 

Then from smoothness and elementary 1-dimensional calculus we would get 
an inequality like  

( ) ( ) ( )10 d d ,extS S
s t s S M F tρ ω ρ ω⋅ − ⋅ ≤∫∫ ∫∫  

where again due to the Schwartz conditions on the external force in space and 
time the constant M1 is independent from space and the trajectories paths and 
depends only on the time and the external force.  

Similarly by dividing the first equation by |B| which does not change by time 
and integrating for 3D ball, we can result similarly to an inequality like  

( )
( )

( )
( )

( ) ( )0 0
1 1

d d 0 d
,

0

d
,S S

ext ext

t s s
M F

B
BB t B

t M F t
ω θ ω θ

π π
⋅ ⋅

− ≤ =∫ ∫∫ ∫ ∫∫   

where again the constant M2 is independent from space and the size of the ball 
and depends only on the time t.  

Theorem 4.4 The no blow-up theorem in finite or infinite time in the Euler, 
Navier-Stokes, periodic or non-periodic and homogeneous cases.  

Let the Euler or Navier-Stokes equations of incompressible fluids in the non- 
periodic or periodic setting (homogeneous case with no external forces), with  

1) smooth initial data and whatever else hypothesis is necessary so as, also to 
guarantee the existence and uniqueness of smooth solutions to the equations lo-
cally in time [0, T). 

2) Furthermore we assume that the initial data in the periodic or non-periodic 

https://doi.org/10.4236/jamp.2022.108172


K. E. Kyritsis 
 

 

DOI: 10.4236/jamp.2022.108172 2554 Journal of Applied Mathematics and Physics 
 

case, are such that the supremum of the vorticity, denoted by Fω, is finite at t = 0. 
(In the periodic case, smoothness of the initial velocities is adequate to derive it, 
while in the non-periodic setting smooth Schwartz initial velocities is adequate 
to derive it) 

Then it holds that there cannot exist any finite or infinite time blow-up at the 
point vorticities during the flow.  

Proof: The proof will by contradiction. The main idea of the proof is to utilize 
that in the case of a blow-up the vorticity will converge to infinite, so it will be-
come larger than an arbitrary lower bound M + Fω, Μ > 0, Fω > 0 and by ap-
proximating it with average flux vorticity of a 3D spherical particle, and tracing 
it back at the initial conditions where all is bounded by Fω, utilizing the semi- 
invariance of the average vorticity that we have proved, we will get that Fω > M + 
Fω.  

So let us assume that there is a blow up, in a finite time or infinite time T ∗ , 
with the hypotheses of the theorem 4.2. Then from the Theorem 2.2 and (2.12) 
which is the well-known result of the control of regularity or blow up by the vor-
ticity we get that,  

( )
0

lim d.,
T

T

Lt
ω τ τ∞∗→

∞= +∫                  (2.12) 

We conclude that there will exist an infinite sequence of points {
nt

x , n natural 
number, 0 nt T ∗< < , limn n Tt→∞

∗= } so that the point vorticity ( )nt
xω  blows- 

up, or equivalently ( )lim
nn txω→∞ = +∞ . We do not need to assume them on the 

same trajectory. Therefore, for every positive arbitrary large real number M0, 
there is a n0 such that for all natural numbers n > n0, it holds that ( ) 0nt

x Mω > . 
We choose M0 = M00 + Fω, for an arbitrary large positive number M00. So  

( ) 00tnx M Fωω > +                       (4.11) 

Now we approximate this point vorticity with an average flux vorticity on a 
3D particle after Definition 4.1, theorem 4.2 and Lemma 4.1.  

Let a spherical ball particle ( ),
nt

B r x  as in theorem 4.2. with center 
nt

x  and 
radius r > 0. After Definition 4.1, theorem 4.2 and Lemma 4.1. we have that  

( )0lim
nr B x tω ω→ = , with 

( )( )
0

d d

,
S

B
n

s

B R x t

ω θ
ω

2π
⋅

= ∫ ∫∫            (4.2) 

Therefore for arbitrary small positive number ε > 0, there is radius R, with  

( ) ( )nB R x tω ω ε> −  or 
( )( ) ( )

0
d d

, n

S
x t

n

s

B R x t

ω θ
ω ε

2π
⋅

> −∫ ∫∫           (4.12) 

Thus after (4.11) 
( )( )

0
00

d d

,
S

n

s
M F

B R x t ω

ω θ
ε

2π
⋅

> + −∫ ∫∫          (4.13) 

Now we trace back on the trajectory of the 
nt

x  the parts of the (4.13). 
At initial time t = 0. We use the advantage that as the incompressible flow is 
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volume preserving, the ( ) ( )( )0 ,, nBB R Rx x t= . We also utilize theorems 4.2, 
4.3, and (4.5), (4.8), which prove that at the initial conditions t = 0, this average 
vorticity is the same or higher than that at tn. 

( )( ) ( )( )
0 0

d d d d

, 0 ,
S S

n

s s

B R x B R x t

ω θ ω θ
2π 2π

⋅ ⋅
≥∫ ∫∫ ∫ ∫∫  

We conclude that  

( )( )
0

00

d d

, 0
S

s
M F

B R x ω

ω θ
ε

2π
⋅

> + −∫ ∫∫                 (4.14) 

From the (4.14) and (4.3) of Lemma 4.2 we conclude that  

00F M Fω ω ε> + −                      (4.15) 

But M00 was chosen in an independent way from ε > 0 to be arbitrary large, 
while ε > 0 can be chosen to be arbitrary small. Therefore, a contradiction. Thus 
there cannot be any blow-up either in finite or infinite time T ∗ . QED.  

Remark 4.3. Infinite initial energy. We must remark that we did not utilize 
anywhere that the initial energy was finite, only that the vorticity initially has fi-
nite supremum. Thus this result of no-blow-up can be with infinite initial energy 
too. But when applying it to the millennium problem we do have there also that 
the initial energy is finite.  

Remark 4.4. Inhomogeneous case. It is interesting to try to extend this result 
of no blowup, for the inhomogeneous case too of the Euler and Navier-Stokes 
equations and investigate where it would fail, if at all, provided of course we 
have 1) the existence and uniqueness of a smooth solution local in time and 2) 
the criterion of the accumulation of the vorticity as in Theorem 2.2 still holds 
with external forcing as in the formulation of the Millennium problem. We would 
utilize the last inequality of remark 4.2 

( )
( )

( )
( )

( )0 0
1

d d 0 d d
,

0
S S

ext

t s s
M F t

B t B

ω θ ω θ
π π

⋅ ⋅
− ≤∫ ∫∫ ∫ ∫∫   

and we would anticipate for the choice of the constant M0 in (4.11),  

0 00 1M M M Fω= + + . We would reason similarly as in the proof of the Theorem 
4.4 and we end to a same contradiction  

00F M Fω ω ε+ −>  

But since at least in the book [16] Majda, A.J-Bertozzi, A. L. 2002, that I took 
as reference on the subject, it does not claim the existence and uniqueness of a 
smooth solution locally in time, in the case of external forces, as we wrote in re-
mark 2.4, I will avoid using it, and I remain only in the homogeneous case. 
Therefore, for the moment I will not spend space in this paper on the inhomo-
geneous case.  

Remark 4.5. A strange blow up for any time t > 0 of initially smooth data. We 
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might be curious to ask the question if it is possible, starting with zero initial ve-
locities and pressures, to create an artificial blow-up only with external forcing. 
A good candidate is the perfect circular vortex, where all the trajectory paths are 
perfect circles, which is known that it is an instance of the solution of the Euler 
and Navier-Stokes equations. We can formulate the circular vortex in 3D with 
cylindrical or spherical coordinates. But for simplicity we will formulate it in 2 
dimensions, in spite the fact that we do know that in 2D dimensions there can-
not be a blow up under the hypotheses of the millennium problem. So with an 
external forcing also as perfect circular vortex that in polar coordinates are as 
follows 

0rF = , ( )( )2 1 expF rθ ρ= +                  (4.16) 

we raise the absolute initial rest within finite time t the flow to a circular vortex 
which has velocities in polar coordinates  

0ru = , ( )( )2 1 expu t rθ = +                   (4.17) 

Now it is elementary to show that 
1) This flow follows the Euler and Navier-Stokes equations. 
2) Because curlω = 0, the viscosity has no effect it is as if an inviscid flow.  
If ω is the vorticity then it is calculated in polar coordinates at the verical 

z-axis by the formula  

r
z

u u u
r r r r
θ θω

∂ ∂
= + −

∂ ∂
                     (4.18) 

4) Although the velocity has smooth polar coordinates, the vorticity is in 
steady blow-up (singularity) at r = 0 for any t > 0. That is although at t = 0 the 
initial data are smooth, for any t > 0, there is a blow-up. 

5) The 4) is so because the external forcing although it has smooth polar coor-
dinates, in the Cartesian coordinates, it has curl(F) = +∞, at r = 0, thus it does 
not satisfy the smooth Schwartz condition external forcing of the millennium 
problem.  

5. The Solution of the Millennium Problem for the  
Navier-Stokes Equations but Also for the Euler Equations 

We are now in a position to prove the Conjectures (A) and (B), non-periodic and 
periodic setting, homogeneous case of the Millennium problem. 

(Millennium Homogeneous Case A) Existence and smoothness of Navier-Stokes 
solution on R3. 

Take ν > 0 and n = 3. Let u0(x) be any smooth, divergent-free vector field sa-
tisfying (2.4). Take f(x, t) to be identically zero. Then there exist smooth func-
tions p(x, t), u(x, t) on [ )3 0,R × +∞  that satisfy (2.1), (2.2), (2.3), (2.6), (2.7).  

Proof: All the hypotheses of the no-blow-up theorem 4.4 are satisfied. After 
remark 2.4, with the current case of the millennium problem there exist indeed a 
unique smooth solution locally in time [0, t] (after A.J. Majda-A.L. Bertozzi [15], 
Theorem 3.4 pp 104, Local in Time existence of Solutions to the Euler and Navi-

https://doi.org/10.4236/jamp.2022.108172


K. E. Kyritsis 
 

 

DOI: 10.4236/jamp.2022.108172 2557 Journal of Applied Mathematics and Physics 
 

er-Stokes equations). And also the Schwartz condition of the initial data, guar-
antees that the supremum of the vorticity, is finite at t = 0. (see Remark 2.1) 
Therefore we conclude by Theorem 4.4 that there cannot be any finite or infinite 
time blow-up. Thus from Theorem 2.2 Supremum of vorticity sufficient condi-
tion of regularity we conclude that this local in time [0, t] solution, can be ex-
tended in [0, +∞). QED 

(Millennium Homogeneous Case B) Existence and smoothness of Navier-Stokes 
solution on R3/Z3. 

Take ν > 0 and n = 3. Let u0(x) be any smooth, divergent-free vector field sa-
tisfying (8); we take f(x, t) to be identically zero. Then there exist smooth func-
tions p(x, t), u(x, t) on [ )3 0,R × +∞  that satisfy (2.1), (2.2), (2.3), (2.10), (2.11).  

Proof: All the hypotheses of the no-blow-up theorem 4.4 are satisfied. After 
remark 2.4, with the current case of the millennium problem there exist indeed a 
unique smooth solution locally in time [0, t] (after A.J. Majda-A.L. Bertozzi [15], 
Theorem 3.4 pp 104, Local in Time existence of Solutions to the Euler and Navi-
er-Stokes equations). And also the compactness of the 3D torus of the initial da-
ta, guarantees that the supremum of the vorticity, is finite at t = 0. Therefore we 
conclude by Theorem 4.4 that there cannot be any finite or infinite time blow-up. 
Thus from Theorem 2.2 Supremum of vorticity sufficient condition of regularity 
and remark 2.6 (that the previous theorem covers the periodic setting too) we 
conclude that this local in time [0,t] solution, can be extended in [0, +∞). QED 

Remark 5.1. Now in the previous two Millennium cases we could as well take 
ν = 0, and we would have the same proofs and conclusions because the Theorem 
4.4 of the no-blow-up covers too the case of inviscid Euler equations flows.  

6. Epilogue 

In this paper I solved the millennium problem about the Navier-Stokes equa-
tions in the homogeneous case without external forcing, and proved that there 
cannot be a blowup in finite or infinite time (regularity) both in the periodic and 
non-periodic setting without external forcing (homogeneous case). But it is also 
indicated how to prove that once the hypotheses of external forcing of the mil-
lennium problem allow 1) to have the existence and uniqueness of a smooth so-
lution local in time, and 2) the criterion of the accumulation of the vorticity as in 
Theorem 2.2 continuous to hold with external forcing as in the formulation of 
the Millennium problem, then that the same result of regularity (no blow up) 
holds also for this inhomogeneous case with external forcing. Furthermore, I 
proved also the by far more difficult same result for the Euler inviscid flows. I 
did so by utilizing (e.g. in the inviscid case) that not only the momentum is con-
served but also rotatory versions of the momentum 1D line and 2D surface den-
sities are conserved. Then I extended the conservation in the case of viscous 
Navier-Stokes flows to monotone semi invariants, in other words, these densities 
are monotonously decreasing due to friction. This allowed me to prove with 
elementary geometric calculus that there cannot be any blow up (regularity). The 
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solution of this millennium problem gave the opportunity to discover 2 new 
monotone semi invariants (1D and 2D densities of (rotatory type) momentum) 
for the viscous Navier-Stokes equations.  
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